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The application of Transfer matrix method (TMM) ranges from linear/nonlinear vibration,
composite structure, and multibody system to calculating static deformation, natural vibration,
dynamical response, and damage identification. Generally TMM has two characteristics: (1) the
TMM formulae share similarity to the chain mechanics model in terms of topology structure; then
TMM often is selected as a powerful tool to analyze the chain system. (2) TMM is adopted to deal
with the problems of the discrete system, continuous system, and especial discrete/continuous
coupling system with the uniform matrix form. In this investigation, a novel TMM is proposed
to analyze the natural vibration of the tree system. In order to make the TMM of the tree system
have the two above advantages of the TMM of the chain system, the suitable state vectors and
transfer matrices of the typical components of the tree system are constructed. Then the topology
comparability between the mechanics model and its corresponding formulae of TMM can be
adopted to assembling the transfer matrices and transfer equations of the global tree system. Two
examples of natural vibration problems validating the method are given. The formulation of the
proposed TMM is mathematically intuitive and can be held and applied by the engineers easily.

1. Introduction

Transfer matrix method (TMM) has been developed for a long time and has been usedwidely
in engineering mechanics of the linear and nonlinear system. To linear system, Holzer (1921)
initially applied TMM to solve the problems of torsion vibrations of rods [1], Myklestad
(1945) selected TMM to determine the bending-torsion modes of beams [2], Thomson (1950)
used TMM to more general vibration problems [3], Pestel and Leckie (1963) listed transfer
matrices for elastomechanical elements up to twelfth order [4], and Rubin (1964, 1967)
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provided a general treatment for transfer matrices and their relation to other forms of
frequency response matrices [5, 6]. Transfer matrices have been applied to a wide variety of
engineering programs by a number of researchers, including Targoff [7], Lin [8], Mercer and
Seavey [9], Lin and McDaniel [10], Mead [11, 12], Henderson and McDaniel [13], McDaniel
[14, 15], and Murthy [16–18], dealing with beams, beam-type periodic structures, skin-
stringer panels, rib-skin structures, curved multispan structures, cylindrical shells, stiffened
rings, and so forth.

To nonlinear system, Zu and Ji (2002) proposed an improved TMM for steady-state
analysis of nonlinear rotor-bearing systems [19]. Gu et al. (2003) analyzed the Transient
response analysis of large-scale rotor-bearing system with strong nonlinear elements by a
transfer matrix-newmark formulation integration method [20]. Liew et al. (2004) used the
TMM for transient analysis of nonlinear rotor-bearing systems [21]. To composite structure,
Ellakany et al. (2004) dealt with free vibration analysis of composite beams by a combined
transfer matrix and analogue beam method [22]. Yeh and Chen (2006) analyzed the wave
propagations problems of a periodic sandwich beam by FEM and TMM [23]. In order to
increase the applied field of the TMM, Dokanish (1972) developed finite element-transfer
matrix method (FE-TMM) to solve the problems of plate structure vibration analysis, by
combining finite element method and transfer matrix method [24]. Many researchers, such
as Ohga and Shigematsu (1987), Xue (1994), and Loewv (1985, 1999), studied and improved
FE-TMM for structure dynamics [25–28]. Lee (2000) analyzed the one-dimensional structures
problems using the spectral TMM [29]. Choi andMan (2001) dealt with the dynamic analysis
of the geared rotor-bearing system by TMM [30]. Hsieha et al. (2006) proposed a modified
TMM to analyze the coupling lateral and torsional vibrations of symmetric rotor-bearing
systems [31]. Horner and Pilkey (1978) proposed Riccati transfer matrix method in order
to circumvent the numerical stability of the boundary value problem [32]. By combining
the TMM and the numerical procedure, Kumar and Sankar (1986) constructed the discrete
time transfer matrix method to analyze the dynamical response of the vibration system
[33].

Recently Liu (1999) adopted TMM to analyze the plane frame with variable section
and branch [34], and Yu et al. (2002) dealt with furcated structural system by TMM [35].
Huang and Horng (2001) applied the extended TMM with complex numbers analyzing
the branched torsional systems [36]. Zou et al. (2003) analyzed the torsional vibration of
complicated multibranched shafting systems by the modal synthesis method [37]. Rui et al.
(1998, 2005, 2010) developed the discrete time transfer matrix method for multibody system
dynamics [38–40].

In this investigation the tree structure system is modeled by TMM. A special
attention is focused on how the transfer equations and transfer matrices of the global
system can be developed conveniently. By defining the state vectors and deducing the
transfer matrices of the typical components of the tree system suitably, some interesting
phenomena, which are that the topology structure of the mechanics model is almost similar
to that of the interrelated formula, are discovered. Then a systemic TMM is proposed
that can be used conveniently to deal with the vibration problem of tree structure. This
formulation is mathematically and practically convenient. The text is organized as follows.
In Section 2, the general theorem of the method is shown. In Section 3, the transfer matrices
of typical elements are developed, including chain lumped mass, branched lumped mass,
and spring. In Section 4, some results calculated by TMM and the other method are given
that can validate the proposed method. The conclusion and future works are presented in
Section 5.
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(a) Original tree-form system
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(b) Discrete tree-form system

Figure 1: Tree-form system and its linearization.

2. General Theorem of TMM

2.1. Tree System

The tree system is one kind of important nonchain system. It contains many nodes, branches,
and hierarchical organizations. Its concrete shape is very similar to the natural biologic tree.
In a tree system there is one and only one path leading from one location to any other location
in the system.

The tree system includes two kinds of the subsystems: chain subsystem and branched
subsystem. Chain subsystem is comprised of some elements with one input end and one
output end that are connected with chain form. The branched subsystem at least contains
one element with many input ends and one output end, usually named as the branched
components. It does not lose generality in this work, the tree system is constituted by the
spring, chain lumped mass, and branched lumped mass whose mechanics performance will
be introduced in detail in Section 3.

For example, the tree system shown in Figure 1 is made up of thirteen components,
where the component 8 and 12 are the branched components that can be regarded as two
branched subsystems S4 and S6, others are connected with the chain organization. The
elements 1, 2, 3, 4, 5 and 9, 10, 11 are connected with chain form and can be regarded as
two chain subsystems S1 and S5. Apart from these two chain subsystems, the components 6,
7, and 13 may well be denoted as three chain subsystems S2, S3, and S7. Then the original tree
structure system depicted in Figure 1(a) has the same function and topology structure with
the model shown in Figure 1(b) that includes seven subsystems Si, i = 1, 2, . . . , 7. It should
be noted that all the boundaries here are expressed by the zero.
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Figure 2: Model of chain subsystem.

2.2. State Vector

Now that the tree structure system includes the spring and the lumped mass undergoing
one dimension motion along the ox axis, the state vector of the connected point between the
spring and the lumped mass is the function with respect to time, which can be defined as

z =
[
x q

]T
, (2.1)

where x and q, respectively, represent the displacement coordinate and internal force of the
connected point with respect to the direction ox. As for the system with period motion, the
displacement coordinate and the internal force can be assumed

x(t) = X exp(iωt), q(t) = Q exp(iωt), (2.2)

whereω is the circular frequency,X, Q are the shape functions of the displacement coordinate
and internal force, and i is the unit of imaginary number. Then the velocity and acceleration
can be expressed as

ẋ(t) = iωX exp(iωt),

ẍ(t) = −ω2X exp(iωt).
(2.3)

To substitute (2.3) into (2.2), the corresponding modal state vector of physics state vector z
can be written as [4]

Z =
[
X Q

]T
. (2.4)

Supposing that the system undergoes period motion, the modal state vector Z does not vary
with the change of the time but remains the function of the displacement coordinates of
different connected nodes.

2.3. Transfer Matrix of Chain Subsystem

The transfer equation of the chain subsystem Si can be obtained by using the transfer
equations of the components in turn. For the chain subsystem from the component k + 1
to n ≥ k + 1 that is shown in Figure 2, its transfer equation can be written as

ZSj ,Si = USiZSi ,Sl , (2.5)
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Figure 3: Branched component.

where the global transfer matrix of the chain subsystem can be expressed as

USi = UnUn−1Un−2 · · ·Uk+2Uk+1. (2.6)

ZSj ,Si and ZSi ,Sl are the state vectors of input and output ends, their definitions can be
seen in (2.1), and the subscripts Si,Sj ,Sl of the state vectors denote this subsystem (or
component itself) Si, the output subsystem (or component) of Si, and the input subsystem
(or component) of Si. A very useful convention adopted in this work is that the first (second)
subscript denotes the input (output) component or subsystem.

The topology structure of the chain system in Figure 2 shares the similarity with the
transfer matrix (equation) of (2.5) and (2.6) in terms of chain form. This reminds us of
whether the relationship between the system and its equation of transfer matrix can be used
to assemble the formulation of the global system. In the following section, this topology
comparability will be employed to analyze the natural vibration of the tree-like system by
TMM. And the component of the tree system, discrete or continuous, does not affect the
matrix form of (2.5) and (2.6), as long as the transfer matrices of the components have been
obtained ahead of schedule [4].

2.4. Transfer Matrix of Branched Subsystem

The branched subsystem Sl or branched component n is shown in Figure 3, including α
input components and one output component, denoted as k + 1, k + 2, . . . , k + α, and n + 1,
respectively. The transfer equation of the branched subsystem Sl contains two equations:
one is the access transfer equation that describes the state vector of the output end as the
linear function of the state vectors of input ends; the other is the nodal transfer equation that
conveys the relationship between the state vectors of input ends. Generally the access transfer
equation can be written as

Zn+1,n =
k+α∑

j=k+1

U′
n

(
j
)
Zn,j , (2.7)

where Zn+1,n, Zn,j , (j = k+1, . . . , k+α) are the state vectors of the output and input ends of the
branched subsystem, respectively, U′

n(j), (j = k + 1, . . . , k + α) are the block transfer matrices.
Equation (2.7) can be used conveniently to analyze the problems of the single or few branched
system [34–36]. To the tree systemwith many branched subsystems, the formula will be quite
complex and not intuitive enough. In order to circumvent this lack of TMM,we try to develop
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a formulation that resembles the tree system in topology structure. So (2.7) can be rewritten
as

Zn+1,n = U′
Sl

⎡

⎢⎢⎢⎢⎢⎢
⎣

Zn,k+1

Zn,k+2

...

Zn,k+α

⎤

⎥⎥⎥⎥⎥⎥
⎦

, (2.8)

where the access transfer matrix is

U′
Sl
=
[
U′

n(k + 1) U′
n(k + 2) · · · U′

n(k + α)
]
. (2.9)

Mathematically, (2.7) is completely equivalent to (2.8). In contrast with (2.7), the topology
structure of (2.8) and Figure 3 are similar. This comparability seems more useful when the
analysis system is more complicated. One thing worth noting is that (2.8) does not explain
the internal relationship among the state vectors of the input ends. A further equation, the
nodal transfer equation, is still called for

O(i+1)×1 = U′′
Sl

⎡

⎢⎢⎢⎢⎢⎢
⎣

Zn,k+1

Zn,k+2

...

Zn,k+α

⎤

⎥⎥⎥⎥⎥⎥
⎦

, (2.10)

where the subscript i is in terms of the state vector’s definition and the number α. The detailed
derivation of the nodal transfer equation will be given in Section 3. The topology structure of
(2.10) and (2.8) is similar to that of the tree system shown in Figure 3. So this comparability
seems very useful for assembling of the global system transfer matrix that will be introduced
in the following part.

2.5. Transfer Equation and Transfer Matrix of Global System

According to the definition of the state vector and transfer matrix in the above section, the
transfer equations of all subsystems of the tree system shown in Figure 1 can be written as

ZS6,S1 = US1ZS1,0,

ZS4,S2 = US2ZS2,0,

ZS4,S3 = US3ZS3,0,

ZS6,S5 = US5ZS5,S4 ,
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Z0,S7 = US7ZS7,S6 ,

ZS7,S6 = U′
S6

[
ZS6,S5

ZS6,S1

]

,

ZS5,S4 = U′
S4

[
ZS4,S3

ZS4,S2

]

,

0 = U′′
S6

[
ZS6,S5

ZS6,S1

]

,

0 = U′′
S4

[
ZS4,S3

ZS4,S2

]

,

(2.11)

where

US1 = U5U4U3U2U1,

US2 = U6,

US3 = U7,

U′
S4

= U′
8,

U′′
S4

= U′′
8,

US5 = U11U10U9,

U′
S6

= U′
12,

U′′
S6

= U′′
12,

US7 = U13.

(2.12)

The transfer matrices of the right parts of the equation can be referred in Section 3. The global
system transfer equation that connects the boundary state vectors can be obtained by the
iterative computation of the transfer equations of all components,

Z0,S7 = US7U
′
S6

⎡

⎢
⎣
US5U

′
S4

[
US3ZS3,0

US2ZS2,0

]

US1ZS1,0

⎤

⎥
⎦,

0 = U′′
S6

⎡

⎢
⎣
US5U

′
S4

[
US3ZS3,0

US2ZS2,0

]

US1ZS1,0

⎤

⎥
⎦,

0 = U′′
S4

[
US3ZS3,0

US2ZS2,0

]

.

(2.13)
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Up to now, we have found a very interesting phenomenon. The topology structure of the first
formulation in (2.13) nearly equals to that of Figure 1. The mechanics model given in this
figure is branched at the subsystems S4 and S6; formulation (2.13) seems also “branched”
at the transfer matrices of these two subsystems. The subsystems S1 and S5 in Figure 1 are
chain, and (2.13) seems also chain at these stations. On the other hand, assuming one part
of Figure 1(a) that starts from the subsystem S6 and can be separated by the dash dot line
box plotted in Figure 1(b), the topology structure of the figure in this box is similar to that
of the second formulation of (2.13). And the third formulation in (2.13) is like the figure
inside the little dash dot line box of Figure 1(b). So this comparability can be used to put
together the transfer matrix of the global system. It is noted that the nodal transfer equation
of each branched component will cause an extra transfer equation of the global system. So
as for the system shown in Figure 1 which includes two branched component, three transfer
equations can be developed constituting one access transfer equation of the global system and
two nodal transfer equations yielded via the branched subsystems S4 and S6, respectively.
Furthermore, (2.13) can be rewritten as one formulation that can be named as the transfer
equation of the global system

⎡

⎢⎢
⎣

Z0,13

0

0

⎤

⎥⎥
⎦ = Uall

⎡

⎢⎢
⎣

Z7,0

Z6,0

Z1,0

⎤

⎥⎥
⎦, (2.14)

where the transfer matrix of the global system is

Uall =
[
UT

all,1 UT
all,2 UT

all,3

]T
,

Uall,1 = US7U
′
S6

⎡

⎢
⎣
US5U

′
S4

[
US3 O2×2

O2×2 US2

]

O2×2

O2×4 US1

⎤

⎥
⎦,

Uall,2 = U′′
S6

⎡

⎢
⎣
US5U

′
S4

[
US3 O2×2

O2×2 US2

]

O2×2

O2×4 US1

⎤

⎥
⎦,

Uall,3 =

[

U′′
S4

[
US3 O2×2

O2×2 US2

]

O1×2

]

.

(2.15)

Then natural frequency of the tree system can be resolved like the common transfer
matrix method. Since the unknown quantities in the boundary state vector have nonzero
solution, the shape function and the natural frequencies can be calculated.
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3. Transfer Matrix of Typical Component

3.1. Transfer Matrix of Spring Undergoing Longitudinal Vibration

The spring neglecting the mass vibrates by natural circular frequency ω in one-dimension
direction. The stiffness of the spring i isKi, whose input and output components are denoted
as i − 1 and i + 1. State vectors of the input or output ends of the spring i are denoted as Zi,i−1
or Zi+1,i. The equilibrium equation of the spring can be obtained

xi+1,i = xi,i−1 − 1
Ki

qi,i−1,

qi+1,i = qi,i−1.

(3.1)

Since the system is harmonic vibration, (2.3) can be substituted into (3.1), and the transfer
equation of the spring can be written as

Zi+1,i = UiZi,i−1, (3.2)

where transfer matrix is [4]

Ui =

⎡

⎣1 − 1
Ki

0 1

⎤

⎦. (3.3)

3.2. Transfer Matrix of Lumped Mass Undergoing Longitudinal Vibration

The dynamics equation of the lumped mass mi undergoing longitudinal vibration can be
written as

xi+1,i = xi,i−1,

qi,i+1 = −miẍi,i−1 + qi,i−1.
(3.4)

It is the same that (2.3) also can be used, the transfer equation can be obtained

Zi+1,i = UiZi,i−1, (3.5)

where

Ui =

[
1 0

miω
2 1

]

(3.6)

is the transfer matrix of the lumped mass mi [4].
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3.3. Transfer Matrix of Lumped Mass with Branched Connection Form

Considering that the lumped mass n connected by the branched form is shown in Figure 3,
its mass can be denoted as mn and one output component and α input components can be
denoted as n+1 and k+ j, j = 1, 2, . . . ,α, respectively. The dynamics equation of this mass can
be written as

xn+1,n = xn,k+j , j = 1, 2, . . . ,α,

qn+1,n = −mnẍn,k+1 +
α∑

j=1

qn,k+j .
(3.7)

It is also similar to the above section where (2.3) can be used, (3.7) can be expressed as

Xn+1,n = Xn,k+j , j = 1, 2, . . . ,α,

Qn+1,n = ω2mnẍn,k+1 +
α∑

j=1

Qn,k+j .
(3.8)

So we can select the first one of (3.8) and set j = 1, then we can obtain

Xn+1,n = Xn,k+1. (3.9)

The above equation and the second one of (3.8) can be expressed as the matrix form. The state
vector of the output ends can be expressed by the state vectors of the input ends by this matrix
equation that is similar to the access transfer equation (2.8) of the branched component,

Zn+1,n = U′
n

[
ZT
n,k ZT

n,k+1 · · · ZT
n,k+α

]T
, (3.10)

where the access transfer matrix of the branched lumped mass n can be written as

U′
n =

[
Un B · · · B

]
,

Un =

[
1 0

mnω
2 1

]

,

B =

[
0 0

0 1

]

.

(3.11)

However to the formulations in (3.8) when j /= 1,

Xn+1,n = Xn,k+j , j = 2, 3, . . . ,α. (3.12)
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If we rewrite the above equations as the matrix form directly, that is,

AZn+1,n = D
[
ZT
n,k+1 ZT

n,k+2 · · · ZT
n,k+α

]T
, (3.13)

where

A =
[
CT CT CT

]T
,

D =

⎡

⎢⎢⎢⎢⎢⎢
⎣

C O1×2 · · · O1×2

O1×2 C · · · O1×2
...

...
. . .

...

O1×2 O1×2 · · · C

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

C =
[
1 0

]
.

(3.14)

If (3.13) is directly used to assemble the global system transfer matrix, the whole task will be
huge since variables are unknown for both sides of the equal sign in (3.13). A new equation is
required in order to simplify the process. In the rewritten form all the variables are available
except in one side of the equal sign. So the method used in Section 2 can also be used to
determine a new form of (3.13) whose topology structure is similar to that of the branched
component. Then we can substitute the first one of (3.8)

Xn+1,n = Xn,k+1 (3.15)

into (3.12), the transfer equation of the branched lumped mass, that is, the same with (2.10)
can be obtained, where the transfer matrix is

U′′
n =

⎡

⎢⎢⎢⎢⎢⎢
⎣

C −C O1×2 · · · O1×2

C O1×2 −C · · · O1×2
...

...
...

. . .
...

C O1×2 O1×2 · · · −C

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (3.16)

The aim of this investigation is limited in the multiple-branched system by using
TMM. So in order to narrate conveniently, the research object is selected as the relative
simple component, such as spring and lumped mass undergoing one-dimensional motion.
Furthermore, the transfer matrices of complex components can be found in [6] for chain form
system. And the assembling of global transfer matrix and the deduction of transfer matrix of
complex component for the branched component are almost the same with the approach
given here.
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4. Applied Example

Two applied examples are given to validate the method of this paper.

4.1. Simple Example

As for the simple tree system, according to the structure characteristic of the system, the
component from one end (root node of the tree system) to the others (leaf node of the tree
system) can be denoted as i = 8, 7, . . . , 1 shown in Figure 4. All the boundaries are fixed
and denoted as 0. Of course it is not difficult to consider other type boundary conditions
for the natural vibration problems. So the model shown in Figure 4 contains three lumped
mass 3, 4, 7 and five springs 1, 2, 5, 6, 8 with one-dimensional motion. The serial number of
the entire component in the system can be determined by one uniform technique, which is
different with the method often used in multibody system dynamics [38, 39]. That is because
the transfer matrices of the spring and lumped mass have same importance and function in
the solution process. According to the formula given in Section 3, the transfer equations of
the components shown in Figure 3 can be written as

Z3,1 = U1Z1,0,

Z4,2 = U2Z2,0,

Z5,3 = U3Z3,1,

Z6,4 = U4Z4,2,

Z7,5 = U5Z5,3,

Z7,6 = U6Z6,4,

Z8,7 = U′
7

[
ZT
7,6 ZT

7,5

]T
,

0 = U′′
7

[
ZT
7,6 ZT

7,5

]T
,

Z0,8 = U8Z8,7,

(4.1)



Mathematical Problems in Engineering 13

whereU1,U2,U5,U6,U8 can be referred as (3.3),U3,U4 are defined in (3.6), the access transfer
matrix U′

7 and the nodal transfer matrix U′′ of branched component can be seen in (3.11) and
(3.16), and Zi,j is the state vector at respective node i, j. By using the iterative method, the
global transfer equations that reflect the relations between all the state vectors in the system
boundary nodes can be obtained

Z0,8 = U8U′
7

[
U6U4U2Z2,0

U5U3U1Z1,0

]

,

0 = U′′
7

[
U6U4U2Z2,0

U5U3U1Z1,0

]

.

(4.2)

Equation (4.2) can be rewritten as

[
Z0,8

0

]

= Uall

[
Z2,0

Z1,0

]

, (4.3)

where the transfer matrix of global system is

Uall =
[
UT

all,1 UT
all,2

]T
,

Uall,1 = U8U′
7

[
U6U4U2 O2×2

O2×2 U5U3U1

]

,

Uall,2 = U′′
7

[
U6U4U2 O2×2

O2×2 U5U3U1

]

.

(4.4)

As to the fixed boundary condition, state vectors in the boundary nodes can be expressed as

Z1,0 =
[
0 q1

]
,

Z2,0 =
[
0 q2

]
,

Z0,8 =
[
0 q8

]
.

(4.5)

In order to calculate conveniently, we can set

m3 = m4 = m7 = m, k1 = k2 = k5 = k6 = k8 = k. (4.6)

Since the system boundary state vectors have nonzero solution, the eigenfrequency equation
of the system can be obtained from (4.3)

(
k −mω2

)(
2k −mω2

)(
4k −mω2

)
= 0. (4.7)
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Figure 5: Another branched system model.

The positive solution of the above equation can be obtained easily

ω1 = 2

√
k

m
, ω2 =

√
2k
m

, ω3 =

√
k

m
. (4.8)

Of course, global mass matrix M and stiffness matrix K can also be written

M =

⎡

⎢⎢
⎣

m 0 0

0 m 0

0 0 m

⎤

⎥⎥
⎦, K =

⎡

⎢⎢
⎣

3k −k −k
−k 2k 0

−k 0 2k

⎤

⎥⎥
⎦ (4.9)

to obtain the eigenfrequency equation and natural frequencies of the system. Then (4.7) and
(4.8) can be gotten again. This proves that the proposed transfer matrix method is effective
for the simple tree vibration system.

4.2. Another Example

The model of Figure 5 includes 26 components undergoing one dimensional motion. Fifteen
springs can be denoted as 1, 2, 3, 4, 9, 10, 11, 12, 16, 17, 18, 21, 22, 24, 26 and eleven lumpedmass
can be expressed as the number 5, 6, 7, 8, 13, 14, 15, 19, 20, 23, 25, where 13, 19, 23 particularly
express the branched components especially. The mass of all lumped mass and the stiffness
of all springs arem and k, respectively. The Lagrange method can be used to obtain the global
mass and stiffness matrices that is given in the appendix. So the eigenfrequency equation of
the system can be obtained by the dynamics equation of the global system

(
k −ω2m

)(
2k −ω2m

)(
2k2 − 4kω2m +m2ω4

)

×
(
53k6 − 285k5mω2 + 440k4m2ω4 − 297k3m3ω6 + 99k2m4ω6 − 16km5ω10 +m6ω12

)
= 0.

(4.10)
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If setting

m = 1 kg, k = 10N/m, (4.11)

the eigenfrequency column matrix can be written numerically

ω = [1.72715, 2.4203, 3.16228, 3.47478, 4.47214, 4.47214,

4.81352, 5.60707, 5.84313, 6.3794, 7.04534]T rad/s.
(4.12)

On the other hand, the proposed transfer matrix method can be used to solve the above
problem. According to the topology structure of this model, the transfer matrix of the chain
subsystem can be written as

US1 = U9U5U1,

US2 = U10U6U2,

US3 = U17U14U11U7U3,

US4 = U22U20U18U15U12U8U4,

US5 = U26U25U24.

(4.13)

The transfer equation of the global system can be expressed as by the method of Section 2.5,

Z0,26 = U26U25U24U′
23

⎡

⎢⎢⎢
⎣
U21U′

19

⎡

⎢
⎣
U16U′

13

[
US1Z1,0

US2Z2,0

]

US3Z3,0

⎤

⎥
⎦

US4Z4,0

⎤

⎥⎥⎥
⎦
,

0 = U′′
23

⎡

⎢⎢⎢
⎣
U21U′

19

⎡

⎢
⎣
U16U′

13

[
US1Z1,0

US2Z2,0

]

US3Z3,0

⎤

⎥
⎦

US4Z4,0

⎤

⎥⎥⎥
⎦
,

0 = U′′
19

⎡

⎢
⎣
U16U′

13

[
US1Z1,0

US2Z2,0

]

US3Z3,0

⎤

⎥
⎦,

0 = U′′
13

[
US1Z1,0

US2Z2,0

]

,

(4.14)



16 Mathematical Problems in Engineering

where the transfer matrices of the components in (4.13) and (4.14) can refer to the
corresponding equations in Section 3. Since the system boundary state vectors

Z0,26 =
[
0 q26

]
, Z1,0 =

[
0 q1

]
, Z2,0 =

[
0 q2

]
, Z3,0 =

[
0 q3

]
, Z4,0 =

[
0 q4

]

(4.15)

have nonzero solution, the eigenfrequency equation of the system can be obtained that is
the same with (4.10). Considering (4.11) again, the numerical solution is the same with
(4.12). It can be found from (4.14) that, as for the tree system including three branched
components, four independent transfer equations of the global system can be obtained. The
first one is the access transfer equation of the global system, and three others are caused by
the relevant branched components, especially by the nodal transfer equations of the branched
components.

From the two examples we find that the proposed transfer matrix method can be used
to solve the natural frequencies of the vibration systemwithout developing the global system
dynamics equation. The only things which must be done are to know the transfer matrix
of typical components that have been deduced aforehand, the topology structure, and the
boundary condition of the global system. So we can obtain the eigenfrequency equation of
the system to calculate the natural frequencies by the proposed transfer matrix method. This
method is intuitive, simple, and can be held by the engineers easily.

5. Discussion and Conclusion

On the basis of classic transfer matrix method for the chain system, this investigation
constructs the transfer matrix method for tree structure natural vibration from the totally
novel angle of view. When this method is used, the transfer matrix of the global system can
be obtained like assembling the toy block, and the correlative formulations can be verified
by comparing the topology structure of the vibration system and corresponding transfer
equations. So the error probability can be reduced enormously, and computer programming
or manual derivation is very convenient.

For the discrete/continuous coupling system that includes discrete and continuous
components, as long as the transfer matrices of these components have been deduced ahead
of schedule, the natural frequency of the tree structure system can be calculated by the
method. If other methods are used to analyze the natural frequency of this kind of the
system, the hybrid ordinary and partial differential equations have to be resolved generally.
This requires good mathematical technique and cannot be applied easily by the engineers.
An important work in TMM, deducing the transfer matrix of the general elastic body, is
complicated and does not obtain easily. The fortunate thing is that FE-TMM can be used
to develop the transfer matrix of these components conveniently [19–23]. To combine the
proposed method and FE-TMM, the complex tree system can be analyzed. And if the method
is combined with the numerical method, the proposed method can be used to deal with the
problems of nonlinear tree structure system [25, 29] and even multibody system dynamics
[39, 40]. If complex mode theory is used, the damped system also can be dealt with. And
the transfer matrix method for the network system including the multi-in and multi-out
components will be discussed in another paper in detail. Actually as long as the derived tree
system of the network system is obtained, the proposedmethod can be adopted to resolve the
network system problems. So the application field of the proposed method can be expanded.
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It is noted that the formulation and computation of this paper is finished by symbolic
software Mathematica and the computational convergence and stability are not essential
problems. And by the method of symbolic computation, if the eigenfrequency equation is
obtained, such as (4.7) or (4.10), the multiplicational calculations among the transfer matrices
must not be implemented as to the same topology structure system.

Appendix

There are

M = m

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

K = k

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2 −1 0 0 0 0 0 0 0 0 0

−1 3 −1 −1 0 0 0 0 0 0 0

0 −1 2 0 0 0 −1 0 0 0 0

0 −1 0 3 −1 −1 0 0 0 0 0

0 0 0 −1 2 0 0 0 0 −1 0

0 0 0 −1 0 3 0 −1 −1 0 0

0 0 −1 0 0 0 2 0 0 0 −1
0 0 0 0 0 −1 0 2 0 0 0

0 0 0 0 0 −1 0 0 2 0 0

0 0 0 0 −1 0 0 0 0 2 0

0 0 0 0 0 0 −1 0 0 0 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

(A.1)

where m and k are the mass of the lumped mass and the stiffness of the spring.
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