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This paper proposes a union of hyperspheres by the mixed-integer nonlinear program to classify
biological and medical datasets. A classifying program with nonlinear terms uses piecewise
linearization technique to obtain a global optimum. The numerical examples illustrate that the
proposed method can obtain the global optimum more effectively than current methods.

1. Introduction

Classification techniques have been widely applied in the biological and medical research
domains [1–5]. Either objects classification or patterns recognition for biological and medical
datasets necessarily demands an optimum accuracy for saving patients’ lives. However,
cancer identification with the supervised learning technique does not take a global view in
identifying species or predicting survivals. The improvement should cover the whole scope
to give implications instead of only considering the efficiency for diagnosis. This research
aims to extract features from whole datasets in terms of induction rules.

In the given dataset with several objects, in which each object has some attributes and
belongs to a specific class, classification techniques are used to find a rule of attributes that
appropriately describes the features of a specified class. The techniques have been studied
over the last four decades, including decision tree-based methods [6–11], hyperplane-based
methods [12–14], and machine learning-based methods [14–17].
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To assess the effects of these classifying techniques, three criteria are used for
evaluating the quality of inducing rules based on the study of Li and Chen [3].

(i) Accuracy. The rule fitting a class should not cover the objects of other classes. The
accuracy of a rule should be the higher the better.

(ii) Support. A good rule of fitting a class should be supported by most of the objects of
the same class.

(iii) Compact. A good rule should be expressed in a compact way. That is, the fewer the
number of rules, the better the rules are.

This study proposes a novel method to induce rules with high rates of accuracy,
support, and compactness based on global optimization techniques, which have become
more and more useful in biological and medical researches.

The rest of this paper is organized as follows. Section 2 gives an overview of the related
literatures. Two types of mathematical models and a classification algorithm are proposed in
Section 3. The numerical examples demonstrate the effectiveness of the proposed method in
Section 4. Finally, the main conclusions of this study and future work are drawn in Section 5.

2. Literature Review

Currently, two well-known methods are used to induce classification rules. The first method
is the decision tree-based method, which has been developed in the last few decades [6–10].
It is widely applied to fault isolation of an induction motor [18] to classify normal or tumor
tissues [19], skeletal maturity assessment [20], proteomic mass spectra classification [21], and
other cases [22, 23]. Although the decision tree-based method assumes that all classes can be
separated by linear operations, the inducing rules will suffer if the boundaries between the
classes are nonlinear. In fact, the linearity assumption prohibits practical applications because
many biological and medical datasets have complicated nonlinear interactions between
attributes and predicted classes.

Consider the classification problem with two attributes as shown in Figure 1, where
“©” represents a first-class object, and “•” represents a second-class object. Figure 1 depicts a
situation in which a nonlinear relationship exists between the objects of two classes. Decision
tree method focuses on inducing classification rules for the objects, as shown in Figure 1(b),
in which the decision tree method requires four rectangular regions to classify the objects.

The second is the support vector hyperplane method, which conducts feature selection
and rule extraction from the gene expression data of cancer tissue [24]; it is also applied
in other applications [12–14, 25]. The technique separates observations of different classes
by multiple hyperplanes. As the number of decision variables is required to express the
relationship between each training datum and hyperplane, and the separating hyperplane
is assumed a nonlinear programming problem, the training speed becomes slow for a large
number of training data. Additionally, similar hypersphere support vector methods have
been developed by Lin et al. [26], Wang et al. [27], Gu and Wu [28], and Hifi and M’Hallah
[29] for classifying objects. In classification algorithms, they partition the sample space using
the sphere-structured support vector machine [14, 30]. However, these methods need to form
a classification problem as a nonlinear nonconvex program, whichmakes reaching an optimal
solution difficult. Taking Figure 1 as an example, a hyperplane-based method requires four
hyperplanes to discriminate the objects, as shown in Figure 2.
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(a) Nonlinear dataset (b) Classify by decision tree method

Figure 1: Classifying the objects of two classes.

Figure 2: Classify by hyperplane method method.

As previously mentioned, many biological and medical datasets have compli-
cated boundaries between attributes and classes. Both decision tree-based methods and
hyperplane-based methods find only the rules with high accuracy, which either cover only
a narrow part of the objects or require numerous attributes to explain a classification rule.
Although these methods are computationally effective for deducing the classifications rules,
they have two limitations as follows.

(i) Decision tree-based methods are heuristic approaches that can only induce feasible
rules. Moreover, decision tree-based methods split the data into hyperrectangular
regions using a single variable, which may generate a large number of branches
(i.e., low rates of compactness).

(ii) Hyperplane-based methods use numerous hyperplanes to separate objects of
different classes and divide the objects in a dataset into indistinct groups. The
method may generate a large number of hyperplanes and associated rules with
low rates of compactness.
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Figure 3: Classify by hypersphere.

Therefore, this study proposes a novel hypersphere method to induce classification
rules based on a piecewise linearization technique. The technique reformulates the original
hypersphere model by a piecewise linearization approach using a number of binary variables
and constraints in the number of piecewise line segments. As the number of break points
used in the linearization process increases, the error in linear approximation decreases, and
an approximately global optimal solution of the hypersphere model can be obtained. That
is, the proposed method is an optimization approach that can find the optimal rules with a
high rate of accuracy, support, and compactness. The concept of the hypersphere method is
depicted in Figure 3, in which only one circle is required to classify the objects. All objects of
class “•” are covered by a circle, and those not covered by this circle belong to class “©.”

3. The Proposed Models and Algorithm

As the classification rules directly affect the rates of accuracy, support, and compactness, we
formulate two models to determine the highest accuracy rate and support rate, respectively.
To facilitate the discussion, the related notations are introduced first:

ai,j : j ′th attribute value of the i′th object,

ht,k,j : j ′th center value of the k′th hypersphere for class t,

rt,k: radius of the k′th hypersphere for class t,

n(t): number of objects for class t,

ci: i′th object belonging to class ci ∈ {1, 2, . . . , g},
m: number of attributes,

Rt: a rule describing class t.

Based on these notations, we propose two types of classification models as follow.
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rt,k

(ht,k,1, ht,k,2)

(a) Two dimensions

rt,k

(ht,k,1, ht,k,2, ht,k,3)

(b) Three dimensions

Figure 4: The concept of hypersphere method.

3.1. Two Types of Classification Models

Considering the object xi and hypersphere St,k, and normalizing ai,j (i.e., to express its scale
easily), we then have the following three notations.

Notation 1. Normalization rescales all ai,j as a′
i,j . The following is a normalizing formula:

a′
i,j =

ai,j − aj

aj − aj

, (3.1)

where 0 ≤ a′
i,j ≤ 1, aj is the largest value of attribute j, and aj is the smallest value of

attribute j.

Notation 2. A general form for expressing an object xi is written as

xi =
(
a′
i,1, a

′
i,2, . . . , a

′
i,m; ci

)
, (3.2)

where ci is the class index of object xi.

Notation 3. A general form for expressing a hypersphere St,k is written as

St,k = (ht,k,1, ht,k,2, . . . , ht,k,m; rt,k), (3.3)

where St,k is the k’th hypersphere for class t.
We use two and three dimensions (i.e., two attributes and three attributes) as

visualizations to depict clearly a circle and a sphere, respectively (Figure 4). Figure 4(a)
denotes the centroid of the circle as (ht,k,1, ht,k,2) and the radius of the circle as rt,k. They are
extended to three dimensions called sphere (Figure 4(b)); inm dimensions (i.e.,m attributes),
m > 3, which are then called hyperspheres.

To find each center and the radius of the hypersphere, the following two nonlinear
models are considered. The first model looks for a support rate as high as possible while the
accuracy rate is fixed to 1, as shown in Model 1.
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Model 1. One has the following:

Maximize
∑
i∈I+

ut,i,k

subject to
m∑
j=1

(
a′
i,j − ht,k,j

)2 ≤ (1 − ut,i,k)M + r2t,k, ∀i ∈ I+,

m∑
j=1

(
a′
i′,j − ht,k,j

)2
> r2t,k , ∀i′ ∈ I−,

ut,i,k ∈ {0, 1} ∀i ∈ I+, rt,k ≥ 0, and M is big enough constant,

(3.4)

where I+ and I− are the two sets for all objects expressed, respectively, by

I+ =
{
i | i = 1, 2, . . . , n,where object i ∈ class t

}
, (3.5)

I− =
{
i′ | i′ = 1, 2, . . . , n,where object i′ /∈ class t

}
. (3.6)

Referring to Li and Chen [3], the rates of accuracy and support of Rt in Model 1 can be
specified by the following definitions.

Definition 3.1. The accuracy rate of a rule Rt for Model 1 is AR(Rt) = 1.

Definition 3.2. The support rate of a rule Rt for Model 1 is specified as follows.

(i) If
∑

k∈K ut,i,k ≥ 1 for all i belonging to class t, thenUt,i = 1; otherwiseUt,i = 0, where
K indicates the hypersphere set for class t.

(ii)

SR(Rt) =
∑

i∈classt Ut,i

n(t)
, (3.7)

where n(t) indicates the number of objects belonging to class t.

The second model looks for an accuracy rate as high as possible while the support rate
is fixed to 1, as shown in Model 2.

Model 2. One has the following:

Maximize
∑
i′∈I−

vt,i′,k

subject to
m∑
j=1

(
a′
i,j − ht,k,j

)2 ≤ r2
t,k
, ∀i ∈ I+,
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m∑
j=1

(
a′
i′,j − ht,k,j

)2
> (vt,i′,k − 1)M + r2

t,k
, ∀i′ ∈ I−,

vt,i′,k ∈ {0, 1}, ∀i′ ∈ I−, rt,k ≥ 0,

(3.8)

where I+ and I− are the two sets expressed by (3.5) and (3.6), respectively.
Similarly, the rates of accuracy and support of Rt in Model 2 can be considered as

follows.

Definition 3.3. The accuracy rate of a rule Rt of Model 2 is denoted as AR(Rt) and is specified
as follows.

(i) If
∑

k∈K vt,i′,k = 0 belongs to class t, then Vt,i′ = 1 for all i′; otherwise, Vt,i′ = 0, where
K represents the hypersphere set for class t.

(ii)

AR(Rt) =
‖Rt‖ −

∑
i′∈class t Vt,i′

‖Rt‖ , (3.9)

where ‖Rt‖ represents the number of total objects covered by Rt.

Definition 3.4. The support rate of a rule Rt of Model 2 is denoted as SR(Rt), and SR(Rt) = 1.

Definition 3.5. The compactness rate of a set of rules R1, . . . , Rg , denoted as CR(R1, . . . , Rg), is
expressed as follows:

CR
(
R1, . . . , Rg

)
=

g∑g

t=1 USt

, (3.10)

whereUSt means the number of hyperspheres and unions of hyperspheres for class t.A union
of hyperspheres indicates that the object is covered by different hyperspheres, as shown in
Figure 5. Take Figure 5 for an example, in which there are two classes. The objects of class
“©” are covered by two unions of the circles (i.e., S1,1 ∪ S1,2 ∪ S1,3 and S1,4 ∪ S1,5), and the
objects of class “•” are covered by one circle (i.e., S2,1). Therefore, US1 = 2, US2 = 1, and
CR(R1, R2) = 2/3.

Moreover, Models 1 and 2 are separable nonlinear programs solvable to find an
optimal solution by linearizing the quadratic terms h2

t,k,j . The piecewise linearization
technique is discussed as follows.
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S1,1

S1,2

S1,3

S1,4

S1,5

S2,1

Figure 5: Classify by hypersphere method.

Proposition 3.6 (referring to Beale and Forrest [31]). Denote approximate function L(f(x)) as a
piecewise linear function (i.e., linear convex combination) of f(x), where bl, l = 1, 2, . . . , q represents
the break points of L(f(x)). L(f(x)) is expressed as follows:

f(x) ∼= L
(
f(x)

)
=

q∑
l=1
f(bl)wl, (3.11)

x =
q∑
l=1

wlbl, (3.12)

q∑
l=1

wl = 1, (3.13)

where wl ≥ 0, and (3.13) is a special-ordered set of type 2 (SOS2) constraint (reference to Beale and
Forrest [31]).

Note that the SOS2 constraint is a set of variables in which at most two variables may
be nonzero. If two variables are nonzero, they must be adjacent in the set.

Notation 4. According to Proposition 3.6, let f(x) = h2
t,k,j

. f(x) is linearized by the
Proposition 3.6 and is expressed as L(h2

t,k,j
).

3.2. Solution Algorithm

A proposed algorithm is also presented to seek the highest accuracy rate or the highest
support rate, as described as follows.

Algorithm 3.7.

Step 1. Normalize all attributes (i.e., rescale a′
i,j = (ai,j − aj)/(aj − aj) to be 0 ≤ a′

i,j ≤ 1).

Step 2. Initialization: t = 1 and k = 1.
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St,k t
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Figure 6: Flowchart of the proposed algorithm.

Step 3. Solve Model 1 (or Model 2) to obtain the k′th hypersphere of class t. Remove the
objects covered by St,k from the dataset temporarily.

Step 4. Let k = k + 1, and resolve Model 1 (or Model 2) until all objects in class t are assigned
to the hyperspheres of same class.

Step 5. Let k = 1 and t = t + 1, and reiterate Step 3 until all classes are processed.

Step 6. Check the independent hyperspheres and unions of hyperspheres St,k in the same
class t.
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Table 1: Dataset of Example 1.

Object ai,1 ai,2 ci Object ai,1 ai,2 ci Object ai,1 ai,2 ci

x1 6 8 1 x2 12 20 1 x3 13 8 1

x4 18 12.5 1 x5 24 19 1 x6 24 14.5 1

x7 17.5 17.5 2 x8 22 17 2 x9 22 15 2

x10 30 11 2 x11 33.5 7.5 2 x12 24.5 3.5 3

x13 26.5 8 3 x14 23.5 7.5 3 x15 6 30 3
(Symbols of ci) 1: © 2:

�
3: ×.
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(a) Normalized data for Example 1
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(b) Classified by the hypersphere method for Example 1

Figure 7: Visualization of Example 1.

Step 7. Calculate and record the number of independent hyperspheres and unions of
hyperspheres inUSt, and iterate t until all classes are done.

According to this algorithm, we can obtain the optimal rules to classify objects most
efficiently. The process of the algorithm is depicted in Figure 6.

3.3. Operation of a Simple Example

Consider a dataset T in Table 1 as an example, which has object i, two attributes (ai,1, ai,2),
and an index of classes (ci) for i = 1, 2, . . . , 15. The dataset T is expressed as T = {xi |
(ai,1, ai,2; ci)∀i = 1, 2, . . . , 15}. There are the domain values of ci ∈ {1, 2, 3}. As there are only
two attributes, these 15 objects can be plotted on a two-dimensional space after normalizing
them, as shown in Figure 7(a).

This example can be solved by the proposed algorithm as follows.

Step 1. Normalize all attributes (i.e., a′
i,1 = (ai,1 −6)/(33.5−6) and a′

i,2 = (ai,2 −3.5)/(30−3.5)).

Step 2. Initialization: t = 1 and k = 1.
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Table 2: Centroid points for the Iris data set by the proposed method.

Rule
number Union of spheres St,k ht,k,1 ht,k,2 ht,k,3 ht,k,4 rt,k

R1 S1,1 S1,1 0.366 0.807 0.000 0.000 0.6205

R2 S2,1 ∪ S2,2 ∪ S2,3

S2,1 0.557 0.320 0.205 0.460 0.2540

S2,2 0.575 0.581 0.626 0.515 0.0612

S2,3 0.423 0.261 0.352 0.490 0.1388

R3 S3,1 ∪ S3,2
S3,1 0.248 0.000 2.226 2.151 4.8087

S3,2 0.329 0.187 0.650 0.613 0.0330

Table 3: Comparing results for the Iris flower data set (R1,R2,R3).

Items Proposed method Decision tree Hyperplane
support vector

AR(R1,R2,R3) (1,1,1) (1,0.98,0.98) (1,0.98,0.96)

SR(R1,R2,R3) (1,0.98,0.98) (1,0.98,0.98) (1,0.96,0.98)

CR 1 0.5 0.1875

Step 3. The classification model (i.e., Model 1) is linearly formulated as follows:

Maximize
∑
i∈I+

ut,i,k

subject to
m∑
j=1

(
a′
i,j
2 − 2a′

i,jht,k,j + L
(
h2
t,k,j

))
≤ (1 − ut,i,k)M + r2t,k, ∀i ∈ I+,

m∑
j=1

(
a′
i′,j

2 − 2a′
i′,jht,k,j + L

(
h2
t,k,j

))
> r2t,k, ∀i′ ∈ I−,

ut,i,k ∈ {0, 1}, r2t,k ≥ 0,

(3.14)

where I+ = {x1, x2, . . . , x6} and I− = {x7, x8, . . . , x15}. The optimal solution of the
(ht,k,1, ht,k,2, rt,1)= (0.047,0.265,0.15749) for S1,1, where S1,1 covers objects 1–4. We then
temporarily remove these objects covered by S1,1.

Step 4. k = k + 1: the optimal solution of the (ht,k,1, ht,k,2, rt,k) = (0.736,0.5,0.0138) for S1,2, where
S1,2 covers objects 5-6. Class 1 is then done.

Step 5. As t = t + 1, k = 1, and Steps 3 and 4 are iterated, we then, respectively, have optimal
solutions for St,k as follows. The results are shown in Figure 7(b).

(i) (h2,1,1, h2,1,2, r2,1) = (0.514, 0.469, 0.0127), where S2,1 covers objects 7–9.

(ii) (h2,2,1, h2,2,2, r2,2) = (0.929, 0.210, 0.0251), where S2,2 covers objects 10-11.

(iii) (h3,1,1, h3,1,2, r3,1) = (0.583, 0.188, 0.0436), where S3,1 covers objects 12–14.

Step 6. Check and calculate the unions of hypersphere St,k for all k in class t (i.e., Initial t = 1).

Step 7. As t = t+1, mark the number of unions of class t intoUSt and iterate Step 6 until t = g.
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4. Numerical Examples

This study shows how the experimental results evaluate the performance, including accuracy,
support, and compactness rates, and compares the proposed model with different methods
using CPLEX [32]. All tests were run on a PC equipped with an Intel PentiumD 2.8GHz CPU
and 2GMB RAM. Three datasets were tested in our experiments as follows:

(i) Iris Flower dataset introduced by Sir Ronald Aylmer Fisher (1936),

(ii) European barn swallow (Hirundo rustica) dataset obtained by trapping individual
swallows in Stirlingshire, Scotland, between May and July 1997 [1, 3],

(iii) the highly selective vagotomy (HSV) patient dataset of F. Raszeja Memorial
Hospital in Poland [3, 33, 34].

4.1. Iris Flower Dataset

The Iris Flower dataset contains 150 objects. Each object is described by four attributes (i.e.,
sepal length, sepal width, petal length, and petal width) and is classified by one of three
classes (i.e., setosa, versicolor, and virginica). By solving the proposed method, we induced
six hyperspheres (i.e., S1,1 ∈ Class 1, S2,1, S2,2, S2,3 ∈ Class 2, and S3,1, S3,2 ∈ Class 3). The
induced classification rules are reported in Table 2. Table 2 also lists a hypersphere and two
unions (i.e., S1,1, S2,1 ∪ S2,2 ∪ S2,3, and S3,1 ∪ S3,2) of hyperspheres with centroid points and
radii.

Rule R1 in Table 2 contains a hypersphere S1,1, which implies that

(i) “if (a′
i,1 − 0.366)2 + (a′

i,2 − 0.807)2 + (a′
i,3 − 0)2 + (a′

i,4 − 0)2 ≤ 0.6205, then object xi

belongs to class 1.”

Rule R2 in Table 2 contains a union of three hyperspheres (i.e., S2,1 ∪ S2,2 ∪ S2,3)which
implies that

(i) “if (a′
i,1 − 0.557)2 + (a′

i,2 − 0.32)2 + (a′
i,3 − 0.205)2 + (a′

i,4 − 0.46)2 ≤ 0.254, then object xi

belongs to class 2,” or

(ii) “if (a′
i,1 − 0.575)2+(a′

i,2 − 0.581)2+(a′
i,3 − 0.626)2+(a′

i,4 − 0.515)2 ≤ 0.0612, then object
xi belongs to class 2,” or

(iii) “if (a′
i,1 − 0.423)2 + (a′

i,2 − 0.261)2 + (a′
i,3 − 0.352)2 + (a′

i,4 − 0.49)2 ≤ 0.1388, then object
xi belongs to class 2.”

Rule R3 in Table 2 contains a union of two hyperspheres (i.e., S3,1∪S3,2), which implies
that

(i) “if (a′
i,1 − 0.248)2 + (a′

i,2 − 0)2 + (a′
i,3 − 2.226)2 + (a′

i,4 − 2.151)2 ≤ 4.8087, then object xi

belongs to class 3,” or

(ii) “if (a′
i,1 − 0.329)2 + (a′

i,2 − 0.187)2 + (a′
i,3 − 0.65)2 + (a′

i,4 − 0.613)2 ≤ 0.033, then object
xi belongs to class 3.”

Comparing the proposed method with both decision tree [3] and hyperplane methods
[35] in deducing the classification rules for the Iris Flower dataset, Table 3 lists the
experimental result.
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Table 4: Centroid points for the Swallow data set by the proposed method.

Rule
number

Union of
spheres St,k ht,k,1 ht,k,2 ht,k,3 ht,k,4 ht,k,5 ht,k,6 ht,k,7 ht,k,8 rt,k

R1
S1,1∪S1,2∪
S1,3 ∪ S1,4

S1,1 0.607 0.110 0.806 0.000 0.000 0.406 1.077 1.163 1.780

S1,2 0.483 0.000 0.236 0.328 0.000 0.793 0.280 0.931 0.948

S1,3 0.588 0.000 1.179 0.000 0.000 0.653 1.037 0.982 1.879

S1,4 0.414 0.000 0.658 0.000 0.227 0.085 0.563 1.224 1.197

R2

S2,1 ∪
S2,2∪S2,3∪
S2,4 ∪ S2,5

S2,1 0.358 0.667 0.371 1.403 0.360 1.530 0.634 0.114 2.825

S2,2 0.198 1.102 0.697 0.000 0.000 1.734 0.110 0.595 2.632

S2,3 0.532 0.422 0.323 1.676 1.009 0.000 0.180 0.020 2.458

S2,4 0.528 0.000 0.430 0.876 0.579 0.461 0.435 0.040 0.694

S2,5 0.659 1.408 0.516 0.000 0.382 0.000 0.173 0.064 1.570

Table 5: Comparing results for the Swallow data set (R1,R2).

Items Proposed method Decision tree Hyperplane support
vector

AR(R1,R2) (1, 1) (0.97,1) (0.97,1)
SR(R1,R2) (1, 0.97) (0.97,1) (0.97,1)
CR 1 0.3 0.1

The accuracy rates of (R1, R2, R3) in the proposed method are (1,1,1), as Model 1 has
been solved. This finding indicates that none of objects in class 2 or class 3 are covered by S1,1,
none of objects in classes 1 or 3 are covered by S2,1∪S2,2∪S2,3, and none of the objects in classes
1 or 2 are covered by S3,1 ∪ S3,2. The support rate of (R1,R2,R3) in the proposed method is
(1,0.98,0.98), indicating that all objects in class 1 are covered by S1,1, 98% of the objects in class
2 are covered by S2,1, S2,2, and S2,3, and 98% of the objects in class 3 are covered by S3,1 and
S3,2. The compactness rate of rules R1, R2, and R3 is computed as CR(R1, R2, R3) = 3/3 = 1.
Finally, we determine the following.

(i) Although all three methods perform very well in the rates of accuracy and support,
the proposed method has the best performance for the accuracy of classes 2 and 3
(i.e., R2 and R3).

(ii) The proposed method has the best compactness rate.

4.2. Swallow Dataset

The European barn swallow (Hirundo rustica) dataset was obtained by trapping individual
swallows in Stirlingshire, Scotland, between May and July 1997. This dataset contains 69
swallows. Each object is described by eight attributes, and it belongs to one of two classes
(i.e., the birds are classified by the gender of individual birds).

Here, we also used Model 1 to induce the classification rules. Table 4 lists the optimal
solutions (i.e., centroid and radius) for both rules R1 and R2.

The result of the decision tree method, which is referred to in Li and Chen [3], is listed
in Table 5, where AR (R1, R2) = (0.97, 1), SR (R1, R2) = (0.97, 1), and CR = 0.3.
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The result of the hyperplane method, referred to in Chang and Lin [35], is also listed
in Table 5, whereAR(R1, R2) = (0.97, 1), SR(R1, R2) = (0.97, 1), and CR = 0.1.

We compared the three methods in Table 5 to show that the proposed method can
induce rules with better or equivalent values of AR and SR. In fact, the proposed method
also has the best compactness rate.

4.3. HSV Dataset

The HSV dataset contains 122 patients classified into four classes, with each patient having 11
preoperating attributes. To maximize the support rate with respect to the proposed method
(i.e., Model 1), the proposed method generated seven hyperspheres and three unions of
hyperspheres. The centroids and radii of the hyperspheres are reported in Table 6, and a
comparison with other methods is reported in Table 7.

Using the decision tree method in the HSV dataset generates 24 rules. In addition, the
hyperplane method deduces 45 hyperplanes for the HSV dataset. Table 7 also shows that the
proposed method can find rules with the highest rates (i.e., AR, SR, and CR) compared with
the other two methods.

4.4. Limitation of the Proposed Method

The hypersphere models are solved by one of the most powerful mixed-integer program
software CPLEX [32] running in a PC. Based on optimization technique, the results of the
numerical examples illustrate that the usefulness of the proposedmethod is better than that of
the current methods, including the decision tree method and the hyperplane support vector
method. As the solving time of the hypersphere model, which is linearized, mainly depends
on the number of binary variables and constraints, solving the reformulated hypersphere
model from the proposed algorithm takes about one minute for each dataset (i.e., in Sections
4.1 and 4.3), in which using eight piecewise line segments linearizes the nonlinear nonconvex
term (i.e., L(h2

t,k,j
)) of Model 1.

The computing time for solving a linearized hypersphere program grows rapidly
as the numbers of binary variables and constraints increase. Also, the computing time
of the proposed method is slower than that of the decision tree method and hyperplane
method, especially for large datasets or a great number of piecewise line segments. In the
further study, utilizing a mainframe-version optimization software [36–38], integrating meta-
heuristic algorithms, or using distributed computing techniques can enhance solving speed
to conquer this problem.

5. Conclusions and Future Work

This study proposes a novel method for deducing classification rules, which can find the
optimal solution based on a hypersphere domain. The optimization technique for finding
classification rules is approached to optimal. Results of the numerical examples illustrate
that the usefulness of the proposed method is better than that of the current methods,
including the decision tree method and the hyperplane method. The proposed method is
guaranteed to find an optimal rule, but the computational complexity grows rapidly by
increasing the problem size. More investigation and research are required to enhance further
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Table 7: Comparing results for the HSV data set (R1,R2,R3,R4).

Items Proposed method Decision tree Hyperplane support
vector

AR(R1,R2,R3,R4) (1,1,1,1) (0.93,0.81,0.7,0.71) (0.9,1,1,0.9)

SR(R1,R2,R3,R4) (0.99,1,1,1) (0.93,0.72,0.78,0.71) (0.9,0.72,0.67,0.69)

CR 0.4 0.17 0.09

the computational efficiency of globally solving large-scale classification problems, such as
running mainframe-version optimization software, integrating meta-heuristic algorithms, or
using distributed computing techniques.
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