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The orbital dynamics of synchronous satellites is studied. The 2 : 1 resonance is considered; in other
words, the satellite completes two revolutions while the Earth completes one. In the development
of the geopotential, the zonal harmonics J20 and J40 and the tesseral harmonics J22 and J42 are con-
sidered. The order of the dynamical system is reduced through successive Mathieu transforma-
tions, and the final system is solved by numerical integration. The Lyapunov exponents are used
as tool to analyze the chaotic orbits.

1. Introduction

Synchronous satellites in circular or elliptical orbits have been extensively used for naviga-
tion, communication, and military missions. This fact justifies the great attention that has
been given in literature to the study of resonant orbits characterizing the dynamics of these
satellites since the 60s [1–14]. For example, Molniya series satellites used by the old Soviet
Union for communication form a constellation of satellites, launched since 1965, which have
highly eccentric orbits with periods of 12 hours. Another example of missions that use eccen-
tric, inclined, and synchronous orbits includes satellites to investigate the solar magneto-
sphere, launched in the 90s [15].

The dynamics of synchronous satellites are very complex. The tesseral harmonics
of the geopotential produce multiple resonances which interact resulting significantly in
nonlinear motions, when compared to nonresonant orbits. It has been found that the orbital
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elements show relatively large oscillation amplitudes differing from neighboring trajectories
[11].

Due to the perturbations of Earth gravitational potential, the frequencies of the lon-
gitude of ascending node Ω and of the argument of pericentre ω can make the presence of
small divisors, arising in the integration of equation of motion, more pronounced. This
phenomenon depends also on the eccentricity and inclination of the orbit plane. The impor-
tance of the node and the pericentre frequencies is smaller when compared to the mean
anomaly and Greenwich sidereal time. However, they also have their contribution in the reso-
nance effect. The coefficients l, m, p which define the argument φlmpq in the development of
the geopotential can vary, producing different frequencies within the resonant cosines for the
same resonance. These frequencies are slightly different, with small variations around the
considered commensurability.

In this paper, the 2 : 1 resonance is considered; in other words, the satellite completes
two revolutions while the Earth carries one. In the development of the geopotential, the zonal
harmonics J20 and J40 and the tesseral harmonics J22 and J42 are considered. The order of the
dynamical system is reduced through successive Mathieu transformations, and the final sys-
tem is solved by numerical integration. In the reduced dynamical model, three critical angles,
associated to the tesseral harmonics J22 and J42, are studied together. Numerical results show
the time behavior of the semimajor axis, argument of pericentre and of the eccentricity. The
Lyapunov exponents are used as tool to analyze the chaotic orbits.

2. Resonant Hamiltonian and Equations of Motion

In this section, a Hamiltonian describing the resonant problem is derived through successive
Mathieu transformations.

Consider (2.1) to the Earth gravitational potential written in classical orbital elements
[16, 17]

V =
μ

2a
+

∞∑

l=2

l∑

m=0

l∑

p=0

−∞∑

q=+∞

μ

a

(ae

a

)l
JlmFlm(I)Glpq(e) cos

(
φlmpq(M,ω,Ω, θ)

)
, (2.1)

where μ is the Earth gravitational parameter, μ = 3.986009 × 1014 m3/s2, a, e, I, Ω, ω, M are
the classical keplerian elements: a is the semimajor axis, e is the eccentricity, I is the in-
clination of the orbit plane with the equator,Ω is the longitude of the ascending node,ω is the
argument of pericentre, and M is the mean anomaly, respectively; ae is the Earth mean
equatorial radius, ae = 6378.140 km, Jlm is the spherical harmonic coefficient of degree l and
order m, Flmp(I) and Glpq(e) are Kaula’s inclination and eccentricity functions, respectively.
The argument φlmpq(M,ω,Ω, θ) is defined by

φlmpq(M,ω,Ω, θ) = qM +
(
l − 2p

)
ω +m(Ω − θ − λlm) + (l −m)

π

2
, (2.2)

where θ is the Greenwich sidereal time, θ = ωet (ωe is the Earth’s angular velocity, and t is
the time), and λlm is the corresponding reference longitude along the equator.
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In order to describe the problem in Hamiltonian form, Delaunay canonical variables
are introduced,

L = √
μa, G =

√
μa(1 − e2), H =

√
μa(1 − e2) cos(I),

� = M, g = ω, h = Ω.

(2.3)

L, G, and H represent the generalized coordinates, and �, g, and h represent the conjugate
momenta.

Using the canonical variables, one gets the Hamiltonian F̂,

F̂ =
μ2

2L2
+

∞∑

l=2

l∑

m=0

Rlm, (2.4)

with the disturbing potential Rlm given by

Rlm =
l∑

p=0

+∞∑

q=−∞
Blmpq(L,G,H) cos

(
φlmpq

(
�, g, h, θ

))
. (2.5)

The argument φlmpq is defined by

φlmpq

(
�, g, h, θ

)
= q� +

(
l − 2p

)
g +m(h − θ − λlm) + (l −m)

π

2
, (2.6)

and the coefficient Blmpq(L,G,H) is defined by

Blmpq =
∞∑

l=2

l∑

m=0

l∑

p=0

−∞∑

q=+∞

μ2

L2

(
μae

L2

)l

JlmFlmp(L,G,H)Glpq(L,G). (2.7)

The Hamiltonian F̂ depends explicitly on the time through the Greenwich sidereal
time θ. A new term ωeΘ is introduced in order to extend the phase space. In the extended
phase space, the extended Hamiltonian Ĥ is given by

Ĥ = F̂ −ωeΘ. (2.8)

For resonant orbits, it is convenient to use a new set of canonical variables. Consider
the canonical transformation of variables defined by the following relations:

X = L, Y = G − L, Z = H −G, Θ = Θ,

x = � + g + h, y = g + h, z = h, θ = θ,

(2.9)

where X,Y,Z,Θ, x, y, z, θ are the modified Delaunay variables.
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The newHamiltonian Ĥ ′, resulting from the canonical transformation defined by (2.9),
is given by

Ĥ ′ =
μ2

2X2
−ωeΘ +

∞∑

l=2

l∑

m=0

R′
lm, (2.10)

where the disturbing potential R′
lm

is given by

R′
lm =

l∑

p=0

+∞∑

q=−∞
B′
lmpq(X,Y,Z) cos

(
φlmpq

(
x, y, z, θ

))
. (2.11)

Now, consider the commensurability between the Earth rotation angular velocity ωe

and the mean motion n = μ2/X3. This commensurability can be expressed as

qn −mωe
∼= 0, (2.12)

considering q and m as integers. The ratio q/m defining the commensurability will be de-
noted by α. When the commensurability occurs, small divisors arise in the integration of the
equations of motion [9]. These periodic terms in the Hamiltonian Ĥ ′ with frequencies qn −
mωe are called resonant terms. The other periodic terms are called short- and long-period
terms.

The short- and long-period terms can be eliminated from the Hamiltonian Ĥ ′ by ap-
plying an averaging procedure [12, 18]:

〈
Ĥ ′
〉
=

1
4π2

∫2π

0

∫2π

0
Ĥ ′dξspdξlp. (2.13)

The variables ξsp and ξlp represent the short- and long-period terms, respectively, to be elimi-
nated of the Hamiltonian Ĥ ′.

The long-period terms have a combination in the argument φlmpq which involves only
the argument of the pericentre ω and the longitude of the ascending nodeΩ. From (2.10) and
(2.11), these terms are represented by the new variables in the following equation:

Ĥ ′
lp =

∞∑

l=2

l∑

m=0

l∑

p=0

+∞∑

q=−∞
B′
lmpq(X,Y,Z) cos

((
l − 2p

)(
y − z

)
+mz

)
. (2.14)

The short-period terms are identified by the presence of the sidereal time θ and mean
anomalyM in the argument φlmpq; in this way, from (2.10) and (2.11), the term Ĥ ′

sp in the new
variables is given by the following equations:

Ĥ ′
sp =

∞∑

l=2

l∑

m=0

l∑

p=0

+∞∑

q=−∞
B′
lmpq(X,Y,Z) cos

(
q
(
x − y

) −mθ + ζp
)
. (2.15)
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The term ζp represents the other variables in the argument φlmpq, including the argument of
the pericentre ω and the longitude of the ascending nodeΩ, or, in terms of the new variables,
y − z and z, respectively.

A reduced Hamiltonian Ĥr is obtained from the Hamiltonian Ĥ ′ when only secular
and resonant terms are considered. The reduced Hamiltonian Ĥr is given by

Ĥr =
μ2

2X2
−ωeΘ +

∞∑

j=1

B′
2j,0,j,0(X,Y,Z)

+
∞∑

l=2

l∑

m=2

l∑

p=0

B′
lmp(αm)(X,Y,Z) cos

(
φlmp(αm)

(
x, y, z, θ

))
.

(2.16)

Several authors, [11, 15, 19–22], also use this simplified Hamiltonian to study the resonance.
The dynamical system generated from the reduced Hamiltonian, (2.16), is given by

d(X,Y,Z,Θ)
dt

=
∂Ĥr

∂
(
x, y, z, θ

) ,
d
(
x, y, z, θ

)

dt
= − ∂Ĥr

∂(X,Y,Z,Θ)
. (2.17)

The equations of motion dX/dt, dY/dt, and dZ/dt defined by (2.17) are

dX

dt
= −α

∞∑

l=2

l∑

m=2

l∑

p=0

mB′
lmp(αm)(X,Y,Z) sin

(
φlmp(αm)

(
x, y, z, θ

))
, (2.18)

dY

dt
= −

∞∑

l=2

l∑

m=2

l∑

p=0

(
l − 2p −mα

)
B′
lmp(αm)(X,Y,Z) sin

(
φlmp(αm)

(
x, y, z, θ

))
, (2.19)

dZ

dt
=

∞∑

l=2

l∑

m=2

l∑

p=0

(
l − 2p −m

)
B′
lmp(αm)(X,Y,Z) sin

(
φlmp(αm)

(
x, y, z, θ

))
. (2.20)

From (2.18) to (2.20), one can determine the first integral of the system determined by
the Hamiltonian Ĥr .

Equation (2.18) can be rewritten as

1
α

dX

dt
= −

∞∑

l=2

l∑

m=2

l∑

p=0

mB′
lmp(αm)(X,Y,Z) sin

(
φlmp(αm)

(
x, y, z, θ

))
. (2.21)

Adding (2.19) and (2.20),

dY

dt
+
dZ

dt
= (α − 1)

∞∑

l=2

l∑

m=2

l∑

p=0

mB′
lmp(αm)(X,Y,Z) sin

(
φlmp(αm)

(
x, y, z, θ

))
, (2.22)
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and substituting (2.21) and (2.22), one obtains

dY

dt
+
dZ

dt
= −(α − 1)

1
α

dX

dt
. (2.23)

Now, (2.23) is rewritten as

(
1 − 1

α

)
dX

dt
+
dY

dt
+
dZ

dt
= 0. (2.24)

In this way, the canonical system of differential equations governed by Ĥr has the first
integral generated from (2.24):

(
1 − 1

α

)
X + Y + Z = C1, (2.25)

where C1 is an integration constant.
Using this first integral, a Mathieu transformation

(
X,Y,Z,Θ, x, y, z, θ

) −→ (X1, Y1, Z1,Θ1, x1, y1, z1, θ1
)

(2.26)

can be defined.
This transformation is given by the following equations:

X1 = X, Y1 = Y, Z1 =
(
1 − 1

α

)
X + Y + Z, Θ1 = Θ,

x1 = x −
(
1 − 1

α

)
z, y1 = y − z, z1 = z, θ1 = θ.

(2.27)

The subscript 1 denotes the new set of canonical variables. Note that Z1 = C1, and the z1 is an
ignorable variable. So the order of the dynamical system is reduced in one degree of freedom.

Substituting the new set of canonical variables, X1, Y1, Z1, Θ1, x1, y1, z1, θ1, in the
reduced Hamiltonian given by (2.16), one gets the resonant Hamiltonian. The word “reso-
nant” is used to denote the Hamiltonian Hrs which is valid for any resonance. The periodic
terms in this Hamiltonian are resonant terms. The Hamiltonian Hrs is given by

Hrs =
μ2

2X2
1

−ωeΘ1 +
∞∑

j=1

B2j,0,j,0(X1, Y1, C1)

+
∞∑

l=2

l∑

m=2

l∑

p=0

Blmp,(αm)(X1, Y1, C1) cos
(
φlmp(αm)

(
x1, y1, θ1

))
.

(2.28)
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The Hamiltonian Hrs has all resonant frequencies, relative to the commensurability α,
where the φlmp(αm) argument is given by

φlmp(αm) = m(αx1 − θ1) +
(
l − 2p − αm

)
y1 − φlmp(αm)0, (2.29)

with

φlmp(αm)0 = mλlm − (l −m)
π

2
. (2.30)

The secular and resonant terms are given, respectively, by B2j,0,j,0(X1, Y1, C1) and
Blmp(αm)(X1, Y1, C1).

Each one of the frequencies contained in dx1/dt, dy1/dt, dθ1/dt is related, through
the coefficients l,m, to a tesseral harmonic Jlm. By varying the coefficients l,m, p and keeping
q/m fixed, one finds all frequencies dφ1,lmp(αm)/dt concerning a specific resonance.

From Hrs, taking, j = 1, 2, l = 2, 4, m = 2, α = 1/2, and p = 0, 1, 2, 3, one gets

Ĥ1 =
μ2

2X2
1

−ωeΘ1 + B1,2010(X1, Y1, C1) + B1,4020(X1, Y1, C1)

+ B1,2201(X1, Y1, C1) cos
(
x1 − 2θ1 + y1 − 2λ22

)

+ B1,2211(X1, Y1, C1) cos
(
x1 − 2θ1 − y1 − 2λ22

)

+ B1,2221(X1, Y1, C1) cos
(
x1 − 2θ1 − 3y1 − 2λ22

)

+ B1,4211(X1, Y1, C1) cos
(
x1 − 2θ1 + y1 − 2λ42 + π

)

+ B1,4221(X1, Y1, C1) cos
(
x1 − 2θ1 − y1 − 2λ42 + π

)

+ B1,4231(X1, Y1, C1) cos
(
x1 − 2θ1 − 3y1 − 2λ42 + π

)
.

(2.31)

The Hamiltonian Ĥ1 is defined considering a fixed resonance and three different criti-
cal angles associated to the tesseral harmonic J22; the critical angles associated to the tesseral
harmonic J42 have the same frequency of the critical angles associated to the J22 with a dif-
ference in the phase. The other terms in Hrs are considered as short-period terms.

Table 1 shows the resonant coefficients used in the Hamiltonian Ĥ1.
Finally, a last transformation of variables is done, with the purpose of writing the

resonant angle explicitly. This transformation is defined by

X4 = X1, Y4 = Y1, Θ4 = Θ1 + 2X1,

x4 = x1 − 2θ1, y4 = y1, θ4 = θ1.
(2.32)
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Table 1: Resonant coefficients.

Degree (l) Order (m) p q

2 2 0 1
2 2 1 1
2 2 2 1
4 2 1 1
4 2 2 1
4 2 3 1

So, considering (2.31) and (2.32), the Hamiltonian H4 is found to be

H4 =
μ2

2X2
4

−ωe(Θ4 − 2X4) + B4,2010(X4, Y4, C1) + B4,4020(X4, Y4, C1)

+ B4,2201(X4, Y4, C1) cos
(
x4 + y4 − 2λ22

)

+ B4,2211(X4, Y4, C1) cos
(
x4 − y4 − 2λ22

)

+ B4,2221(X4, Y4, C1) cos
(
x4 − 3y4 − 2λ22

)

+ B4,4211(X4, Y4, C1) cos
(
x4 + y4 − 2λ42 + π

)

+ B4,4221(X4, Y4, C1) cos
(
x4 − y4 − 2λ42 + π

)

+ B4,4231(X4, Y4, C1) cos
(
x4 − 3y4 − 2λ42 + π

)
,

(2.33)

with ωeΘ4 constant and

B4,2010 =
μ4

X6
4

ae
2J20

(
−3
4

(C1 + 2X4)2

(X4 + Y4)2
+
1
4

)(
1 +

3
2

−Y4
2 − 2X4Y4

X4
2

)
, (2.34)

B4,4020 =
μ6

X10
4

ae
4J40

⎛

⎝105
64

(
1 − (C1 + 2X4)2

(X4 + Y4)2

)2

− 3
2
+
15
8

(C1 + 2X4)2

(X4 + Y4)2

⎞

⎠

×
(
1 + 5

−Y4
2 − 2X4Y4

X4
2

)
,

(2.35)

B4,2201 =
21
8X7

4

μ4ae
2J22

(
1 +

C1 + 2X4

X4 + Y4

)2√
−Y4

2 − 2X4Y4, (2.36)

B4,2211 =
3

2X7
4

μ4ae
2J22

(
3
2
− 3
2

(C1 + 2X4)2

(X4 + Y4)2

)√
−Y4

2 − 2X4Y4, (2.37)
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B4,2221 = − 3
8X7

4

μ4ae
2J22

(
1 − C1 + 2X4

X4 + Y4

)2√
−Y4

2 − 2X4Y4, (2.38)

B4,4211 =
9

2X11
4

μ6ae
4J42

(
35
27

(
1 − (C1 + 2X4)2

(X4 + Y4)2

)
(C1 + 2X4)

×
(
1 +

C1 + 2X4

X4 + Y4

)
(X4 + Y4)−1

−15
8

(
1 +

C1 + 2X4

X4 + Y4

)2
)√

−Y4
2 − 2X4Y4,

(2.39)

B4,4221 =
5

2X11
4

μ6ae
4J42

(
105
16

(
1 − (C1 + 2X4)2

(X4 + Y4)2

)(
1 − 3

(C1 + 2X4)2

(X4 + Y4)2

)

+
15
4

− 15
4
(C1 + 2X4)2

(X4 + Y4)2

)√
−Y4

2 − 2X4Y4,

(2.40)

B4,4231 =
μ6

X10
4

ae
4J42

(
−35
27

(
1 − (C1 + 2X4)2

(X4 + Y4)2

)
(C1 + 2X4)

×
(
1 − C1 + 2X4

X4 + Y4

)
(X4 + Y4)−1 − 15

8

(
1 − C1 + 2X4

X4 + Y4

)2
)

×

⎛
⎜⎝

1
2

√
−Y4

2 − 2X4Y4

X4
+
33
16

−Y4
2 − 2X4Y4

X4
2

⎞
⎟⎠.

(2.41)

Since the term ωeΘ4 is constant, it plays no role in the equations of motion, and a new
Hamiltonian can be introduced,

Ĥ4 = H4 +ωeΘ4. (2.42)

The dynamical system described by Ĥ4 is given by

d(X4, Y4)
dt

=
∂Ĥ4

∂
(
x4, y4

) ,
d
(
x4, y4

)

dt
= − ∂Ĥ4

∂(X4, Y4)
. (2.43)
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Table 2: The zonal and tesseral harmonics.

Zonal harmonics Tesseral harmonics
J20 = 1.0826 × 10−3 J22 = 1.8154 × 10−6

J40 = −1.6204 × 10−6 J42 = 1.6765 × 10−7

The zonal harmonics used in (2.34) and (2.35) and the tesseral harmonics used in (2.36)
to (2.41) are shown in Table 2.

The constant of integration C1 in (2.34) to (2.41) is given, in terms of the initial values
of the orbital elements, ao, eo, and Io, by

C1 =
√
μao

(√
1 − e2o cos(Io) − 2

)
(2.44)

or, in terms of the variables X4 and Y4,

C1 = X4(cos(Io) − 2) + Y4 cos(Io). (2.45)

In Section 4, some results of the numerical integration of (2.43) are shown.

3. Lyapunov Exponents

The estimation of the chaoticity of orbits is very important in the studies of dynamical
systems, and possible irregular motions can be analyzed by Lyapunov exponents [23].

In this work, “Gram-Schmidt’s method,” described in [23–26], will be applied to
compute the Lyapunov exponents. A brief description of this method is presented in what
follows.

The dynamical system described by (2.43) can be rewritten as

dX4

dt
= P1

(
X4, Y4, x4, y4;C1

)
,

dY4

dt
= P2

(
X4, Y4, x4, y4;C1

)
,

dx4

dt
= P3

(
X4, Y4, x4, y4;C1

)
,

dy4

dt
= P4

(
X4, Y4, x4, y4;C1

)
.

(3.1)
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Introducing

z =

⎛
⎜⎜⎜⎜⎜⎝

X4

Y4

x4

y4

⎞
⎟⎟⎟⎟⎟⎠

,

Z =

⎛
⎜⎜⎜⎜⎜⎝

P1

P2

P3

P4

⎞
⎟⎟⎟⎟⎟⎠

.

(3.2)

Equations (3.2) can be put in the form

dz

dt
= Z(z). (3.3)

The variational equations, associated to the system of differential equations (3.3), are given
by

dζ

dt
= Jζ, (3.4)

where J = (∂Z/∂z) is the Jacobian.
The total number of differential equations used in this method is n(n+ 1), n represents

the number of the motion equations describing the problem, in this case four. In this way,
there are twenty differential equations, four are motion equations of the problem and sixteen
are variational equations described by (3.4).

The dynamical system represented by (3.3) and (3.4) is numerically integrated and the
neighboring trajectories are studied using the Gram-Schmidt orthonormalization to calculate
the Lyapunov exponents.

Themethod of the Gram-Schmidt orthonormalization can be seen in [25, 26]withmore
details. A simplified denomination of the method is described as follows.

Considering the solutions to (3.4) as uκ(t), the integration in the time τ begins from
initial conditions uκ(t0) = eκ(t0), an orthonormal basis.

At the end of the time interval, the volumes of the κ-dimensional (κ = 1, 2, . . . ,N)
produced by the vectors uκ are calculated by

Vκ =

∥∥∥∥∥∥

κ∧

j=1

uj(t)

∥∥∥∥∥∥
, (3.5)

where
∧

is the outer product and ‖ · ‖ is a norm.
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Figure 1: Time behavior of the semimajor axis for different values of C1 given in Table 3.
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Figure 2: Time behavior of x4 angle for different values of C1 given in Table 3.

In this way, the vectors uκ are orthonormalized by Gram-Schmidt method. In other
words, new orthonormal vectors eκ(t0 + τ) are calculated, in general, according to

eκ =
uκ −

∑κ−1
j=1
(
uκ · ej

)
ej

∥∥∥uκ −
∑κ−1

j=1
(
uκ · ej

)
ej
∥∥∥
. (3.6)
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Table 3: Values of the constant of integration C1 for e = 0.001, I = 55◦ and different values for semimajor
axis.

a(0) × 103(m) C1 × 1011(m2/s)
26555.000 −1.467543158
26561.700 −1.467728282
26562.400 −1.467747623
26563.500 −1.467778013
26565.000 −1.467819454
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Figure 3: Time behavior of the argument of pericentre for different values of C1 given in Table 3.

The Gram-Schmidt method makes invariant the κ-dimensional subspace produced by
the vectors u1,u2,u3, . . . ,uκ in constructing the new κ-dimensional subspace spanned by the
vectors e1, e2, e3, . . . , eκ.

With new vector uκ(t0 + τ) = eκ(t0 + τ), the integration is reinitialized and carried
forward to t = t0 + 2τ . The whole cycle is repeated over a long-time interval. The theorems
guarantee that the κ-dimensional Lyapunov exponents are calculated by [25, 26]:

λ(κ) = lim
n→∞

1
nτ

n∑

j=1

ln
(
Vκ

(
t0 + jτ

))

ln
(
Vκ

(
t0 +
(
j − 1

)
τ
)) . (3.7)

The theory states that if the Lyapunov exponent tends to a positive value, the orbit is
chaotic.

In the next section are shown some results about the Lyapunov exponents.
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4. Results

Figures 1, 2, 3, and 4 show the time behavior of the semimajor axis, x4 angle, argument of
perigee and of the eccentricity, according to the numerical integration of the motion equa-
tions, (2.43), considering three different resonant angles together: φ2201, φ2211, and φ2221 associ-
ated to J22, and three angles, φ4211, φ4221, and φ4231 associated to J42, with the same frequency
of the resonant angles related to the J22, but with different phase. The initial conditions corre-
sponding to variables X4 and Y4 are defined for eo = 0.001, Io = 55◦, and ao given in Table 3.
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Figure 7: Time behavior of the argument of pericentre for different values of C1 given in Table 4.

Table 4: Values of the constant of integration C1 for e = 0.05, I = 10◦, and different values for semimajor
axis.

a(0) × 103(m) C1 × 1011 (m2/s)
26555.000 −1.045724331
26565.000 −1.045921210
26568.000 −1.045980267
26574.000 −1.046098370

The initial conditions of the variables x4 and y4 are 0◦ and 0◦, respectively. Table 3 shows the
values of C1 corresponding to the given initial conditions.



16 Mathematical Problems in Engineering

0.044

0.046

0.048

0.05

0.052

0.054

0.056

0.058

0 1000 2000 3000 4000 5000 6000 7000

e

t (days)

J22 and J42

J22

Figure 8: Time behavior of the eccentricity for different values of C1 given in Table 4.

26552

26554

26556

26558

26560

26562

26564

26566

26568

26570

0 1000 2000 3000 4000 5000 6000 7000

a
(k

m
)

t (days)

a(0) = 26555 km
a(0) = 26558 km
a(0) = 26562 km

a(0) = 26564 km
a(0) = 26568 km

Figure 9: Time behavior of the semimajor axis for different values of C1 given in Table 5.

Figures 5, 6, 7, and 8 show the time behavior of the semimajor axis, x4 angle, argument
of perigee and of the eccentricity for two different cases. The first case considers the critical
angles φ2201, φ2211, and φ2221, associated to the tesseral harmonic J22, and the second case
considers the critical angles associated to the tesseral harmonics J22 and J42. The angles associ-
ated to the J42, φ4211, φ4221, and φ4231, have the same frequency of the critical angles associated
to the J22 with a different phase. The initial conditions corresponding to variables X4 and Y4

are defined for eo = 0.05, Io = 10◦, and ao given in Table 4. The initial conditions of the varia-
bles x4 and y4 are 0◦ and 60◦, respectively. Table 4 shows the values of C1 corresponding to
the given initial conditions.
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Figure 11: Time behavior of the argument of pericentre for different values of C1 given in Table 5.

Analyzing Figures 5–8, one can observe a correction in the orbits when the terms re-
lated to the tesseral harmonic J42 are added to the model. Observing, by the percentage, the
contribution of the amplitudes of the terms B4,4211, B4,4221, and B4,4231, in each critical angle
studied, is about 1,66% up to 4,94%. In fact, in the studies of the perturbations in the arti-
ficial satellites motion, the accuracy is important, since adding different tesseral and zonal
harmonics to the model, one can have a better description about the orbital motion.

Figures 9, 10, 11, and 12 show the time behavior of the semimajor axis, x4 angle, argu-
ment of perigee and of the eccentricity, according to the numerical integration of the motion
equations, (2.43), considering three different resonant angles together; φ2201, φ2211, and φ2221
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Figure 13: Lyapunov exponents λ(1) and λ(2), corresponding to the variables X4 and Y4, respectively, for
C1 = −1.467778013 × 1011 m2/s and C1 = −1.467819454 × 1011 m2/s, x4 = 0◦ and y4 = 0◦.

associated to J22 and three angles φ4211, φ4221, and φ4231 associated to J42. The initial conditions
corresponding to variables X4 and Y4 are defined for eo = 0.01, Io = 55◦, and ao given in Table
5. The initial conditions of the variables x4 and y4 are 0◦ and 60◦, respectively. Table 5 shows
the values of C1 corresponding to the given initial conditions.

Analyzing Figures 1–12, one can observe possible irregular motions in Figures 1–4,
specifically considering values for C1 = −1.467778013 × 1011 m2/s and C1 = −1.467819454 ×
1011 m2/s, and, in Figures 9–12, for C1 = −1.467765786 × 1011 m2/s and C1 = −1.467821043 ×
1011 m2/s. These curves will be analyzed by the Lyapunov exponents in a specified time
verifying the possible regular or chaotic motions.
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Figure 14: Lyapunov exponents λ(1) and λ(2), corresponding to the variables X4 and Y4, respectively, for
C1 = −1.467765786 × 1011 m2/s and C1 = −1.467821043 × 1011 m2/s, x4 = 0◦ and y4 = 60◦.

Table 5: Values of the constant of integration C1 for e = 0.01, I = 55◦, and different values for semimajor
axis.

a(0) × 103(m) C1 × 1011(m2/s)
26555.000 −1.467572370
26558.000 −1.467655265
26562.000 −1.467765786
26564.000 −1.467821043
26568.000 −1.467931552

Figures 13 and 14 show the time behavior of the Lyapunov exponents for two different
cases, according to the initial values of Figures 1–4 and 9–12. The dynamical system in-
volves the zonal harmonics J20 and J40 and the tesseral harmonics J22 and J42. The method
used in this work for the study of the Lyapunov exponents is described in Section 3. In
Figure 13, the initial values for C1, x4, and y4 are C1 = −1.467778013 × 1011 m2/s and C1 =
−1.467819454 × 1011 m2/s, x4 = 0◦ and y4 = 0◦, respectively. In Figure 14, the initial values for
C1, x4, and y4 areC1 = −1.467765786 × 1011 m2/s andC1 = −1.467821043 × 1011 m2/s, x4 = 0◦

and y4 = 60◦, respectively. In each case are used two different values for semimajor axis
corresponding to neighboring orbits shown previously in Figures 1–4 and 9–12.

Figures 13 and 14 show Lyapunov exponents for neighboring orbits. The time used in
the calculations of the Lyapunov exponents is about 150.000 days. For this time, it can be ob-
served in Figure 13 that λ(1), corresponding to the initial value a(0) = 26565.0 km, tends to a
positive value, evidencing a chaotic region. On the other hand, analyzing the same Figure 13,
λ(1), corresponding to the initial value a(0) = 26563.5 km, does not show a stabilization
around the some positive value, in this specified time. Probably, the time is not sufficient for
a stabilization in some positive value, or λ(1), initial value a(0) = 26563.5 km, tends to a nega-
tive value, evidencing a regular orbit. Analyzing now Figure 14, it can be verified that λ(1),
corresponding to the initial value a(0) = 26564.0 km, tends to a positive value, it contrasts
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Figure 15: Lyapunov exponents λ(1) and λ(2), corresponding to the variables X4 and Y4, respectively, for
C1 = −1.467778013 × 1011 m2/s and C1 = −1.467819454 × 1011 m2/s, x4 = 0◦ and y4 = 0◦.
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Figure 16: Lyapunov exponents λ(1) and λ(2), corresponding to the variables X4 and Y4, respectively, for
C1 = −1.467765786 × 1011 m2/s and C1 = −1.467821043 × 1011 m2/s, x4 = 0◦ and y4 = 60◦.

with λ(1), initial value a(0) = 26562.0 km. Comparing Figure 13 with Figure 14, it is observed
that the Lyapunov exponents in Figure 14 has an amplitude of oscillation greater than the Ly-
apunov exponents in Figure 13. Analyzing this fact, it is probable that the necessary time for
the Lyapunov exponent λ(2), in Figure 14, to stabilize in some positive value is greater than
the necessary time for the λ(2) in Figure 13.

Rescheduling the axes of Figures 13 and 14, as described in Figures 15 and 16, respec-
tively, the Lyapunov exponents tending to a positive value can be better visualized.
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5. Conclusions

In this work, the dynamical behavior of three critical angles associated to the 2 : 1 resonance
problem in the artificial satellites motion has been investigated.

The results show the time behavior of the semimajor axis, argument of perigee and e-
ccentricity. In the numerical integration, different cases are studied, using three critical angles
together: φ2201, φ2211, and φ2221 associated to J22 and φ4211, φ4221, and φ4231 associated to the
J42.

In the simulations considered in the work, four cases show possible irregular motions
for C1 = −1.467778013 × 1011 m2/s, C1 = −1.467819454 × 1011 m2/s, C1 = −1.467765786 ×
1011 m2/s, and C1 = −1.467821043 × 1011 m2/s. Studying the Lyapunov exponents, two cases
show chaotic motions forC1 = −1.467819454 × 1011 m2/s andC1 = −1.467821043 × 1011 m2/s.

Analyzing the contribution of the terms related to the J42, it is observed that, for the
value ofC1 = −1.045724331 × 1011 m2/s, the amplitudes of the terms B4,4211, B4,4221, and B4,4231

are greater than the other values of C1. In other words, for bigger values of semimajor axis, it
is observed a smaller contribution of the terms related to the tesseral harmonic J42.

The theory used in this paper for the 2 : 1 resonance can be applied for any resonance
involving some artificial Earth satellite.
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