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The present work concerns the estimation of the probability density function (p.d.f.) of measured
data in the Lamb wave-based damage detection. Although there was a number of research work
which focused on the consensus algorithm of combining all the results of individual sensors, the
p.d.f. of measured data, which was the fundamental part of the probability-based method, was
still given by experience in existing work. Based on the analysis about the noise-induced errors in
measured data, it was learned that the type of distribution was related with the level of noise. In
the case of weak noise, the p.d.f. of measured data could be considered as the normal distribution.
The empirical methods could give satisfied estimating results. However, in the case of strong
noise, the p.d.f. was complex and did not belong to any type of common distribution function.
Nonparametric methods, therefore, were needed. As the most popular nonparametric method,
kernel density estimation was introduced. In order to demonstrate the performance of the kernel
density estimation methods, a numerical model was built to generate the signals of Lamb waves.
Three levels of white Gaussian noise were intentionally added into the simulated signals. The
estimation results showed that the nonparametric methods outperformed the empirical methods
in terms of accuracy.

1. Introduction

Structural health monitoring (SHM) is an emerging technology that merges with a variety
of techniques related to diagnostics and prognostics. Monitoring the status of structural
health can improve the safety and maintainability of critical structures in many fields,
such as civil engineering, aerospace, and military industry. An ideal SHM system includes
several subsystems in which the damage detection methodology is the key part. Therefore,



2 Mathematical Problems in Engineering

numerous damage-detection methods have been researched in years [1]. The method based
on Lamb waves has the apparent advantages of high sensitivity to structural damage
compared with methods based on the mode shapes [2] or structure dynamic responses
[3]. It has been verified that the Lamb wave-based damage detection methods can detect
crack, delamination, surface corrosion, penetrate holes, weld defect, and many other kinds
of damage in plate and shell structure [4–6]. Consequently, the Lamb wave is widely
acknowledged as one of the most encouraging tools for SHM. The relevant research has been
conducted intensively since the 1980s [7].

The portion of the SHM process that has received the least attention in the technical
literature is the development of statistical models for discrimination between features
from the undamaged and damaged structures. The algorithms, which analyze statistical
distributions of the measured or derived features to enhance the damage identification
process, have been developed [8, 9]. The probability-based diagnostic methods have also
been introduced in Lamb wave-based damage detection area in recent years [10, 11].
However, the statistical modes using in the existing Lamb wave-based methods are relatively
simple. Despite a number of literatures had been published, which focused on the consensus
algorithm of combining all the results of individual sensors, the p.d.f. of the measured data
was empirically determined. As a key part of statistical model, it is obvious that the accuracy
of the p.d.f. has a significant effect on the precision of damage-detecting result. Compared
with the estimating results by empirical formula, the results of statistical methods will be
more accurate and reliable. Hence, the study of using statistical methods to estimate the p.d.f.
is necessary in Lamb wave-based damage detection.

Elementary parametric estimation method has been adopted under the assumption
that the p.d.f. of the measured data is normal distribution [12]. However, the assumption in
parametric method limits the application of this method. If the extra assumption is correct,
the results produced by parametric method can be more accurate than the results given by
empirical formula. While if the assumption is incorrect, parametric methods can be very
misleading.

Since the type of p.d.f. of measured data from field experiments is varied and
can hardly be predicted, more robust approach methods should be considered. The
nonparametric statistic methods can give the parameters of distribution and do not rely
on assumptions that the data are drawn from a given probability distribution. Therefore,
introducing the nonparametric statistic methods is crucial in Lamb wave-based damage
detection.

The aim of this paper is to demonstrate the necessity and feasibility of application of
kernel density estimation, which is the most popular nonparametric estimation method in
Lamb wave-based damage detection. Two kinds of kernel density estimation methods, the
one based on the Gaussian approximation and the one based on the smoothing properties of
linear diffusion processes, were briefly introduced in this paper. The signals of Lamb waves
with different levels of white Gaussian noise were acquired by using numerical simulation.
The framework of applying nonparametric estimation method in Lamb wave-based damage
detection was demonstrated by using the simulated signals. The characteristics of noise-
induced error in the arriving time of damage-scattered Lamb waves, which is the index used
to locate damage, was analyzed. Based on this analysis, the outcomes of two kinds of kernel
density estimationmethod as well as the parametric estimationmethods were compared. The
results show that the nonparametric methods outperform the parametric method in terms of
accuracy and reliability.



Mathematical Problems in Engineering 3

2. Lamb Wave-Based Damage Detection

2.1. Background

Lamb waves are a kind of elastic waves propagates in thin plate and shell structure. With a
high susceptibility to interference on a propagation path, for example, damage or a boundary,
Lamb waves can travel over a long distance even in materials with a high attenuation ratio,
and thus a broad area can be quickly examined [13].

Lamb waves are made up of a superposition of longitudinal and shear modes, and
its propagation characteristics vary with entry angle, excitation, and structural geometry. A
Lamb mode can be either symmetric or antisymmetric, formulated by
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where p2 = w2/c2L − k2, q2 = w2/c2T − k2, k = w/cp, and h, k, cL, cT , cp, ω are the plate
thickness, wavenumber, velocities of longitudinal and transverse modes, phase velocity, and
wave circular frequency, respectively. Equations (2.1) and (2.2), correlating the propagation
velocity with its frequency, imply that Lamb waves, regardless of its mode, are dispersive
(velocity is dependent on frequency).

Lamb waves can be actively excited by a variety of means, such as ultrasonic probe,
laser, interdigital transducer, and piezoelectric element. The piezoelectric element can also
be used as sensor to collect signals of Lamb waves perfectly. The piezoelectric element is
particularly suitable for integration into a host structure as an in situ generator/sensor,
for their neglectable mass/volume, easy integration, excellent mechanical strength, wide-
frequency responses, low power consumption and acoustic impedance, as well as low cost.
Applications of piezoelectric element in Lamb wave-based damage detection are numerous.

Lamb mode selection is an important part for damage detection. The basic symmetric
mode, S0, and the antisymmetric mode, A0, are normally used in practice. Although S0 is
preferred in many of studies [14], utilization of A0 is increasing because that A0 is the highly
effective for detecting delamination and transverse ply cracks [15]. To implement the Lamb
mode selection, a multielement transducer setup was proposed [16] to dominantly generate
S0 or A0.

The algorithms for Lamb wave-based damage identification can be roughly divided
into two categories. The first category is the algorithms that identify and locate damage by
observing the damage-reflected Lamb waves, such as Time-of-Flight (ToF) method [17–19],
embedded ultrasonic structural radar [20], and time of difference method [21]. The second
category is the algorithms that analyze the changes in the characteristics of Lamb waves
caused by the damage in its propagation path, such as tomography method [22] and virtual-
sensing paths method [23].

For the algorithms that focus on the damage-reflected waves, the arriving time of
the Lamb waves is the key index used to locate damage. Since the signal of Lamb waves
is wave packet in the form, several methods have been developed to measure the arriving
time of Lamb waves, such as threshold method, correlation method, wavelet method [24],
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and a novel cross-correlation analysis method based on a wavelet transform [25, 26]. Among
those methods, the threshold method, which was adopted in this paper, has the advantage of
simplicity. In threshold method, a threshold value Vt was firstly set up on basis of experience.
Once the amplitude of one or several peaks exceed Vt, then the corresponding peaks were
recorded. Depending on the magnitude of Vt, one or more peaks could be recorded for a
wave packet. If only one peak was recorded, the arriving time was the time corresponding
to that peak. If more than one peak were recorded, then the arriving time will be the average
of all recorded time. Usually, the threshold value is selected to let several peaks belong to
one wave packet can be recorded. The benefit of recording several peaks instead of only the
strongest peak is that the averaging process itself can reduce noise to some extent.

2.2. Time of Flight Method

ToF, defined as the time lag from the moment when a sensor catches the damage reflected
signal to the moment when the same sensor catches the incident signal, was widely used to
locate damage [17–19].

Consider a sensor network consisting of N piezoelectric wafers denoted by si (i =
1, 2, . . . ,N). For convenience of discussion, sm − sn hereinafter stands for the sensing path
in which sm serves as the actuator and sn as the sensor. The center of the damage, if any, is
presumed to be (x, y) in coordinate system. Then, the ToF can be defined in (2.1) as Ti−j :

LA−D
VS0

+
LD−S

VSH0−damage

− LA−S
VS0

= Ti−j , (2.3)

In which LA−D, LD−S, and LA−S represent the distance from the actuator si to the damage, from
the damage to the sensor sj , and from actuator si to the sensor sj , respectively. VSH0−damage and
VS0 are velocities of the damage-converted SH0 mode and the incipient S0 mode, respectively.

Because there are two unknown damage parameters, (x, y), in (2.3), the solution of
(2.3)will be a root locus, which implies the possible locations of the damage for a certain ToF
value. In traditional approaches, the damage location is given by seeking the intersections of
two or more loci. As shown in Figure 1(a), in the case of using three sensor pairs, there will be
three loci, each exhibiting a time delay due to the existence of damage. The point with which
all three loci intersect was considered as the location of damage, while the points with which
only two loci intersect were considered as pseudodamage location.

There is a prerequisite in the traditional approach. That is all of the measured ToF
values Tm were accurate. However, errors are always inevitable in any experimental result
due to the reasons such as noises. Therefore, as shown in Figure 1(b), there is no point with
which all three loci intersect if the loci were drawn based on noise contained Tm instead of the
theoretical value T . It is suggested that the damage location can be given as the area where
the density of intersections of two loci is relatively large. That leads to the research about the
probability-based approach method, to give the precise damaged area based on the density
of intersections.
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Figure 1: Damage localization using ToF method in a plate. (a) Locus based on accurate ToF value, (b)
Locus based on ToF with error.

2.3. Probability-Based ToF Method

The concept of probability-based approach was introduced by Zhao et al. [27] to improve the
performance of Lamb wave-based method, and then it was adopted by Su et al. [28] in ToF
method. In traditional ToF method, only the points on loci are considered as possible damage
location. Other points, regardless of its distance to the loci, will all be excluded outside the
possible damage location. In fact, due to the existence of errors in Tm, the real damage may
not be on the loci which were drawn based on Tm. Therefore, in probability-based approach
method, the points absent in the loci are also considered as possible damage location. The
possibility of damage occurrence in those points will be determined by its distance to
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the loci. The mesh nodes right located on an above-established locus have the highest degree
of probability of damage presence; for the others, the greater the distance to the locus, the
lower the probability damage exists there. To quantify the probabilities at all nodes with
regard to all loci, a function called as p.d.f. of damage occurrence was introduced. For each
loci, a probability distribution map can be given for the detection target plant structure based
on p.d.f. of damage occurrence. Combination of all the probability distribution maps can give
the final damage detection result.

The main frame of data fusion-based method can be divided into two steps.

(1) The inspection area of the structure was evenlymeshed. For a certainmeasured ToF,
each mesh node will be evaluated about its possibility for the presence of damage
by using a probability density function.

(2) All evaluated results for each measured ToF were combined to give the detection
result in a matrix form. Each element of the matrix represents the probability of the
presence of damage for one mesh node.

The detection result in matrix form can be illustrated in an image shown in Figure 2, where
the lighter the greyscale, the greater the possibility of damage existing at that pixel (each pixel
exclusively corresponds to a spatial point of the structure under inspection).

It is obvious that the p.d.f. of damage occurrence is the key part of probability based
method. Su et al. [10] suggest the p.d.f. can be quantified in relation to the loci:
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]

, (2.4)

where f(zij) is the Gaussian distribution function, representing the p.d.f. of damage
occurrence at node Li (i = 1, . . . , K × K for the structure that is comprised of K × K mesh
nodes), perceived by a sensor, sj (j = 1, . . . ,N for the sensor network consisting ofN sensors).
σij is the standard deviation and

zij =
∥∥χi − μij

∥∥, (2.5)

where χi is the location vector of node Li and μij is the location vector of the point on the
locus provided by sensor sj that has the shortest distance to node Li.

Satisfied results have been obtained by using this kind of p.d.f. But it should be noticed
that the standard variance σij was selected depending on experience.

The concept of probability-based approach was also adopted in some other Lamb
wave-based damage detection methods rather than ToF method. Wang et al. [23] combine
the concept of probability-based approach with virtual-sensing paths method. The p.d.f. in
their work is an empirical formula and the parameters were given by experience.

There are mainly two disadvantages in the existing work. First, empirical formula
usually are simpler to write down and faster to compute, but it depends heavily on the
experimental environment. Any change which is inevitable in experiment may cause a big
error in the estimated results. That is, the simplicity of empirical formula makes up for its
nonrobustness. Since the data measurement work in the Lamb wave-based damage detection
is not time consuming, it is reasonable that the density function should be estimated by
using robust statistic method. Second, the p.d.f. used in existing work is the distribution
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Figure 2: Damage localization result of probability-based method.

function about the location of damage in the plane fD(T)(s), where s = |D(T) −D(Tm)|, D(T)
and D(Tm) are the damage location corresponding to T (the actual ToF data) and Tm (the
experimental ToF data), respectively. It should be noticed that the damage location cannot
be directly measured in experiment. Thus, estimating fD(T)(s) directly will be difficult. Based
on the estimation of the function fTm(t) about the distribution of experiment data Tm in time
domain, estimating fD(T)(s) by using the mapping relationship defined in (2.3) should be a
better method.

Therefore, probability density estimation methods will be introduced in Section 3. The
advantages and feasibility of applying probability density estimation methods in ToFmethod
will be demonstrated.

3. Probability Density Estimation

In statistic, density estimation is the method that estimates the parameters of a distribution
based on the observed samples. Depending on whether a priori knowledge about the type
of the distribution is required, the density estimation methods can be divided into two
categories: parametric estimation and nonparametric estimation.

3.1. Parametric Estimation

Parametric estimation mainly includes point estimation and interval estimation. In statistics,
point estimation is the use of sample data to calculate a single number of possible values of an
unknown population parameter, in contrast to interval estimation, which is an interval. Most
commonly used point estimation methods are method of moment estimation, maximum
likelihood estimation, and Bayesian estimation. For instance, if it is known that the sample
data come from a normal distribution, then the two parameters of normal distribution,
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expectation and variance, can be calculated by using (3.1) and (3.2), which is derived by
using maximum-likelihood estimation method:

μ̂ =
1
N

N∑

i=1

xi, (3.1)

σ̂2 =
1
N

N∑

i=1

(
xi − μ̂

)2
, (3.2)

where N is the number of samples.

3.2. Nonparametric Estimation

Nonparametric estimation is a method that estimates the parameters of an unknown distri-
bution while does not rely on assumptions about the type of this distribution. Commonly,
nonparametric estimation methods include histogram, nonparametric regression, and kernel
density estimation, which is the most popular one.

3.2.1. Kernel Density Estimation Based on the Gaussian Approximation

Kernel density estimation is a nonparametric method to estimate the probability density
function of a random variable. Kernel density estimation is a fundamental data smoothing
problem where inferences about the population are made, based on a finite-data sample.
In some fields such as signal processing and econometrics, kernel density estimation was
also termed as the Parzen-Rosenblatt window method, after Emanuel Parzen and Murray
Rosenblatt, who are usually credited with independently creating this method in its current
form [29, 30].

Let (x1, x2, . . . , xn) be an independent and identically distributed sample drawn from
some distribution with an unknown density f . Estimating the shape of this function f is
interested. Its kernel density estimator is

f̂h(x) =
1
n

n∑

i=1

Kh(x − xi) =
1
nh

n∑

i=1

Kh

(
x − xi

h

)
, (3.3)

where K(•) is the kernel, a symmetric but not necessary positive function that integrates
to one; and h is positive and a smoothing parameter called the bandwidth. A kernel with
subscript h is called as the scaled kernel and defined as Kh(x) = (1/h)K(x/h). A range of
kernel functions are commonly used: uniform, triangular, biweight, triweight, Epanechnikov,
normal, and others. As with the kernel regression, the choice of kernel function is not crucial,
but the choice of bandwidth is important.

The bandwidth of the kernel is a free parameter which exhibits a strong influence
on the resulting estimate [31, 32]. The most common optimality criterion used to select this
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parameter is the expected L2 risk function, also termed as the Mean Integrated Squared Error
(MISE);

MISE(h) = E

∫ (
f̂h(x) − f(x)

)2
dx. (3.4)

Under weak assumptions on f andK [29, 30], MISE(h) = AMISE(h) + o(1/(nh) + h4), where
o is the little o notation of the family of Bachmann-Landau notations. o(1/(nh) + h4) denotes
the function family in which every function grows much slower that (1/(nh) + h4) [33]. The
AMISE is the asymptotic MISE which consists of the two leading terms

AMISE(h) =
R(K)
nh

+
1
4
m2(K)2h4R

(
f ′′), (3.5)

whereR(g) =
∫
g(x)2dx for a function g,m2(K) =

∫
x2K(x)dx, and f ′′ is the second derivative

of f . The minimum of this AMISE is the solution to this differential equation:

∂

∂h
AMISE(h) = −R(K)

nh2
+m2(K)2h3R

(
f ′′) = 0 (3.6)

or

hAMISE =
R(K)1/5

m2(K)2/5R
(
f ′′)1/5n1/5

. (3.7)

Neither the AMISE nor the hAMISE can be used directly since they involve the unknown
density function f or its second derivative f ′′. Therefore, a variety of automatic, data-based
methods have been developed for selecting the bandwidth.

If the kernel function is normal and it is assumed that the distribution being estimated
is Gaussian, then it can be derived from (3.7) that optimal choice for h is

h =

(
4σ̂5

3n

)1/5

≈ 1.06σ̂n−1/5, (3.8)

where σ̂ is the standard deviation of the samples. This approximation is termed as the normal
distribution approximation, Gaussian approximation, or Silverman’s rule of thumb [32].

3.2.2. Kernel Density Estimation via Diffusion

Kernel density estimation is an ongoing research topic in statistics. Botev et al. [34] proposed
an adaptive kernel density estimation method based on the smoothing properties of linear
diffusion processes. This novel approach method includes two parts: first, a simple and
intuitive kernel estimator with substantially reduced asymptotic bias and mean square error,
and better boundary bias performance; second, an improved plug-in bandwidth selection
method that completely avoids the Gaussian approximation. The new plug-in method is
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thus genuinely “nonparametric,” since it does not require a preliminary normal model for
the data.

(I) The Diffusion Estimator

Given N independent realizations χN ≡ {X1, . . . , XN} from an unknown continuous p.d.f. f
on X, the Gaussian kernel density estimator is defined as

f̂(x;h) =
1
N

N∑

i=1

φ(x,Xi;h), (3.9)

where

φ(x,Xi;h) =
1√
2πh

e−(x−Xi)
2/(2h) (3.10)

is a Gaussian p.d.f. (kernel) with location Xi and scale
√
h. The scale is the bandwidth in

kernel density estimation.
Chaudhuri andMarron [35] had found that there is a link between the Gaussian kernel

density estimator and the well-known Fourier heat equation which is a diffusion partial
differential equation (PDE). The link is the Gaussian kernel density estimator defined in (3.9)
in fact is the unique solution to the Fourier heat equation:

∂

∂t
f̂(x;h) =

1
2

∂2

∂x2
f̂(x;h), x ∈ χ, h > 0, (3.11)

with χ ≡ R and initial condition f̂(x; 0) = Δ(x), where Δ(x) =
∑N

i=1 δ(x −Xi) is the empirical
density of the data χN and δ(x − Xi) is the Dirac measure at Xi. In the heat equation
interpretation, the Gaussian kernel in (3.9) is the so-called Green’s function [36] for the
diffusion PDE in (3.11). Thus, the Gaussian kernel density estimator f̂(x;h) can be obtained
by evolving the solution of (3.11) up to h.

Because any bounded domain can be mapped onto [0, 1] by a linear transformation,
there is no loss of generality in assuming that the domain of the data is known as χ ≡ [0, 1].
Then, the analytical solution of PDE (3.11) with initial condition Δ(x) and the Neumann
boundary condition in this case is

f̂(x;h) =
1
N

N∑

i=1

κ(x,Xi;h), x ∈ [0, 1], (3.12)

where the kernel k is given by

κ(x,Xi;h) =
∞∑

k=−∞
φ(x, 2k +Xi;h) + φ(x, 2k −Xi;h). (3.13)
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The Neumann boundary condition is

∂

∂x
f̂(x;h)

∣
∣
∣
∣
x=1

=
∂

∂x
f̂(x;h)

∣
∣
∣
∣
x=0

= 0, (3.14)

and the target of this boundary condition is to ensure that (3.12) satisfies the requirements
of p.d.f., such as f̂ should be a nonnegative Lebesgue-integrable function and integrates to
unity.

It has been proved that the estimator given in (3.12) arises as the solution of the
diffusion PDE is better in boundary bias properties compared with the traditional estimator
given in (3.9).

Therefore, motivated by the idea of acquiring the estimator from the solution of
diffusion PDE, Botev proposed that themost general linear time-homogeneous diffusion PDE
can be a starting point for the construction of a better kernel density estimator. The simple
diffusion model described in (3.11) can be extended on the basis of the smoothing properties
of the linear diffusion PDE:

∂

∂h
g(x;h) = Lg(x;H), x ∈ χ, t > 0, (3.15)

where the linear differential operator L is of the form (1/2)(d/dx)(a(x)(d/dx)(·/p(x))), and
a and p can be any arbitrary positive function on χwith bounded second derivatives, and the
initial condition is g(x; 0) = Δ(x).

The solution of (3.15) can be the diffusion kernel estimator and written as

g(x;h) =
1
N

N∑

i=1

κ(x,Xi;h). (3.16)

There is no analytical expression for the diffusion kernel satisfying (3.16), κ can be written in
terms of a generalized Fourier series in the case that χ is bounded:

κ(x,Xi;h) = p(x)
∞∑

k=0

eλκhϕk(x)ϕk

(
y
)
, (3.17)

where {ϕk} and {λk} are the eigenfunctions and eigenvalues of the Sturm-Liouville problem
on [0, 1]:

L∗ϕk = λkϕk, k = 0, 1, 2, . . . ,

ϕ′
k(0) = ϕ′

k(1) = 0, k = 0, 1, 2, . . . ,
(3.18)

where L∗ is of the form (1/2p(y))(∂/∂y)(a(y)(∂/∂y)(·)); that is, L∗ is the adjoint operator of
L.
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(II) Improved Plug-In Bandwidth Selection Method

The novel plug-in bandwidth selection method for the diffusion estimator defined in (3.16)
proposed by Botev is based on the improved plug-in bandwidth selection method for the
Gaussian kernel density estimator defined in (3.9).

Assuming that f ′′ is a continuous square-integrable function, the asymptotically
optimal value of h for Gaussian kernel density estimator is the minimize of the first-order
asymptotic approximation of MISE [37]

∗h =

(
1

2N
√
π
∥
∥f ′′∥∥2

)2/5

. (3.19)

It is clear from (3.19) that to compute the optimal ∗h, one needs to estimate the functional
‖f ′′‖2. Consider the problem of estimating ‖f (j)‖2 for any arbitrary integer j ≥ 1. The identity
‖f (j)‖2 = (−1)jEf(f (2j)(X)) suggests two plug-in estimators:

the first one is (−1)jEf

(
f (2j)(X)

)
=

(−1)j
N2

N∑

k=1

N∑

m=1

φ(2j)(Xk,Xm;hj

)
,

the second one is
∥∥∥f̂ (j)

∥∥∥
2
:=
∥∥∥f̂ (j)(·, h)

∥∥∥
2
=

(−1)j
N2

N∑

k=1

N∑

m=1

φ(2j)(Xk,Xm; 2hj

)
.

(3.20)

For a given bandwidth, both estimators (−1)jEf(f (2j)(X)) and ‖f̂ (j)‖2 aim to estimate the

same quantity ‖f (j)‖2. Therefore, ∗hj can be selected to make both estimators asymptotically
equivalent in the mean square error sense:

∗hj =

(
1 + 1/2j+1/2

3
1 × 3 × 5 × · · · × (2j − 1

)

N
√
π/2

∥∥f (j+1)
∥∥2

)2/(3+2j)

. (3.21)

Computation of ∗hj by using (3.21) involves ‖f (j+1)‖2 which is unknown. Thus, each ∗hj is
estimated by

∗ĥj =

⎛

⎜
⎝

1 + 1/2j+1/2

3
1 × 3 × 5 × · · · × (2j − 1

)

N
√
π/2

∥∥∥̂f (j+1)
∥∥∥
2

⎞

⎟
⎠

2/(3+2j)

. (3.22)

Computation of ‖ ̂f (j+1)‖
2
requires the estimation of ∗ĥj+1, which in turn requires the

estimation of ∗ĥj+2, and so on, as seen from (3.20) and (3.22). There is the problem of
estimating the infinite sequence {∗ĥj+k, k ≥ 1}. However, for some l > 0, if ∗ĥl+1 can be given,
then all {∗ĥj , 1 ≤ j ≤ l} can be estimated recursively. Based on this idea, the l-stage direct
plug-in bandwidth selector [37] has been proposed.
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Denote the functional dependence of ∗ĥj and ∗ĥl+1 as

∗ĥj = γj
(
∗ĥj+1

)
. (3.23)

It is then obvious that ∗ĥj = γj(γj+1(∗ĥj+2)) = γj(γj+1(γj+2(∗ĥj+3))) = · · · . For simplicity of
notation, the composition can be defined as

γ [k](h) = γ1
(· · · γk−1

(
γk(h)

))
, k ≥ 1. (3.24)

The estimate of ∗h satisfies

∗ĥ = ξ∗ĥ1γ = ξγ [1]
(
∗ĥ2

)
= ξγ [2]

(
∗ĥ3

)
= · · · = ξγ [l]

(
∗ĥl+1

)
. (3.25)

Then, for a given integer l > 0, the l-stage direct plug-in bandwidth selector consists of
computing

∗ĥ = ξγ [l](∗hl+1), (3.26)

where ∗hl+1 is estimated by assuming that f in ‖f (l+2)‖2 is a normal density with mean and
variance estimated from the data.

It is noticed that the assumption in the l-stage direct plug-in bandwidth selector
method can lead to arbitrarily bad estimates of ∗h, when, for example, the true f is far from
being Gaussian. Therefore, Botev proposed to find a solution to the nonlinear equation:

h = ξγ [l](h), (3.27)

for some l, using either fixed point iteration or Newton’s method with initial guess h = 0.
The fixed-point iteration version is formalized in the following Improved Sheather-Jones
algorithm:

(1) Given l > 2, initialize with z0 = ε, where ε is machine precision, and n = 0;

(2) Set zn+1 = ξγ [l](zn);

(3) if |zn+1 − zn| < ε, stop and set ∗ĥ = zn+1; otherwise, set n := n + 1 and repeat from
step (2);

(4) Deliver the Gaussian kernel density estimator in (3.9) evaluated at ∗ĥ as the final
estimator of f , and ∗ĥ2 = γ [l−1](zn+1) as the bandwidth for the optimal estimation of
‖f ′′‖2.

It has been proved that the recommending setting for l is 5.
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The above section explains how to estimate the bandwidth
√

∗h of the Gaussian kernel
density estimator. Now, the algorithm that estimates the bandwidth

√
h∗ of the diffusion

estimator will be introduced.
Assuming that f is as many times continuously differentiable as needed, then it has

been proved that the square of the asymptotically optimal bandwidth is

h∗ =

(
Ef

[
σ−1(x)

]

2N
√
π
∥
∥Lf

∥
∥2

)2/5

. (3.28)

Computation of h∗ in (3.28) requires an estimate of ‖Lf‖2 and Ef[σ−1(x)]. The latter one can
be estimated via the unbiased estimator (1/N)

∑N
i=1 σ

−1(Xi). The identity ‖Lf‖2 = EfL
∗Lf(x)

suggests two possible estimators. The first one is

̂EfL∗Lf(x) :=
1
N

N∑

i=1

N∑

j=1

L∗Lκ (x,Xi;h2)|x=Xj
. (3.29)

The second one is

∥∥∥L̂f
∥∥∥
2
:=

1
N

N∑

i=1

N∑

j=1

L∗Lκ (x,Xi; 2h2)|x=Xj
. (3.30)

Just like the way that ∗h2 is derived for the Gaussian kernel density estimator, h∗
2 is selected

to make both estimators ̂EfL∗Lf(x) and ‖L̂f‖2 have the same asymptotic mean square error:

h∗
2 =

(
8 +

√
2

24
−3√2Ef

[
σ−1(X)

]

8
√
πNEf

[
L∗L2f(X)

]

)2/7

. (3.31)

Note that h∗
2 has the same rate of convergence to 0 as ∗h2. In fact, since the Gaussian kernel

density estimator is a special case of the diffusion estimator when p(x) = a(x) = 1, the plug-
in estimator equation (3.30) for the estimation of ‖Lf‖2 reduces to the plug-in estimator for
the estimation of (1/4)‖f ′′‖2. In addition, the h∗

2 in (3.31) and ∗h2 are identical when p(x) =
a(x) = 1. Thus, the bandwidth for the diffusion estimator given in (3.16) can be selected by
using the following algorithm:

(1) Given the data X1,. . .,XN , run the Improved Sheather-Jones algorithm to obtain the
Gaussian kernel density estimator defined in (3.9) evaluated at ∗ĥ and the optimal

bandwidth
√

∗ĥ2 for the estimation of ‖f ′′‖2. This is the pilot estimation step.

(2) Let p(x) be the Gaussian kernel estimator from above step, and let a(x) = pα(x) for
some α ∈ [0, 1].

(3) Estimate ‖Lf‖2 via the plug-in estimator given in (3.30) using ĥ∗
2 = ∗ĥ2
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Yes

No

Set l = 5, z0 = ε, n = 0,

where ε is machine precision

zn+1 = ξγ [l](zn)

n = n + 1

|zn+1 − zn| < ε

∗ꉱh = zn+1

h =∗ꉱh, set = γ [l−1](zn+1)

Estimate 㐙Lf㐙2 via (3.30)

using ꉱh∗
2 = ∗ꉱh2

∗ꉱh2

Calculate ꉱh∗ using (3.28)

Calculate final density estimation

p(x) = ꉱf , a(x) = pα(x) for

some α∈[0,1]

Calculate ꉱf using (3.9) with

result using ) with h = ꉱh∗(3.16

Figure 3: Flow chart of kernel density estimation via diffusion.

(4) Substitute the estimate of ‖Lf‖2 into (3.28) to obtain an estimate for h∗.

(5) Deliver the diffusion estimator in (3.16) evaluated at ĥ∗ as the final density estimate.

The flow chart of the entire bandwidth selection algorithm was shown in Figure 3.
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Figure 4: Schematic of numerical simulation mode.

4. Numerical Simulation

Feasibility of using the kernel density estimation method to estimate the p.d.f. of experiment
results was demonstrated in a thin plate structure via finite-element (FE) simulation. Eight
PZT wafers were surface installed at an aluminium plate. The aluminium plate was 600mm
× 600mm × 1.5mm in size, supported with all its four edges. The elastic modulus, poission’s
ration, and density of the aluminium are 71e9GPa, 0.35, and 2711Kg/m3, respectively.
The thin plate was three dimensionally modeled using eight-node brick solid elements. To
ensure simulation precision, the largest dimension of FE elements was less than 1mm and
the plate was divided into multilayer in thickness, guaranteeing that at least ten elements
were allocated per wavelength of the incident diagnostic wave, which has been demonstrated
sufficiently to portray the characteristics of elastic waves in the thin plate [19]. A through-
thickness hole of 16mm in diameter was assumed in the plate, 200mm and 200mm away
from the left and low edges of the plate, respectively (Figure 4). The S0 mode of Lamb waves
was used to detect damage. Five-cycle Hanning window-modulated sinusoid tone bursts at a
central frequency of 300 kHzwere activated as the incident diagnostic wave signal. The speed
of S0 mode is 5159.5m/s in this simulation.

Gaussian noise is statistical noise that has its probability density function equal to that
of the normal distribution, which is also known as the Gaussian distribution. A special case is
white Gaussian noise, in which the values at any pairs of times are statistically independent
(and uncorrelated). It is well known that noise comes frommany natural sources is Gaussian
noise. Therefore, in order to simulate the environment noise, three signal-to-noise ration
(SNR) levels (20 dB, 30 dB, and 40dB) of white Gaussian noise were intentionally added into
the numerical simulated Lamb waves signals.

In numerical model, four sensor pairs are used to locate the damage. The sensor pairs
are s2-6 formed by sensor 2 and sensor 6; s4-8 by sensor 4 and 8; s3-7 by sensor 3 and 7; s3-
5 by sensor 3 and 5. The process of adding three levels white Gaussian noise in the signals
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captured by the four sensor pairs repeated 30 times. That is, there are 30 ToF results for each
sensor pair under each level of noise.

5. Results and Discussion

5.1. The Characteristics of Noise-Induced Error in ToF

It can be expected in theory that the nonparametric estimation methods should have a better
performance than parametric estimation method when deal with the distribution without
a priori knowledge about its type. The advantage of kernel density estimation method will
be demonstrated in this paper by estimating fTm(t) of s4-8. In statistic, the performance of
density estimationmethods is usually verified through comparing the estimation results with
the bona fide p.d.f of some well-known datasets. That is, in order to show the accuracy of
estimation results, one needs to know the real p.d.f. of the distribution to be estimated. It is
difficult to give the analytical expression of fTm(t) about ToF measured by threshold method.
However, partial understanding about the characteristics of noise-induced error in ToF still
can be obtained by analyzing the process of threshold method. That will be helpful to prove
the advantage of nonparametric estimation methods in ToF method.

ToF is given by comparing the arriving time of incident waves and damage-scattered
waves. Since the incident waves is strong, the errors in arriving time of incident waves can be
neglected. Without loss of generality, the errors in ToF was considered to be caused entirely
by the errors in the arriving time of damage-scattered waves.

As mentioned in Section 2.1, the existence of wave packet is determined by whether
the amplitude of signal is bigger than the threshold value. Once a wave packet is detected,
the arriving time of entire wave packet is given by the time of recorded peaks. The process of
threshold method suggests there are two kinds of noise-induced errors in ToF:

Tm = T + ε1 + ε2, (5.1)

where ε1 denotes the variance in the arriving time of single peak, ε2 denotes the error caused
by misidentification of peaks. While ε1 is easy to understand, ε2 is relatively complex. The
signal received by s4-8 which shown in Figure 5 is taken as example to explain the existence
of ε2. Noise not only can change the time of peaks, but also can change the relative magnitude
relationship of peaks. That means the sequence of peaks on its magnitude may be changed by
noise. If there were no noise and the arriving time was measured by recording the strongest
peak, then the second peak of the damage-scattered waves shown in Figure 5 should be
recorded. However, the strongest peak may change to other peaks, such as the third or
the fourth peak, in noise-contaminated signals. The same problem exists in the method of
recording several peaks. For example, if there is no noise and the arriving time is measured
as the average of four peaks. Then, the first four peaks (the second, the third, the fourth,
and the fifth in this case) should be recorded. However, the first peak in noise-contaminated
signals is likely to become stronger than the fifth peak. That leads to the error ε2 in ToF.

It is obvious that ε2 is larger than ε1, but it appears only in strong noise environment.
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Figure 5: The signals of Lamb waves received by sensor 8.

5.2. Density Estimation Results

Parametric estimation method, the kernel density estimation based on the Gaussian
approximation, and the adaptive kernel density estimation via diffusion were used to
estimate fTm(t). The sample data is ToF measured by s4-8 with three levels noise.

The estimation results for the signal with 40 dB SNR noise was shown in Figure 6.
The symbol “+” in Figure 6 and the following Figures 7, 8, and 9 were used to give an
intuitive understanding about the distribution of samples. Each “+” represented a sample.
It could be seen that samples were distributed around the two values. Most of the samples
(26 samples of total 30 samples)were distributed in the range from 1.1e−5 second to 1.15e−5
second. 4 samples were distributed in the range from 0.82e−5 second to 0.87e−5 second. The
p.d.f. given by the kernel density estimation based on the Gaussian approximation and the
adaptive kernel density estimation via diffusion was the functions with two peaks. The p.d.f.
given by parametric estimation method was undeniably a normal density function. Based on
the conclusion drawn in the above section about the characteristics of noise-induced errors
in ToF, the distribution of samples could be easily understood. Because the noise was weak
in this case, most of the samples, which were only affected by ε1, were distributed around
the analytic value of ToF (1.117e − 5 second). The other 4 samples which were relatively far
from the analytic value were affected by both ε1 and ε2. Therefore, it could be learnt that two
kinds of kernel density estimation make correct estimating about the p.d.f. of Tm. Because
the assumption about the type of distribution to be estimated was incorrect, parametric
estimation method was very misleading in this case.

The fact that only 4 samples were affected by both ε1 and ε2 in this case could be
utilized to learn the characteristic of ε1. Since these samples could be easily distinguished
from the samples which were only affected by ε1, these samples could be excluded from the
data set. Then, the density function was estimated with the refined dataset. The results were
shown in Figure 7. It could be seen that the results of two kinds kernel density estimation
methods were similar to normal distribution.

Lilliefors test was adopted to check whether the refined samples came from a normal
distribution. In statistics, the Lilliefors test, named after Hubert Lilliefors, was an adaptation
of the Kolmogorov-Smirnov test [38]. It was used to test the null hypothesis that data
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Figure 6: p.d.f. estimated results for samples from s4-8 with 40 dB noise.
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Figure 7: p.d.f. estimated results for refined samples from s4-8 with 40 dB noise.

came from a normally distributed population, when the null hypothesis did not specify
which normal distribution; that is, it did not specify the expected value and variance of the
distribution.

The calculated value from the Lilliefors test was 0.1373, which was less than the critical
value 0.1699 corresponding to 5% significance level. The null hypothesis that the refined data
came from a normally distributed population was accepted. It explained why the empirical
formula given in the previous work was a normal distribution type and why the damage
detection results based on the empirical formula was satisfied. Since the noise in previous
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Figure 8: p.d.f. estimated results for samples from s4-8 with 30 dB noise.
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Figure 9: p.d.f. estimated results for samples from s4-8 with 20 dB noise.

work [12] was weak and the Tm data was only affected by ε1, its distribution was actually
normal distribution.

The estimation results for the signals with 30 dB SNR noise were shown in Figure 8. It
could be seen that as in the case of 20 dB SNR noise, parametric estimation method failed to
give correct estimation.

The estimation results for the signals with 20 dB SNR noise were shown in Figure 9.
It could be seen that, with the increase of noise level, the kernel density estimation based on
the Gaussian approximation, which was traditional kernel density estimation, failed to give
correct estimation. Only the novel and completely data-driven method, the kernel density
estimation via diffusion-, could give correct estimation.
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Figure 10: Damage localization result based on parametric estimate method (partial view).

5.3. Damage Detection Results

The damage localization under 20 dB noise environment was selected as the example to show
that an accurate estimation was important for the localization result. The p.d.f. estimation
results given by three kinds of density estimation methods introduced in Section 2 were used
to calculate the location of damage. The results were shown in Figures 10, 11, and 12. It could
be seen that the locating process which employed the kernel density estimation via diffusion
has the most accurate localization result. This indicated that the an accurate estimation could
ensure an better localization result.

6. Conclusion

The characteristics of noise-induced error in ToF data measured by using threshold method
were analyzed.

The empirical formula method and the parametric estimation method presented
in existing work had the same assumption that the experimental data came from a
normal distribution. This assumption had been verified by real experiments and numerical
simulation. The results in this paper revealed that the type of distribution of ToF data was
related to the noise level. The empirical formula method and the parametric estimation
method were developed in laboratory environment where the noise was weak. It had also
been proved in this paper that the ToF data measured from high SNR signal (SNR > 40 dB)
were distributed normally. Therefore, the density estimation method with the normality
assumption presented in existing work can work well in laboratory environment.

However, the signals of field experiment usually contained much more strong noise.
The results in this paper showed that even for the signal with 40 dB SNR, the distribution
of measured ToF data were not normal distribution. In this case, nonparametric estimation
method must be emplyed to estimate the p.d.f. correctly. Further, investigating about the
signals with 30 dB and 20dB noise showed that, with the increasing noise, only the kernel
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Figure 11: Damage localization result based on kernel density estimation with Gaussian approximation
(partial view).
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Figure 12: Damage localization result based on kernel density estimation via diffusion (partial view).

density estimation via diffusion, which is purely data driven, can give a satisfied estimating
result.

The damage localization under 20 dB noise environment had been carried out.
Parametric estimation method with the normality assumption, the kernel density estimation
based on the Gaussian approximation and the kernel density estimation via diffusion were
adopted to estimate the p.d.f. of measured data. Three different p.d.f. were obtained by
employing the above-motioned three kinds of density estimation methods. By using each
p.d.f, a damage location result can be calculated. Through comparing the three results of
damage location, it can be seen that an accurate estimation of p.d.f. has a direct effect on
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the accuracy of the results. Applying kernel density estimation in Lamb wave-based damage
detection was necessary.

The noise studied in this paper was the white Gaussian noise. The noise in the real field
experiment wasmuchmore complex. Further studywas needed to reveal the characteristic of
errors in ToF data caused by noise in field experiment. However, the complex nature of noise
in field experiment could not be a trouble for the application of kernel density estimation
method, instead, it could be a reason to apply this method. It had been proved that when deal
with simple noise, the kernel density estimation method introduced in this paper performed
better, in comparisonwith empirical methods. Since the kernel density estimationmethod did
not rely on any assumption about the distribution to be estimated, it could be expected that
the kernel density estimation method could demonstrate a greater advantage in a complex
noise environment.
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