
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 409872, 17 pages
doi:10.1155/2012/409872

Research Article
New Meir-Keeler Type Tripled Fixed-Point
Theorems on Ordered Partial Metric Spaces

Hassen Aydi1 and Erdal Karapınar2

1 Institut Supérieur d’Informatique et des Technologies de Communication de Hammam Sousse,
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In this paper, we prove some new Meir-Keeler type tripled fixed-point theorems on a partially
ordered complete partial metric space. Also, as application, some results of integral type are given.

1. Introduction and Preliminaries

In the last century, the theory of fixed points has appeared as a crucial technique in the study
of nonlinear phenomena. Particularly, the tools in fixed-point theory have an application
in such diverse fields as biology, chemistry, physics, economics, computer sciences, and
engineering.

Recently, fixed-point theorems are considered on partial metric spaces on which self-
distance of some points may not be zero. This phenomenon was discovered by Matthews [1]
when he considered the tools of metric spaces in the field of semantics and domain theory
in computer science (see, e.g., [2, 3]). After the initial results of Mathews, other papers have
been released on partial metric spaces (see e.g., [4–20]).

Another important development is reported in fixed-point theory via ordered metric
spaces. Fixed-point theorems in ordered sets were discussed by Ran and Reurings [21].
Subsequently, many results in this direction were given (see, e.g., [22–31]).

In this paper, we combine two recent trends, partial metric spaces and ordered sets,
and discuss the existence and uniqueness of some new Meir-Keeler type tripled fixed-point
theorems in the context of partially ordered partial metric spaces.

Let X be a nonempty set. A partial metric is a function p : X × X → [0,∞) satisfying
the following conditions:
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(P1) if p(x, x) = p(x, y) = p(y, y), then x = y,

(P2) p(x, y) = p(y, x),

(P3) p(x, x) ≤ p(x, y),
(P4) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z),

for all x, y, z ∈ X. Then, (X, p) is called a partial metric space.
If p is a partial metric p on X, then the function dp : X ×X → [0,∞) given by

dp
(
x, y

)
= 2p

(
x, y

) − p(x, x) − p(y, y) (1.1)

is a metric onX. Each partial metric p onX generates a T0 topology τp onX with a base of the
family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x)+ ε}
for all x ∈ X and ε > 0. Similarly, closed p-ball is defined as Bp[x, ε] = {y ∈ X : p(x, y) ≤
p(x, x) + ε}. For more details, see [1, 5].

Definition 1.1 (see, e.g., [1, 5, 15]). Let (X, p) be a partial metric space.

(i) A sequence {xn} in X converges to x ∈ X whenever limn→∞p(x, xn) = p(x, x).

(ii) A sequence {xn} in X is called Cauchy whenever limn,m→∞p(xn, xm) exists (and
finite).

(iii) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with
respect to τp, to a point x ∈ X, that is, limn,m→∞p(xn, xm) = p(x, x).

Lemma 1.2 (see, e.g., [1, 5, 15]). Let (X, p) be a partial metric space.

(a) A sequence {xn} is Cauchy if and only if {xn} is a Cauchy sequence in the metric space
(X, dp).

(b) (X, p) is complete if and only if the metric space (X, dp) is complete. Moreover,

lim
n→∞

dp(x, xn) = 0 ⇐⇒ lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm) = p(x, x). (1.2)

Lemma 1.3 (see, e.g., [4, 15, 16]). Let (X, p) be a partial metric space. Then,

(A) if p(x, y) = 0, then x = y,

(B) if x /=y, then p(x, y) > 0.

Remark 1.4. If x = y, p(x, y)may not be 0.

Lemma 1.5 (see, e.g., [4, 15, 16]). Let xn → z as n → ∞ in a partial metric space (X, p) where
p(z, z) = 0. Then, limn→∞p(xn, y) = p(z, y) for every y ∈ X.

(X, p,≤) is called a partially ordered partial metric space if (X,≤) is a partially ordered
set and (X, p) is a partial metric space. Further, if (X, p) is a complete partial metric space, then
(X, p,≤) is called a partially ordered complete partial metric space. Hereafter, we assume that
X /= ∅ and we use the notation

Xk = X ×X × · · · ×X︸ ︷︷ ︸
k-many

. (1.3)
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Also, take the mapping P : X3 ×X3 → [0,+∞) such that

P(x,y) := max
{
p
(
x1, y1

)
, p
(
x2, y2

)
, p
(
x3, y3

)}
, (1.4)

where x = (x1, x2, x3) and y = (y1, y2, y3) ∈ X3.
Let (X,≤) be a partially ordered set. We consider the following partial order (also

denoted by ≤) on the product space X3:

(u, v,w) ≤ (
x, y, z

)
iff x ≥ u, y ≤ v, z ≥ w, (1.5)

where (u, v,w), (x, y, z) ∈ X3. Moreover, we say that (x, y, z) is equal to (u, v, r) if and only if
x = u,= v, and z = r. In the sequel, we need the following definitions.

Definition 1.6 (see [32]). Let (X,≤) be a partially ordered set and F : X3 → X a given
mapping. We say that F has the mixed monotone property if F(x, y, z) is monotone
nondecreasing in x and z, and it is monotone nonincreasing in y, that is, for any x, y, z ∈ X,

x1, x2 ∈ X, x1 ≤ x2 =⇒ F
(
x1, y, z

) ≤ F(x2, y, z
)
,

y1, y2 ∈ X, y1 ≤ y2 =⇒ F
(
x, y1, z

) ≥ F(x, y2, z
)
,

z1, z2 ∈ X, z1 ≤ z2 =⇒ F
(
x, y, z1

) ≤ F(x, y, z2
)
.

(1.6)

Definition 1.7 (see [32]). An element (x, y, z) ∈ X3 is called a tripled fixed point of F : X3 → X
if

F
(
x, y, z

)
= x, F

(
y, x, y

)
= y, F

(
z, y, x

)
= z. (1.7)

Berinde and Borcut [32] proved the following theorem.

Theorem 1.8. Let (X,≤) be a partially ordered set and (X, d) a complete metric space. Let F : X3 →
X be a mapping having the mixed monotone property onX. Assume that there exist constants a, b, c ∈
[0, 1) such that a + b + c < 1 for which

d
(
F
(
x, y, z

)
, F(u, v,w)

) ≤ ad(x, u) + bd(y, v) + cd(z,w) (1.8)

for all x ≥ u,y ≤ v and z ≥ w. Assume that X has the following properties:

(i) if a nondecreasing sequence xn → x, then xn ≤ x for all n,

(ii) if a nonincreasing sequence yn → y, then yn ≥ y for all n.

If there exist x0, y0, z0 ∈ X such that

x0 ≤ F
(
x0, y0, z0

)
, y0 ≥ F

(
y0, x0, y0

)
, z0 ≤ F

(
z0, y0, x0

)
, (1.9)

then there exist x, y, z ∈ X such that

F
(
x, y, z

)
= x, F

(
y, x, y

)
= y, F

(
z, y, x

)
= z. (1.10)
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Recently, Theorem 1.8 is extended to cone metric spaces by Rao and Kishore [33]. On
the other hand, very recently, Aydi et al. [34] introduced the following concepts.

Definition 1.9 (see [34]). Let (X,≤) be a partially ordered set and F : X3 → X. We say that F
has the mixed strict monotone property if, for any x, y, z ∈ X,

x1, x2 ∈ X, x1 < x2 =⇒ F
(
x1, y, z

)
< F

(
x2, y, z

)
,

y1, y2 ∈ X, y1 < y2 =⇒ F
(
x, y1, z

)
> F

(
x, y2, z

)
,

z1, z2 ∈ X, z1 < z2 =⇒ F
(
x, y, z1

)
< F

(
x, y, z2

)
.

(1.11)

Definition 1.10 (see [34]). Let (X, d,≤) be a partially ordered metric space. A mapping F :
X3 → X is said to be a generalized Meir-Keeler type contraction if, for any ε > 0, there exists
a δ(ε) > 0 such that

ε ≤ max
{
d(x, u), d

(
y, v

)
, d(z, r)

}
< ε + δ(ε) =⇒ d

(
F
(
x, y, z

)
, F(u, v, r)

)
< ε, (1.12)

for all x, y, z, u, v, r ∈ X with x ≤ u, y ≥ v and z ≤ r.

In the following, we consider the partial case of Definition 1.10 and we introduce the
following.

Definition 1.11. Let (X, p,≤) be a partially ordered partial metric space. A mapping F : X3 →
X is said to be a generalized p-Meir-Keeler type contraction if, for any ε > 0, there exists a
δ(ε) > 0 such that

ε ≤ max
{
p(x, u), p

(
y, v

)
, p(z, r)

}
< ε + δ(ε) =⇒ p

(
F
(
x, y, z

)
, F(u, v, r)

)
< ε, (1.13)

for all x, y, z, u, v, r ∈ X with x ≤ u, y ≥ v and z ≤ r.

Remark 1.12. It is immediate to show that if F : X3 → X is a generalized p-Meir-Keeler type
contraction, then

p
(
F
(
x, y, z

)
, F(u, v, r)

)
< max

{
p(x, u), p

(
y, v

)
, p(z, r)

}
(1.14)

for all x, u, y, v, z, r,∈ X with x < u, y ≥ v, z < r or x ≤ u, y > v, z ≤ r.

Proposition 1.13. Let (X, p,≤) be a partially ordered partial metric space and F : X3 → X a given
mapping. If (1.8) is satisfied, then F is a generalized p-Meir-Keeler type function.

Proof. Assume that (1.8) is satisfied. For all ε > 0, one can check that (1.13) is satisfied with
δ(ε) = (1/(a + b + c) − 1)ε.

In the sequel, we use the following notations given in [34]. Let F̃ : X3 → X3 be such
that, for a, b, c ∈ X,

F̃(a, b, c) = (F(a, b, c), F(b, a, b), F(c, b, a)). (1.15)
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Let x0, y0, z0 ∈ X be such that

x0 < F
(
x0, y0, z0

)
, y0 ≥ F

(
y0, x0, y0

)
, z0 < F

(
z0, y0, x0

)
. (1.16)

We consider sequences {xn}, {yn}, and {zn} such that

⎡

⎣
xn
yn
zn

⎤

⎦

︸︷︷︸
An

=

⎡

⎣
F
(
xn−1, yn−1, zn−1

)

F
(
yn−1, xn−1, yn−1

)

F
(
zn−1, yn−1, xn−1

)

⎤

⎦

︸ ︷︷ ︸
F̃(An−1)

=

⎡

⎣
Fn(x0, y0, z0)
Fn(y0, x0, y0)
Fn(z0, y0, x0)

⎤

⎦

︸ ︷︷ ︸
F̃n(A0)

, (1.17)

for n = 1, 2, 3, . . ..
Our first auxiliary result is as follows.

Proposition 1.14. Let (X, p,≤)be a partially ordered partial metric space, and letF : X3 → Xbe a
given mapping such that the following hypotheses hold:

(i) F has the mixed strict monotone property,

(ii) F is a generalized p-Meir-Keeler type function,

(iii) ∃(x, y, z), (u, v, r) ∈ X3 such that x < u, y ≥ v and z < r.

Then,

P
(
F̃n

(
x, y, z

)
, F̃n(u, v, r)

)
−→ 0, as n −→ +∞. (1.18)

Proof. Let (x, y, z) = (x0, y0, z0) and (u, v, r) = (u0, v0, r0). We show that

xn = Fn
(
x0, y0, z0,

)
< Fn(u0, v0, r0) = un,

yn = Fn
(
y0, x0, y0

)
> Fn(v0, u0, v0) = vn,

zn = Fn
(
z0, y0, x0

)
< Fn(r0, v0, u0) = rn,

∀n = 1, 2, . . . , (1.19)

with F = F1.
Due to the fact that F has the mixed strict monotone property, together with the

assumption that x < u, y ≥ v and z < r, we obtain

x1 = F
(
x, y, z

)
= F

(
x0, y0, z0

)
< F

(
u0, y0, z0

)

=⇒ F
(
x0, y0, z0

)
< F(u0, v0, z0)

=⇒ F
(
x0, y0, z0

)
< F(u0, v0, r0) = u1.

(1.20)

Analogously, we have

y1 = F
(
y0, x0, y0

)
> F(v0, u0, v0) = v1, z1 = F

(
z0, y0, x0

)
< F(r0, v0, u0) = r1. (1.21)
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Thus, (1.19) holds for n = 1. By using the same arguments, we show that (1.19) holds also for
n = 2. In fact,

x2 = F2(x0, y0, z0
)
= F

(
x1, y1, z1

)

= F
(
F
(
x0, y0, z0

)
, F

(
y0, x0, y0

)
, F

(
z0, y0, x0

))

< F
(
F(u0, v0, r0), F

(
y0, x0, y0

)
, F

(
z0, y0, x0

))

< F
(
F(u0, v0, r0), F(v0, u0, v0), F

(
z0, y0, x0

))

< F(F(u0, v0, r0), F(v0, u0, v0), F(r0, v0, u0))

= F2(u0, v0, r0) = F(u1, v1, r1) = u2.

(1.22)

Similarly, we find

y2 = F2(y0, x0, y0
) ≥ F2(v0, u0, v0) = v2, z2 = F2(z0, y0, x0

)
< F2(r0, v0, u0) = r2.

(1.23)

Inductively, we get that (1.19) holds.
By Remark 1.12, together with (1.19), we have

p(xn+2, un+2) = p
(
Fn+2

(
x0, y0, z0

)
, Fn+2(u0, v0, r0)

)

= p
(
F
(
xn+1, yn+1, zn+1

)
, F(un+1, vn+1, rn+1)

)

< max
{
p(xn+1, un+1), p

(
yn+1, vn+1

)
, p(zn+1, rn+1)

}
,

(1.24)

p(zn+2, rn+2) = p
(
Fn+2

(
z0, y0, x0

)
, Fn+2(r0, v0, u0)

)

= p
(
F
(
zn+1, yn+1, xn+1

)
, F(rn+1, vn+1, un+1)

)

< max
{
p(zn+1, rn+1), p

(
yn+1, vn+1

)
, p(xn+1, un+1)

}
,

(1.25)

p
(
yn+2, vn+2

)
= p

(
Fn+2

(
y0, x0, y0

)
, Fn+2(v0, u0, v0)

)

= p
(
F
(
yn+1, xn+1, yn+1

)
, F(vn+1, un+1, vn+1)

)

< max
{
p
(
yn+1, vn+1

)
, p(xn+1, un+1), p

(
yn+1, vn+1

)}

≤ max
{
p(zn+1, rn+1), p

(
yn+1, vn+1

)
, p(xn+1, un+1)

}
.

(1.26)

Let Δn+1 := max{p(xn+1, un+1), p(yn+1, vn+1), p(zn+1, rn+1)}. Combining (1.24)–(1.26), we get

Δn+2 < Δn+1, ∀n = 1, 2 . . . . (1.27)

If we denote Bn = (un, vn, rn), then, by definition of the partial metric P and (1.27), we have

P(An+2, Bn+2) < P(An+1, Bn+1). (1.28)
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Consequently, the sequence {tn} = {P(An, Bn)} is decreasing. Hence, {tn} converges, say to
ε ≥ 0. Clearly, if ε = 0, we have finished. Suppose, on the contrary, ε > 0. Thus, there exists
k ∈ {1, 2, . . .} such that

ε ≤ tn = P(An, Bn) < ε + δ(ε) for any n ≥ k. (1.29)

In particular, for n = k, we have

ε ≤ tk = P(Ak, Bk) < ε + δ(ε), (1.30)

that is equal to

ε ≤ Δk < ε + δ(ε). (1.31)

It follows from (1.19) and the hypothesis (ii) that

p
(
F
(
xk, yk, zk

)
, F(uk, vk, rk)

)
< ε (1.32)

which is equivalent to

p(xk+1, uk+1) < ε. (1.33)

Moreover, we have

p
(
yk+1, vk+1

)
< ε, p(zk+1, rk+1) < ε. (1.34)

Combining (1.33) and (1.34), we have

Δk+1 < ε. (1.35)

Thus, tk+1 = P(Ak+1, Bk+1) < ε which is a contradiction with respect to (1.29), and so ε = 0.
We conclude that

P(An, Bn) = P
(
F̃n

(
x, y, z

)
, F̃n(u, v, r)

)
−→ 0, as n −→ +∞. (1.36)

Remark 1.15. The previous proposition remains true if, in (iii), we change the assumption

∃(x, y, z), (u, v, r) ∈ X3 such that x < u, y ≥ v, z < r (1.37)

with the following

∃(x, y, z), (u, v, r) ∈ X3 such that x ≤ u, y > v, z ≤ r. (1.38)
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2. Existence of Tripled Fixed Point

The following theorem is our first main result.

Theorem 2.1. Let (X, p,≤) be a partially ordered complete partial metric space. Suppose that X has
the following properties:

(a) if {xn} is a sequence such that xn+1 > xn for each n = 1, 2, . . . and xn → x, then xn < x
for each n = 1, 2, . . .,

(b) if {yn} is a sequence such that yn+1 < yn for each n = 1, 2, . . . and yn → y, then yn > y
for each n = 1, 2, . . ..

Assume that F : X3 → X satisfies the following hypotheses:

(i) F has the mixed strict monotone property,

(ii) F is a generalized p-Meir-Keeler type function,

(iii) there exist x0, y0, z0 ∈ X such that

x0 < F
(
x0, y0, z0

)
, y0 ≥ F

(
y0, x0, y0

)
, z0 < F

(
z0, y0, x0,

)
. (2.1)

Then, F has a tripled fixed point, that is, there exist x, y, z ∈ X such that

F
(
x, y, z

)
= x, F

(
y, x, y

)
= y, F

(
z, y, x

)
= z. (2.2)

Also, p(x, x) = p(y, y) = p(z, z) = 0.

Proof. Let x0, y0, z0 ∈ X be as in (iii). We construct sequences {xn}, {yn}, and {zn} according
to (1.17).

We claim that, for all n ≥ 2, we have

· · · > xn > xn−1 > · · · > x1 > x0,
· · · < yn < yn−1 < · · · < y1 ≤ y0,
· · · > zn > zn−1 > · · · > z1 > z0.

(2.3)

Indeed, we will use a mathematical induction to prove (2.3). Clearly, we have

x0 < F
(
x0, y0, z0

)
= x1, y0 ≥ F

(
y0, x0, y0

)
= y1, z0 < F

(
z0, y0, x0

)
= z1. (2.4)

Suppose now that the inequalities in (2.3) hold for some n ≥ 2. By the mixed strict monotone
property of F, together with (1.17), we have

xn = F
(
xn−1, yn−1, zn−1

)
< F

(
xn, yn, zn

)
= xn+1,

yn = F
(
yn−1, xn−1, yn−1

)
> F

(
yn, xn, yn

)
= yn+1,

zn = F
(
zn−1, yn−1, xn−1

)
< F

(
zn, yn, xn

)
= zn+1.

(2.5)

Thus, (2.3) holds for all n ≥ 2.
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Putting (x, y, z) = A0 and (u, v, r) = A1 and by Proposition 1.14, we get

P
(
F̃n(A0), F̃n(A1)

)
−→ 0, as n −→ +∞, (2.6)

which is equivalent to

P(An,An+1) −→ 0, as n −→ +∞. (2.7)

Take an arbitrary ε > 0. It follows from (2.7) that there exists k ∈ N such that

P(Ak,Ak+1) < δ(ε). (2.8)

Without loss of the generality, assume that δ(ε) ≤ ε and define the following set:

Π :=
{
A =

(
x, y, z

) ∈ X3 : P
(
F̃(Ak), F̃(A)

)
< ε + δ(ε), x > xk, y ≤ yk, z > zk

}
. (2.9)

We claim that

F̃(A) ∈ Π ∀A ∈ Π. (2.10)

Take A ∈ Π. Then, by (2.8) and the triangle inequality (which still holds for partial metrics),
we have

P
(
Ak, F̃(A)

)
= max

{
p
(
xk, F

(
x, y, z

))
, p
(
yk, F

(
y, x, y

))
, p
(
zk, F

(
z, y, x

))}

≤ max
{
p(xk, xk+1) + p

(
xk+1, F

(
x, y, z

))
, p
(
yk, yk+1

)

+ p
(
yk+1, F

(
y, x, y

))
, p(zk, zk+1) + p

(
zk+1, F

(
z, y, x

))}

= max
{
p(xk, xk+1) + p

(
F
(
xk, yk, zk

)
, F

(
x, y, z

))
, p
(
yk, yk+1

)

+p
(
F
(
yk, xk, yk

)
, F

(
y, x, y

))
, p(zk, zk+1) + p

(
F
(
zk, yk, xk

)
, F

(
z, y, x

))}

≤ P(Ak,Ak+1) + P
(
F̃(Ak), F̃(A)

)

< δ(ε) + P
(
F̃(Ak), F̃(A)

)
.

(2.11)

We consider the following two cases.

Case 1 (P(Ak,A) ≤ ε). By Remark 1.12 and the definition ofΠ, the inequality (2.11) turns into

P
(
Ak, F̃(A)

)
< δ(ε) + P

(
F̃(Ak), F̃(A)

)

< δ(ε) + P(Ak,A)

< δ(ε) + ε.

(2.12)



10 Mathematical Problems in Engineering

Case 2 (ε < P(Ak,A) < δ(ε) + ε). That is,

ε < max
{
p(x, xk), p

(
y, yk

)
, p(z, zk)

}
< δ(ε) + ε. (2.13)

Since x > xk, z > zk, y ≤ yk, then, by (ii), we have

p
(
F
(
x, y, z

)
, F

(
xk, yk, zk

))
< ε,

p
(
F
(
y, x, y

)
, F

(
yk, xk, yk

))
< ε,

p
(
F
(
z, y, x

)
, F

(
zk, yk, xk

))
< ε.

(2.14)

Hence, combining (2.14) and (2.11), we get

P
(
Ak, F̃(A)

)
< δ(ε) + ε. (2.15)

On the other hand, using (i), one can easily check that

F
(
x, y, z

)
> xk, F

(
y, x, y

) ≤ yk, F
(
z, y, x

)
> zk. (2.16)

Hence, we conclude that (2.10) holds. By (2.8), we have that Ak+1 ∈ Π, and so, by (2.10) we
get

Ak+1 ∈ Π =⇒ F̃(Ak+1) = Ak+2 ∈ Π

=⇒ F̃(Ak+2) = Ak+3 ∈ Π

· · ·
=⇒ An ∈ Π ∀n > k.

(2.17)

Then, for all n,m > k, we have

P(An,Am) ≤ P(An,Ak) + P(Ak,Am) < 2(ε + δ(ε)) ≤ 4ε. (2.18)

By definition of P , we have

lim
n,m→∞

p(xn, xm) = lim
n,m→∞

p
(
yn, ym

)
= lim

n,m→∞
p(zn, zm) = 0. (2.19)

Consequently, by definition of the metric dp, dp(x, y) ≤ 2p(x, y), so we get

lim
n,m→∞

dp(xn, xm) = lim
n,m→∞

dp
(
yn, ym

)
= lim

n,m→∞
dp(zn, zm) = 0. (2.20)
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Therefore, {xn}, {yn}, and {zn} are Cauchy sequences in the metric space (X, dp). Since (X, p)
is a complete partial metric space, then, by Lemma 1.2, (X, dp) is also a complete metric space.
Hence, there exists a point (x, y, z) ∈ X3 such that

dp(xn, x), dp
(
yn, y

)
, dp(zn, z) −→ 0 as n −→ +∞. (2.21)

Again, by Lemma 1.2 and (2.19), we obtain

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm) = 0,

p
(
y, y

)
= lim

n→∞
p
(
yn, y

)
= lim

n,m→∞
p
(
yn, ym

)
= 0,

p(z, z) = lim
n→∞

p(zn, z) = lim
n,m→∞

p(zn, zm) = 0.

(2.22)

We will prove that

F
(
x, y, z

)
= x, F

(
y, x, y

)
= y, F

(
z, y, x

)
= z. (2.23)

To this aim, take an arbitrary ε > 0. Since

xn = Fn
(
x0, y0, z0

) −→ x, yn = Fn
(
y0, x0, y0

) −→ y, zn = Fn
(
z0, y0, x0

) −→ z,
(2.24)

then there exist n1, n2, n3 ∈ N such that by (2.22)

p(xl, x) = p
(
Fl
(
x0, y0, z0

)
, x

)
< p(x, x) + ε = ε,

p
(
yq, y

)
= p

(
Fq

(
y0, x0, y0

)
, y

)
< p

(
y, y

)
+ ε = ε,

p(zr, z) = p
(
Fr

(
z0, y0, x0

)
, z
)
< p(z, z) + ε = ε,

(2.25)

for all l ≥ n1, q ≥ n2, r ≥ n3. Now, taking n = max{n1, n2, n3} and using Remark 1.12 with the
assumption

xn = Fn
(
x0, y0, z0

)
< x, yn = Fn

(
y0, x0, y0

)
> y, zn = Fn

(
z0, y0, x0

)
< z, (2.26)

by (2.25), we get

p
(
x, F

(
x, y, z

)) ≤ p(x, xn+1) + p
(
xn+1, F

(
x, y, z

))

= p(x, xn+1) + p
(
Fn+1

(
x0, y0, z0

)
, F

(
x, y, z

))

= p(x, xn+1) + p
(
F
(
xn, yn, zn

)
, F

(
x, y, z

))

< p(x, xn+1) +max
{
p(xn, x), p

(
yn, y

)
, p(zn, z)

}

< 2ε.

(2.27)
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Analogously, we get that

p
(
y, F

(
y, x, y

))
< 2ε, p

(
z, F

(
z, y, x

))
< 2ε, (2.28)

which yield that

F
(
x, y, z

)
= x, F

(
y, x, y

)
= y, F

(
z, y, x

)
= z. (2.29)

Remark 2.2. Theorem 2.1 remains true if we replace (iv)with one of the following statements.
There exist x0, y0, z0 ∈ X such that

(1)

⎧
⎪⎪⎨

⎪⎪⎩

x0 ≤ F
(
x0, y0, z0

)
,

y0 > F
(
y0, x0, y0

)
,

z0 < F
(
z0, y0, x0

)
,

(2)

⎧
⎪⎪⎨

⎪⎪⎩

x0 ≤ F
(
x0, y0, z0

)
,

y0 > F
(
y0, x0, y0

)
,

z0 ≤ F
(
z0, y0, x0

)
,

(3)

⎧
⎪⎪⎨

⎪⎪⎩

x0 ≤ F
(
x0, y0, z0

)
,

y0 ≥ F
(
y0, x0, y0

)
,

z0 < F
(
z0, y0, x0

)
,

(4)

⎧
⎪⎪⎨

⎪⎪⎩

x0 < F
(
x0, y0, z0

)
,

y0 ≥ F
(
y0, x0, y0

)
,

z0 ≤ F
(
z0, y0, x0

)
,

(5)

⎧
⎪⎪⎨

⎪⎪⎩

x0 < F
(
x0, y0, z0

)
,

y0 > F
(
y0, x0, y0

)
,

z0 ≤ F
(
z0, y0, x0

)
.

(2.30)

3. Uniqueness of Tripled Fixed Point

In this section, we will prove the uniqueness of the tripled fixed point.

Theorem 3.1. In addition to hypotheses of Theorem 2.1, assume that, for all (x, y, z), (u, v, r) ∈ X3,
there exists (a, b, c) ∈ X3 that is comparable to (x, y, z) and (u, v, r). Then, F has a unique tripled
fixed point.

Proof. The set of tripled fixed points of F is not empty due to Theorem 2.1. We suppose that
A = (x, y, z), A∗ = (x∗, y∗, z∗) ∈ X3 are two tripled fixed points of F. We distinguish the
following two cases.
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Case 1. (x, y, z) is comparable to (x∗, y∗, z∗)with respect to the ordering in X3, where

lim
n→+∞

p
(
Fn

(
x0, y0, z0

)
, x

)
= p(x, x) = 0,

lim
n→+∞

P
(
Fn

(
y0, x0, y0

)
, y

)
= p

(
y, y

)
= 0,

lim
n→+∞

p
(
Fn

(
z0, y0, x0

)
, z
)
= p(z, z) = 0.

(3.1)

Without loss of the generality, we may assume that

x = F
(
x, y, z

)
< F

(
x∗, y∗, z∗

)
= x∗,

y = F
(
y, x, y

) ≥ F(y∗, x∗, y∗) = y∗,

z = F
(
z, y, x

)
< F

(
z∗, y∗, x∗) = z∗.

(3.2)

By this, definition of P , Lemma 1.3, and Remark 1.12, we have

0 < P(A,A∗) = P
((
x, y, z

)
,
(
x∗, y∗, z∗

))

= max
{
p(x, x∗), p

(
y, y∗), p(z, z∗)

}

= max
{
p
(
F
(
x, y, z

)
, F

(
x∗, y∗, z∗

))
, p
(
F
(
y, x, y

)
, F

(
y∗, x∗, y∗)),

p
(
F
(
z, y, x

)
, F

(
z∗, y∗, x∗))}

< max
{
p(x, x∗), p

(
y, y∗), p(z, z∗)

}
= P(A,A∗),

(3.3)

which is a contradiction and therefore must be A = A∗.

Case 2. (x, y, z) is not comparable to (x∗, y∗, z∗). By assumption, there exists B = (a, b, c) ∈ X3

which is comparable to both A and A∗. Without loss of the generality, we may assume that

x = F
(
x, y, z

)
< a, F

(
x∗, y∗, z∗

)
= x∗ < a,

y = F
(
y, x, y

) ≥ b, F
(
y∗, x∗, y∗) = y∗ ≥ b,

z = F
(
z, y, x

)
< c, F

(
z∗, y∗, x∗) = z∗ < c.

(3.4)

From Proposition 1.14 and (3.4), we have

lim
n→+∞

P
(
F̃n(A), F̃n(B)

)
= 0,

lim
n→+∞

P
(
F̃n(A∗), F̃n(B)

)
= 0.

(3.5)
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By triangle inequality, we derive

P(A,A∗) = lim
n→+∞

P
(
F̃n(A), F̃n(A∗)

)

≤ lim
n→+∞

P
(
F̃n(A), F̃n(B)

)
+ lim
n→+∞

P
(
F̃n(B), F̃n(A∗)

)
= 0.

(3.6)

By Lemma 1.3, we get A = A∗.

4. Results of Integral Type

Motivated by Suzuki [35] and on the same lines of [31, Theorem 3.1], one can prove the
following result.

Theorem 4.1. Let (X, p,≤) be a partially ordered complete partial metric space, and let F : X3 → X
be a given mapping. Assume that there exists a function θ from [0,+∞) into itself satisfying the
following:

(I) θ(0) = 0 and θ(t) > 0 for every t > 0,

(II) θ is nondecreasing and right continuous,

(III) for every ε > 0, there exists δ(ε) > 0 such that

ε ≤ θ(max
{
p(x, u), p

(
y, v

)
, p(z, r)

})
< ε + δ(ε) =⇒ θ

(
p
(
F
(
x, y, z

)
, F(u, v, r)

))
< ε, (4.1)

for all x ≥ u, y ≤ v and z ≥ r.
Then, F is a generalized p-Meir-Keeler type function.

The following result is an immediate consequence of Theorems 2.1 and 4.1.

Corollary 4.2. Let (X, p,≤) be a partially ordered complete partial metric space F : X3 → X be a
mapping satisfying the following hypotheses:

(i) F has the mixed strict monotone property,

(ii) for every ε > 0, there exists δ(ε) > 0 such that

ε ≤
∫max{p(x,u),p(y,v),p(z,r)}

0
φ(t)dt < ε + δ(ε) =⇒

∫p(F(x,y,z),F(u,v,r))

0
φ(t)dt < ε, (4.2)

for all x ≥ u, y ≤ v and z ≥ r, where φ : [0,+∞) → [0,+∞) is a locally integrable
function satisfying

∫s
0 φ(t)dt > 0 for all s > 0,

(iii) there exist x0, y0, z0 ∈ X such that

x0 < F
(
x0, y0, z0

)
, y0 ≥ F

(
y0, x0, y0

)
, z0 < F

(
z0, y0, x0

)
. (4.3)

Assume that the hypotheses (a) and (b) given in Theorem 2.1 hold. Then, F has a tripled
fixed point.
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To end this paper, we give the following corollary.

Corollary 4.3. Let (X, d,≤) be a partially ordered complete partial metric space F : X3 → X be a
mapping satisfying the following hypotheses:

(i) F has the mixed strict monotone property,

(ii) for all, x ≥ u, y ≤ v and z ≥ r,
∫p(F(x,y,z),F(u,v,r))

0
φ(t)dt ≤ k

∫max{p(x,u),p(y,v),p(z,r)}

0
φ(t)dt, (4.4)

where k ∈ (0, 1) and φ is a locally integrable function from [0,+∞) into itself satisfying∫s
0 φ(t)dt > 0 for all s > 0,

(iii) there exist x0, y0, z0 ∈ X such that

x0 < F
(
x0, y0, z0

)
, y0 ≥ F

(
y0, x0, y0

)
, z0 < F

(
z0, y0, x0

)
. (4.5)

Assume that the hypotheses (a) and (b) of Theorem 2.1 hold. Then, F has a tripled fixed
point.

Proof. For all ε > 0, we take δ(ε) = (1/k − 1)ε and we apply Corollary 4.2.

Remark 4.4. By taking φ(t) = 1, we retrieve the analogous of Theorem 1.8 of Berinde and
Borcut on ordered partial metric spaces (with a = b = c = k/3). In fact, assume that (1.8)
holds for a = b = c = k/3, that is,

p
(
F
(
x, y, z

)
, F(u, v,w)

) ≤ k

3
(
p(x, u) + p

(
y, v

)
+ p(z,w)

)
(4.6)

for all x ≥ u, y ≤ v, z ≥ w. From this inequality, we get that

p
(
F
(
x, y, z

)
, F(u, v,w)

) ≤ kmax
{
p(x, u), p

(
y, v

)
, p(z,w)

}
, (4.7)

which corresponds to (4.4)with φ(t) = 1. Then, we may apply Corollary 4.3.
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