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Decision makers in a supply chain confront two main sources of uncertainty in market
environment including uncertainty about customers purchasing behaviors and rival chains
strategies. Focusing on competition between two supply chains, it is considered that each customer
as an independent player selects products of these chains based on randomutilitymodel. Similar to
quantal response equilibrium approach, we take account of customer rationality as an exogenous
parameter. Moreover, it is assumed that decision makers in a supply chain can perceive an estima-
tion of rival strategies about price and service level formulated in the model by fuzzy strategies. In
the competition model, chain’s decision makers consider a subjective probability for wining each
customer which is formulated by coupled constraints. These constraints connect chains strategies
regarding to each customer and yield a generalized Nash equilibrium problem. Since price cutting
and increasing service level are main responses to rival supply chain, after calculating optimal
strategies, we show that more efficient responses depend on customer preferences.

1. Introduction

The supply chain (SC) is typically decentralized which implies that participants are
independent firms with their own conflicting goals. Collaboration and coordination of these
firms will hopefully result in adding benefits [1]. Decision makers in each SC encounter
two sources of uncertainty in a market environment. In the real world competition, gaining
a clear perception of rival strategies is not often possible for decision makers. That is, the
competitor’s strategies are sensed with a level of indistinctness and vagueness. On the other
hand, precise determination of customer’s responses to products is often not possible for
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decisionmakers in SCs as well. Thus, the second source of uncertainty is related to customers’
behaviors and their product selections procedure.

Inmany practical situations, players share some resources available in limited amount.
Moreover, in many real game applications in the economic systems, players expect a
minimum level of payoff from actual transactions. Both these situations lead to a feasible
set for players’ strategies. In the noncooperative game, if each player’s feasible strategies
depend on the rival players’ strategies, we speak of generalized Nash equilibrium problems
(GNEPs) [2]. GNEPs have received an increasing amount of attention in recent times because
GNEPs naturally arise in modeling of complex and important economic systems [3]. In
practical instances of GNEPs, the feasible sets of the players are usually defined by inequality
constraints (or coupled constraints). Customer segments can be considered as shared and
limited resources among competitive firms in a market. We concentrate on the competition
between two independent SCs for winning customer segments of a specific product type.
It is assumed that decision makers in each SC consider a minimum probability (risk) of
losing each customer segment as a rule. This assumption connects SCs strategies together
and results in inequality constraints in the competition model.

In the marketing literature, the concept of competitive responsiveness argues that the
changing strategy by one party in a market will be responded by the other competitors, and
the elasticity measures capture the effect of competitive reactions [4]. Two distinguishing
types exist regarding to competitive reactions: simple or multiple competitive relations. In
the simple case, changing in one type of strategy will be responded by a same strategy.
For instance, competitors respond to a change in price for a party by changing their prices
and to a change in service level by a service level response, and so forth. However, our
competition model is consistent with the concept of the multiple competitive reactions (the
concept of marketingmix) such that an SCmay react to the price change not only by changing
its price but also by changing its service level. In the model, the combination of the profit
maximization objective and the minimum risk of losing customer constraints specify the
efficient reactions against rival chain changing strategies.

Markets often are not homogenous. In the marketing segmentation models, the
customers’ populations are divided into groups which have similar behaviors and utilities
[5]. It is assumed that a market consists of finite and independent customer segments (or
customers) that each of them has distinguishing utility and demand function of the products.
Therefore, customer and customer segment are used interchangeably throughout the paper.
When SCs perceive requirements of various segments, they will focus on satisfying them.
Loss of a customer segment causes erosion of market share, which is often dramatic for SCs
[6]. On the other hand, by taking the advantage of this concept, managers concentrate on each
customer segment attractions to increase their market shares. The risk of losing a customer
segment or customer harms the trade of all partners in an SC.

We use fuzzy set theory to deal with vagueness of other competitor strategies. It is
assumed that decision makers in an SC can perceive an estimation of rival’s strategies about
price and service level formulated in the model by fuzzy strategies. Moreover, it is considered
that each customer as an independent player selects products of these chains based on
random utility model (RUM) [7]. Therefore, we use stochastic programming based on RUM
to involve customer selection behavior in the model. Similar to quantal response equilibrium
(QRE) approach [8, 9], the customer rationality is taken into account. We investigate how
customer rationality affects competition between two chains and how this factor influences
optimal utilities of chains’ products from customer point of view. The integration of fuzzy
logic and stochastic programming give the research an original contribution to define SCs
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competition model based on mathematical element of game theory which can manage
vagueness and uncertainty of decision makers.

The paper is organized as follows. The literature related to SC competitions,
noncooperative fuzzy game, and customer purchasing behaviors are separately reviewed
in Section 2. Section 3 includes a discussion of the problem and related notations. Section 4
concerns basic models of competition between two SCs for a single customer segment, then
the model is developed for all customer segments in a market. Finally, the paper concludes
in Section 5 with the results of the research.

2. Literature Review

Several researches reviewed and studied the applications of game theory in order to model
conflicting goals in SCs management [1, 10, 11]. Beside competition and collaboration within
an SC, in a specific product market, there are some kinds of competition among SCs to attract
final customers. Some papers explicitly modeled SCs interactions in a market [12–25].

Bernstein and Federgruen [14] developed a stochastic inventory model for an
oligopoly where demand was a function of all retailers’ prices and service levels. Three
scenarios were studied in the paper: only price competition, simultaneous price and service
level competition, and two stage competition. Wu et al. [21] considered two manufactures;
each produced a substitutable product and sold it by either a decentralized retail store or
an integrated one. The problem was modeled as a price-setting newsvendor. The effects
of demand uncertainty as well as product substitutability on SC configuration were also
investigated.

Bernstein and Federgruen [15] assumed a general model of two-echelon SCs with
several competing retailers served by a common supplier. In the study, the demand of
retailers is a stochastic function and depends on all of the firm’s strategies. Xiao and Yang
[22] developed an information revelation mechanism model of two-echelon SC facing an
outside competitor to investigate the effect of the risk-sharing rule on revelation mechanism
under demand uncertainty, where the risk sensitivity of the retailer is private information.
Furthermore, Xiao and Yang [23] developed a competition model of two SCs to study the
optimal decisions of the players under demand uncertainty. They fully analyzed the effect of
the retailer risk sensitivity and service investment efficiency on the optimal decisions.

Product price and service level offered by SCs are two significant factors affecting
the purchasing decisions of customers [23]. Several papers considered price and service
competition [12, 14, 15, 22–26]. Among these researches, Bernstein and Federgruen [14, 15]
developed a price and service competition model based on market share computed by
attractions and linear demand function, as well. On the other hand, Allon and Federgruen
[12] as well as Xiao and Yang [22, 23] proposed models where retailer’s demand is a
linear combination of product price and service level offered by a retailer and his/her rival
retailer. Hafezalkotob et al. [24] investigated a network design problem in a competition of
two SCs where uncertain markets’ demands depend on price, service level, and marketing
expenditure of chains. They assumed the risk of participants is derived from market’s
demands uncertainty. However, our decision structure in the present paper is different
because we assume that decision makers in an SC can perceive an estimation of rival
strategies. Hafezalkotob and Makui [25] considered that the risk of losing customers
can be defined based on products utility from customers’ viewpoint. They proposed a
noncooperative competition model between an SC and rival manufacturer to investigate
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trade-offs of responsiveness and efficiency in an SC. They found that the higher the
responsiveness to customers’ needs, the lower the risk of losing the customers will be.
Tsay and Agrawal [26] investigated a one-manufacture and two-retailer SC which offers a
common product to customers. The competition between the retailers was modeled based
on linear customer demand function in service level and price which each retailer offered to
the market. To the best of the authors’ knowledge, no research was found in the context
of competition among SCs to investigate the risk of SCs with respect to the customers
purchasing behavior.

According to this gap in the literature, there are three main contributions in the
research. First, we study customers’ purchasing behaviors based on random utility of SC’s
products. The higher the utility of products for the customer, the higher the probability
of purchasing will be. Second, by applying RUM, we investigate the effect of customer
rationality on SC’s competition. Finally, contrary to the literature, we assume the strategies
of rival SC are perceived by chain’s participants with some degree of uncertainty which are
formulated by fuzzy strategies. The related literature to RUM and fuzzy strategies are briefly
reviewed through the following subsections.

2.1. Noncooperative Fuzzy Games

One of themajor deficiencies of the traditional noncooperative game theory is the assumption
of all players to be completely aware of all data concerning the game structures [27]. In the
real-world circumstances, it often happens that the players are not able to estimate exactly the
outcomes of different strategies and/or their preferences of the other players. In other words,
each player regularly has a vague and heuristic knowledge of the other players [28]; thus,
a level of uncertainty exists about his/her choices. Fuzzy set theory [29, 30] is an excellent
tool which can be used for softening the crisp noncooperative game theory. The degree of
uncertainty in fuzzy set theory represents the value of vagueness of players in the game
environment.

Cooperative fuzzy games have been initially introduced by Aubin [31]. Afterward,
Butnariu [32–35] for the first time incorporated fuzzy approach into noncooperative games.
The work of Butnariu was complemented by other researchers [28, 36–39]. Recently, fuzzy
sets approach has been intensively utilized to model noncooperative games in the uncertain
environment [27].

In general, there exist two approaches treating to fuzziness in games: the approach
based on fuzzy preferences, strategies, and perception or belief of players and the approach
based on fuzzy evaluation of the payoffs [27]. In the first approach, the players use partly
crisp and partly fuzzy strategies as well as partly crisp and partly fuzzy preferences to play
the game. However, the second approach is an extension of the traditional theory of games
against nature, and players choose strategies with regard to both the behavior of other players
and possible realization of fuzzy parameters of the nature or game situation [40].

Garagic and Cruz [28] developed Nash equilibrium concept for the first approach
of games. For a bimatrix game, they used fuzzy control to model situations where each
strategy available to the player is defined by a membership function. They illustrated their
model for planning and conducting a military operation. Similarly, fuzzy strategies in a
noncooperative game are also considered by Song and Kandel [41]. Francesco and Gravio
[42] proposed fuzzy logic to represent the characteristic aspect of a bilateral bargaining with
incomplete information. Under imperfect information condition, the seller and buyer have
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only imprecise information, preferring to keep private the real value of opportunity cost
and acceptable price, respectively. An intermediary repeatedly negotiates with supplier and
customer to reach an agreement.

In the real competition among SCs, an agent often is not able to recognize or estimate
the precise strategies of other competitors. Generally, noise or vagueness exists about other
SCs actions when it comes to decision making. We use fuzzy set theory to deal with the
uncertainty in regard to rival SC’s strategies.

2.2. Customer Behavior and Brand Choice Models

Customer behavior theory investigates the customers purchasing behavior and their decision
to buy or ignore a product. Similarly, the main aim of brand choice models is to answer
the question that why customers shift from one brand to another and in which fashion the
changes in brands’ market shares are occurring [43]. Therefore, these models analyze the
previous data to estimate the customer’s choice process. A well-known brand choice model
is RUM or in its most used form, the multinomial logit model (MNL) which was developed
by McFadden [7]. The MNLmarket share represents an aggregate concept that the consumer
choice-based utility theory may serve as a foundation for individual rational decision making
[44]. Cooper [45] investigated the relationship between different market share models and
individual choice probabilities. Choice models founded on RUMmake a connection between
the attributes that characterize different competing products to the probability that they will
be selected by customers [46].

According to the structure defined by the theory of RUM [47], the utility of customer i
obtain from product j (Vij) is made of two parts, one deterministicUij and the other random
εij . The deterministic part can be considered as a function of a {Xkj}k∈K of attributes that
characterize the choice procedure for customer i. The random component is stochastic and
reflects the idiosyncrasies of customer i in taste for product j. Taking into account additive
structure for the deterministic part, the customer utility function can be written as follows:

Vij = Uij + εij = θ0j +
∑

k∈K
θkijXkj + εij , (2.1)

where {θkij}k∈K represents the response parameters for attributes of set K, and θ0j denotes
an additional parameter related to the intrinsic utility of product of brand j. The customer
chooses the alternative which maximizes the utility. Therefore, the probability Pi(j | θ0, θkij)
of customer i selecting product of brand j from set M of possible products (where n stands
for the number of elements in set M) is as follows:

Pi

(
j | θ0, θ

)
= P
(
Vij ≥ Vim ∀m ∈ M

)
= P
(
εij ≤ Uij −Uim + εim ∀m ∈ M

)
. (2.2)

Similar to the approach of logistic quintal response equilibria (Logistic-QRE)
introduced by McKelvey and Palfrey [8, 9], we concentrate on a particular version of the
RUM, where each εij is dependently and identically distributed according to the type I
extreme value (or Weibull) distribution with cumulative density F(εij) = exp(− exp(−τεij)).
This distribution has a variance of π2/6τ2; therefore, the parameter τ determines the
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precision of F. McFadden [7] showed that this distribution function yields the following
choice probability

Pi

(
j | θ0, θ

)
=

exp
(
τUij

)
∑

m∈M exp(τUim)
=

exp
(
τ
(
θ0j +

∑
k∈K θkijXkj

))
∑

m∈M exp(τ(θ0m +
∑

k∈K θkimXkm))
. (2.3)

With having samples data of each customer segment, the response parameters can be
computed by maximum likelihood estimation [48].

QRE model has recently attracted a great deal of attention. The main motivation
of this model is assuming that players are not “perfectly rational.” Instead, their choices
are noisy, and strategies with higher utility are chosen with higher probability [49]. Many
experimental results showed that partial rationality of players modeled by QRE can account
for players’ behavior in the real situations [8]. One of the particular aspects of the logit QRE
is nonnegative parameter τ which can be considered as the rationality parameter. When
τ → ∞, player becomes “perfectly rational”; therefore, he/she certainly chooses the most
favorable alternative. As this parameter declines, the rationality of the player reduces and
his/her choice becomes increasingly based on randomness. τ → 0 represents that the player
is “completely irrational,” and he/she does not distinguish favorable products. We apply
this approach for customer (or customer segment) i; thus, it can be concluded that with
growing parameter τ , the customer is more responsive to deterministic part of the utility.
Therefore, he/she selects more favorable product with higher probability. Obviously, the
value 1 for the parameter provides the RUM introduced by McFadden [7], and τ = 0 yields
Pi(j | θ0, θkij) = 1/n for all j, as well.

3. Problem Description and Notation

Two SCs are considered that each is comprised of one manufacturer and one retailer. SCs
compete for customer segments in the market. Each SC only provides a single type of product
for customers. These products are completely substitutive and differ only in price and offered
service levels by retailers.

The competition between two SCs constitutes a noncooperative game to attract
customer segments. Due to assumption of independency of customer segments, the
competition between retailers can be considered for each segment separately. Considering
a minimum acceptable risk of losing each customer segment, decision makers of both SCs
attempt to raise possible profit from selling products to the market. The noncooperative game
among SCs involves that they simultaneously declare price and service level to the customers.
On the other hand, the customer selects favorable products with higher probability.

3.1. Assumptions

3.1.1. Uncertainty concerning Customers’ Behaviors

Customers independently choose products of SCs based on utility maximization. Their
behaviors conform to the RUM assumptions introduced by McFadden [7]. The random
component of utility of each customer segment is not revealed to decision makers of SCs.
Nevertheless, this component is identically distributed according to the type I extreme value
(or Weibull). The deterministic parts of the customers’ utilities are common knowledge for
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all decision makers. The RUM model has been widely employed to investigate customer
preferences in many industries such as food [50], automotive [51], and electronics industries
[52].

3.1.2. Customer Rationality

Several economics models assume that humans are on average rational due to finite resources
available for making decisions [53]. Similar to Logit-QRE approach [8, 9], we assume that
customers as players are partially rational. The rationality is indicated by parameter τ in the
RUM of customer behavior. Our assumption about partial (bounded) rationality of customer
is more general and realistic than prefect rationality assumption.

3.1.3. Customer Demand

When a customer segment selects one of the SCs products, his/her demand is proportional
to the offered price and service level. Several researchers investigated price and service level
impacts on customers’ demand and purchasing behavior in oligopolistic markets [15, 23, 24].

3.1.4. Uncertainty concerning Competitor Strategies

Each agent in an SC perceives the price and service level of the other competitor chain with
a noise and vagueness. Similar to fuzzy strategies introduced by Garagic and Cruz, [28], we
assume that fuzzy price and service level strategies of rival chain are L-R type fuzzy numbers.
Fuzzy-based game theory was also investigated by some researchers in oligopolistic markets
when vagueness exists about competitors [54, 55].

3.1.5. Independent Strategies for Customers

In the real markets, customers are almost independent when there are weak social
relationships among them. Bekal et al. [56] considered customers’ independency when they
were sufficiently geographically dispersed. For independent customers, a retailer is able to
pursue customer-specific strategies.

3.1.6. Maximum Risk of Supply Chains

Decision makers in each SC consider a minimum probability for attracting each customer
segment (or equivalently, they take account of a maximum risk of losing each segment).
That is to say, the decision makers do not permit their rival chain to reduce the probability
of attracting customer segment i lower than this limit. In the case of two echelons SCs,
manufacturer and his/her retailer cooperatively determine this risk based on the importance
and value of each customer segment for SC. Maximum acceptable risk condition associates
chain’s strategies with the rival ones. This condition involves considering inequality
constraints (coupled constraints) in the problem which leads to a GNEP.
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3.2. Input Parameters

Assume that SC j offers product type j to customer segment i. Furthermore,Mj andRj denote
manufacturer and retailer in jth SC, respectively.

θ0j : the normalized attraction denotes intrinsic utility of product j.

θ1ij : the response parameter of customer segment ith for price of product j, (θ1ij > 0).

θ2ij : the response parameter of customer segment ith for service level offered by SC j,
(θ2ij > 0).

τi: the rationality parameter of customer segment i, (τi > 0).

αi: the base demand of customer segment i, (αi > 0).

βi: the demand sensitivity of customer segment i to offered service level, (βi > 0).

γi: the demand sensitivity of customer segment i to product price, (γi > 0).

cMj : the unit production cost of manufacturer j, j = 1, 2, (cMj ≥ 0).

ηRj : the service investment efficiency coefficient of retailer j, j = 1, 2. The larger the
coefficient, the lower the service investment efficiency (1/ηRj ) of retailer i will be,
(ηRj > 0).

φij : the maximum acceptable risk of losing customer segment i for decision makers
in SC j, equivalently 1 − φij represents the minimum acceptable probability of
attracting customer segment i, (0 ≤ φij ≤ 1).

FCz: the fixed operation cost of players z, z = R1, R2,M1,M2, (FCz ≥ 0).

μP̃ij−(Pij−): the fuzzy membership function corresponding to the vagueness of SC j about the
price of product j− offered to customer segment i which is an L-R type fuzzy
number (Pij−, P−

ij−, P
+
ij−)L

P
j
ij−

R
P
j
ij−

.

μS̃Rj− i
(y): the fuzzy membership function corresponding to the vagueness of SC j about the

service level of retailer j− offered to customer segment iwhich is an L-R type fuzzy
number (SRj−i, S

−
Rj−i

, S+
Rj−i

)L
S
j
ij−

R
S
j
ij−
,(S−

Rj−i
, S+

Rj−i
≥ 0).

Note that j− represents the rival SC. For instance, μS̃2
R13
(y) = (SR13, 3, 7 )L

S2
R13

R
S2
R13

states

the vagueness of decision makers in chain 2 about the service level of retailer 1 offered to the
3rd customer segment.

3.3. Decision Variables

wMj : the wholesale price of manufacturer j offered to his/her retailer, j = 1, 2, (wMj ≥
cMj ).

mRji: the profit margin of retailer j from selling product to customer segment i, j = 1, 2,
(mRji ≥ 0).

Pij : the retail price of retailer j offered to customer segment i, j = 1, 2; thus, we have
Pij = wMj +mRji.

SRji: the service level of retailer j offered to customer segment i, j = 1, 2 (SRji ≥ 0).
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Figure 1: SCs competition schema for the customer segments.

In SC j, the manufacturer decides on wholesale pricewMj , and the retailer determines
retail price Pij as well as service level investment SRji for each customer segment. Figure 1
illustrates the competition schema between two SCs.

4. The Basics Models

For the purpose of model explanation, we first consider the competition between SCs for a
single customer segment; afterwards, the model will be extended for n customer segments in
a market.

4.1. Manufacturers Problem for a Single Customer Segment

Losing each customer segment diminishes market share which is often horrible for all
partners in an SC. Although partners of an SC compete to gain more profit, they need to
maintain a level of cooperation to sell product to the customer segments in a competitive
market. The manufacturer in jth SC attempts to increase possible profit with considering a
minimum probability of selling products of SC to customer i. Thus, manufacturer j considers
the following problem:

max
wMj

E
(
πMj

)
=
(
1 − φij

)(
wMj − cMj

)(
αi − γPij + βSRj i

)
− FCMj , (4.1)

subject to

Pi

(
j | θ0j , θkij

)
=

exp
(
τi
(
θ0j−θ1ijPij+θ2ijSRj i

))

exp
(
τi
(
θ0j−θ1ijPij+θ2ijSRj i

))
+exp

(
τi
(
θ0j−−θ1ij−P̃ij−+θ2ij−S̃Rj−i

)) ≥ 1 − φij ,

(4.2)

Pij = wMj +mRji, (4.3)
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where 1 − φij is a minimum probability which is acceptable for managers of SC j to sell
its products to customer segment i. By applying maximin concept [57], manufacturer j
in objective function (4.1) decides on wholesale price to maximize the minimum possible
profit from selling products to customer segment i. Since the exact strategies of the rival
SC are not revealed for manufacturer j, he makes his/her decision based on an estimation
of rival price (P̃ij−) and service level (S̃Rj−i). Taking the RUM into account for the behavior
of customer segment i, constraint (4.2) ensures that the probability of selling products to
customer segment i is higher than the minimum acceptable probability 1 − φij . Combination
of objective function (4.1) and constraint (4.2) expresses that the manufacturer relates his
possible profit from selling products to the customer purchasing decisions. On the other
hand, these decisions depend upon the rival strategies which only estimations of them are
available for the manufacturer. The manufacturer problem is a nonlinear GNEP which is
not appropriate for the optimization. Lemmas 4.1 and 4.2 can be applied for linearizing the
problem.

Lemma 4.1. By considering δ level cut concept for fuzzy constraint [58, 59], constraint (4.2) will be
equivalent to

θ0j − θ0j− − θ1ijPij + θ1ij−Pij− + θ2ijSij − θ2ij−S2ij− ≥ ln

(
1 − φij

φij

)1/τi

−
(
1 − δ

j

ij−
)
ρ
j

ij−, (4.4)

where ρjij− = θij1P
+
ij− + θij2S

−
Rj−i

and 0 ≤ δ
j

ij− ≤ 1.

Proofs of all propositions and lemmas are given in the Appendix. In Lemma 4.1, δj

ij−
level cut can be interpreted as a confidence level of decision makers of SC j in the strategies
of SC j− corresponding to customer segment i. Therefore, in constraint (4.4), δj

ij− equals to 1
means that DMs of SC j are sure that the probability of attracting customer i is higher than
1 − φij . This confidence level declines as δj

ij− approaches zero. It is straightforward from the
right hand side of constraint (4.4) that the uncertainty about rival strategies measured by the
confidence level reduces the minimum probability of attracting the customer segment. Thus,
in objective function (4.1), 1 − φij has to be changed with respect to the confidence level. In
Lemma 4.2, the minimum probability of attracting customer segment i is updated.

Lemma 4.2. When vagueness about competitor’s strategies exists, the minimum probability of
attracting customer segment j, that is, 1 − φij , is changed as follows:

1 − φ′
ij = kij

(
1 − φij

)
, (4.5)

where kij = [1 − φij + φij exp(ρ
j

ij−τi(1 − δ
j

ij−))]
−1
.

Note that in the case of absolute confidence, or no vagueness about competitor strate-
gies, or quite irrational customer (i.e., δj

ij− = 1 or ρjij− = 0 or τi = 0), we have 1 − φ′
ij = 1 − φij .
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By applying the results of Lemmas 4.1 and 4.2 to manufacturer problem (4.1)–(4.3), the linear
GNEP is as follows:

max
wMj

E
(
πMj

)
= kij

(
1 − φij

)(
wMj − cMj

)[
αi − γi

(
wMj +mRji

)
+ βiSRj i

]
− FCMj , (4.6)

subject to

θ0j−θ0j−−θ1ij
(
wMj +mRji

)
+θ1ij−Pij−+θ2ijSRj i−θ2ij−SRj−i ≥

1
τi

ln

(
1−φij

φij

)
−
(
1−δj

ij−
)
ρ
j

ij−.

(4.7)

4.2. Retailers Problem for a Single Customer Segment i

Now we study the retailer problem in the case of a single customer segment i. Retailer j
determines the margin profit as well as service level. Similar to the manufacturer, the retailer
assumes a lower bound for the probability of selling products to the customer segment.
The retailer maximizes the minimum possible profit from trade with the customer segment.
Therefore, the following model can be considered for the retailer

max
mRj

,SRj i

E
(
πRj

)
=
(
1 − φij

)(
mRj

)(
αi − γiPij + βiSRj i

)
− 1
2
ηRjSRj i

2 − FCRj , (4.8)

subject to constraints (4.2) and (4.3).
As suggested in the extensive literature of SC game models [22, 23, 26, 60], we assume

that when a player provides service level SRji, the service cost of the player is 0.5ηRjSRj i
2,

that is, improving service level has a diminishing return on service expenditure. Both of
the chain’s partners by choosing proper value for their controllable variables endeavor to
maintain this probability within an acceptable limit. The retailer problem is also a nonlinear
GNEP which is not appropriate for computing Nash equilibrium. By applying Lemmas 4.1
and 4.2 for the retailer problem, we have

max
mRj i

,SRj

E
(
πRj

)
= kij

(
1 − φij

)(
mRji

)[
αi − γi

(
wMj +mRji

)
+ βiSRj

]
− 1
2
ηRjSRj

2 − FCRj , (4.9)

subject to constraint (4.7).
Constraint (4.7) is a “coupled constraint” which relates SCs’ strategies to rival

ones to guarantee the minimum probability of attracting customer segment i. Therefore,
manufacturer profit (4.6) and retailer profit (4.9) along with coupled constraint (4.7)
constitute GNEPs. To solve these problems, we associate a multiplier λij with coupled
constraint (4.7). Hessian matrix of E(πRj )is

HRj =

[−2kij
(
1 − φij

)
γi kij

(
1 − φij

)
βi

kij
(
1 − φij

)
βi −ηRj

]
. (4.10)
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The expected profit E(πRj ) is a concave function on (mRji, SRj i) if and only if the
Hessian matrix is negatively definite [61]. Let us define B′

ij = 2γiηRj − β2i and Bij = 3γiηRj −
kij(1 − φij)β2i . From the manufacturer and retailer problems, we drive the following.

Proposition 4.3. If B′
ij > 0, then the optimum values for wholesale price of the manufacturer, as well

as the marginal profit and service level of the retailer, are as follows:

(i) if λij = 0, then one has

m∗
Rj i

=

(
αi − γicMj

)
ηRj

Bij
,

w∗
Mj

= cMj +

(
αi − γicMj

)
ηRj

Bij
,

S∗
Rj i

=
βikij

(
1 − φij

)(
αi − γicMj

)

Bij
,

(4.11)

(ii) if λij = Λij /= 0, then one has

m∗
Rj i

=
kij
(
1 − φij

)
θ2
2ij

(
αi − γicMj

)

2θ1ijEij − θ2ijkij
(
1 − φij

)
Fij

+
Eij

[
−θ1ijcMj + θ0j − θ0j− −Qij + θ1ij−

(
wMj− +mRj−i

)
− θ2ij−SRj−

]

2θ1ijEij − θ2ijkij
(
1 − φij

)
Fij

,

w∗
Mj

= cMj +
kij
(
1 − φij

)
θ2
2ij

(
αi − γicMj

)

2θ1ijEij − θ2ijkij
(
1 − φij

)
Fij

+
Eij

[
−θ1ijcMj + θ0j − θ0j− −Qij + θ1ij−

(
wMj− +mRj−i

)
− θ2ij−SRj−

]

2θ1ijEij − θ2ijkij
(
1 − φij

)
Fij

,

S∗
Rj i

=
kij
(
1 − φij

)

2θ1ijEij − θ2ijkij
(
1 − φij

)
Fij

×
[
2θ1ijθ2ij

(
αi − γicMj

)

+Fij

[
−θ1ijcMj +θ0j−θ0j−−Qij + θ1ij−

(
wMj−+mRj−i

)
−θ2ij−SRj−i

]]
,
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Λij =
kij
(
1−φij

)

2θ1ijEij−θ2ijkij
(
1−φij

)
Fij

×
[(

αi−γicMj

)[
2ηRj θ1ij−kij

(
1−φij

)
βiθ2ij

]

−Bij

[
−θ1ijcMj +θ0j−θ0j−−Qij+θ1ij−

(
wMj−+mRj−i

)
−θ2ij−SRj−i

]]
,

(4.12)

where Eij = θ1ijηRj − θ2ijkij(1 − φij)βi, Fij = θ1ijβi − 3θ2ij γi, and Qij = (1/τi) ln((1 −
φij)/φij) − (1 − δ

j

ij−)ρ
j

ij−.

Retailer j excessively invests in service if B′
ij < 0, which incurs a negative profit to

him. The condition B′
ij > 0 means that the service investment should not be too inexpensive,

which is consistent with those considered in [23, 26, 53]. Therefore, we assume that B′
ij > 0

throughout this paper. Moreover, the negative values for optimal profit margin and service
level are not feasible for the retailer, that is,m∗

Rj i
, S∗

Rj i
> 0. Since from B′

ij > 0 and 0 ≤ kij ≤ 1, it
follows that Bij > 0, and we assume that αi > γicMj to ensure m∗

Rj i
, S∗

Rj i
> 0. The condition

αi > γicMj indicates that unit production cost should not be too high. The multiplier λij
associatedwith KKT conditionmay be thought as a shadow price for coupled constraint (4.7);
furthermore, complementary slackness condition holds for the multiplier and the coupled
constraint. That is to say, coupled constraint (4.7) is binding if λij = Λij /= 0.

Proposition 4.3 presents the optimal strategies of SC j regarding customer segment i
which depends on the strategies of rival chain (j−). In other words, if Xij and Xij− denote
vectors of the decisions or strategy variables of SCs j and its rival j−, respectively, then the
optimal values in Proposition 4.3 are X∗

ij(Xij−). This proposition gives the following insights.

(i) For a single customer segment i, the optimal marginal profits of manufacturer and
retailer are equal. Therefore, if P ∗

ij − cMj is the optimal profit margin of a product
unit for SC j, it is optimal that the manufacturer and the retailer consent to the equal
profit margin (P ∗

ij − cMj )/2. This situation holds for both the conditions λij = 0 and
λij /= 0.

(ii) The λij = 0 states that the SC jth will sell product to customer segment i with
probability higher than the least acceptable probability, that is, Pi(j | θ0j , θkij) ≥
1 − φij . In this situation, the rival chain strategies (i.e., Xij−) have no effects on the
optimal price and service level of SCj.

(iii) Adversely, λij = Λij /= 0 expresses that the probability of attracting customer
segment i by SC jth decreases to the threshold of the minimum acceptable
probability, that is, Pi(j | θ0j , θkij) = 1 − φij . In this situation, SC’s strategies depend
on the rival strategies. In other words, any variation in price and service level of
the rival needs to be responded by the SC to ensure the least probability of selling
products to customer segment i. In Proposition 4.4, the SC responses to variations
in strategies of the rival are investigated.
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Proposition 4.4. In the case of λij = Λij /= 0, for the optimal strategies values in Proposition 4.3, one
has

(1) ∂m∗
Rj i

/∂wMj− = ∂m∗
Rj i

/∂mRj−i = ∂w∗
Mj

/∂wMj− = ∂w∗
Mj

/∂mRj−i = Eijθ2ij−/[2θ1ijEij −
θ2ijkij(1 − φij)Fij], ∂m∗

Rj i
/∂SRj−i = ∂w∗

Mj
/∂SRj−i = −Eijθ2ij−/[2θ1ijEij − θ2ijkij(1 −

φij)Fij],

(2) ∂S∗
Rj i

/∂wMj− = ∂S∗
Rj i

/∂mRj−i = [kij(1 − φij)Fijθ1ij−]/[2θ1ijEij − θ2ijkij(1 − φij)Fij],
∂S∗

Rj i
/∂SRj−i = [−kij(1 − φij)Fijθ2ij−]/[2θ1ijEij − θ2ijkij(1 − φij)Fij].

Proposition 4.4 analyzes how the optimal wholesale and retail price as well as service
level of one SC are affected by the retail price and service level of the rival chain. For instance,
assume that the rival retailer decides to reduce ΔmRj−i from his/her retail price to attract
customer segment i. From constraint (2.3), it is obvious that the product utility of the rival
chain increases ΔmRj−iθ1ij− from the customer point of view. The SC j considers the following
changes in its optimal strategies to react to his/her rival:

ΔmRji =
Eijθ1ij−

2θ1ijEij − θ2ijkij
(
1 − φij

)
Fij

(
−ΔmRj−i

)
,

ΔwMj =
Eijθ1ij−

2θ1ijEij − θ2ijkij
(
1 − φij

)
Fij

(
−ΔmRj−i

)
,

ΔSRj =
−kij
(
1 − φij

)
Fijθ2ij−

2θ1ijEij − θ2ijkij
(
1 − φij

)
Fij

(
−ΔmRj−i

)
.

(4.13)

Therefore, the product utility of SC increases from the customer’s viewpoint as
follows:

ΔUij = −θ1ij
(
ΔmRji + ΔwMj

)
+ θ2ij

(
ΔSRj

)
= ΔmRj−iθ1ij− = ΔUij−. (4.14)

In other words, SC jth increases its product utility just equal to the rival’s one to hold coupled
constraint (4.2), that is, if λij = Λij /= 0, then ΔUij = ΔUij−. Now in Proposition 4.5, we
investigate how an SC specifies its new strategies.

Proposition 4.5. From Bij > 0, it follows that kij(1 − φij)βi/ηRj < 3γi/βi, and for the price changes
of the rival chain, one has

(i) ∂m∗
Rj i

/∂wMj− = ∂m∗
Rj i

/∂mRj−i = ∂w∗
Mj

/∂wMj− = ∂w∗
Mj

/∂mRj−i > 0 if θ1ij/θ2ij > kij(1−
φij)βi/ηRj , ∂S

∗
Rj
/∂wMj− = ∂S∗

Rj
/∂mRj−i < 0 if θ1ij/θ2ij < 3γi/βi.

Similarly, for service level changes of the rival chain, one has

(ii) ∂m∗
Rj i

/∂SRj− = ∂w∗
Mj

/∂SRj− < 0 if θ1ij/θ2ij > kij(1 − φij)βi/ηRj , and ∂S∗
Rj
/∂SRj− =

∂S∗
Rj
/∂SRj− > 0 if θ1ij/θ2ij < 3γi/βi.

Two values kij(1 − φij)βi/ηRj and 3γi/βi are key thresholds which determine SC’s efficient
strategies against changes in the price and service level of the rival. Part (i) of Proposition 4.5
gives us the following insights.
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θ1ij = θ2ij
kij(1 − φij)βi

ηRj

θ
1i
j

θ2ij

∂w∗
Mj

∂Uij−
=

∂m∗
Rj i

∂Uij−
< 0

∂w∗
Mj

∂Uij−
=

∂m∗
Rj i

∂Uij−
> 0

∂w∗
Mj

∂Uij−
=

∂m∗
Rj i

∂Uij−
< 0

∂S∗
Rj i

∂Uij−
< 0

∂S∗
Rj i

∂Uij−
> 0

∂S∗
Rj i

∂Uij−
> 0

Price cutting is
more efficient

Increasing service
level is more 
efficient

Both increasing
service level and
price cutting are
efficient

θ1ij = θ2ij
3γi
βi

Figure 2: SC’s efficient strategies for customer segment i against variation in rival product utility.

(i) If θ1ij/θ2ij > 3γi/βi, then declining in the product price of the rival chain j− will be
responded by decreasing in price and increasing in service level of SC jth. However,
since the customer is more responsive to price, price cutting is a more efficient
strategy for rising the product’s utility from the customer segment viewpoint.

(ii) If θ1ij/θ2ij < kij(1 − φij)βi/ηRj , then the customer segment is more responsive to
the service level. Therefore, if the decision makers in chain j want to maintain the
segment with a specific minimum probability, it is needed to compensate for a price
increase with service level which is more effective.

(iii) If kij(1 − φij)βi/ηRj < θ1ij/θ2ij < 3γi/βi, then both strategies of cutting price and
increasing service level are efficient.

(iv) Similarly, part (ii) states the SC’s reactions to service level changes of rival chain.
Cutting price and increasing service level by rival chain lead to rise in product
utility. Figure 2 illustrates the efficient strategies of an SC against rising product
utility by the rival.

When manufacturers and retailers in both chains consider coupled constraint (4.7),
and if

∑2
j=1(1 − φij) ≤ 1, then multipliers λ corresponding to the coupled constraints must

satisfy λ = 0 or λ > 0 (the KKT condition). Therefore, in attempting to find Nash equilibrium
solution, it is sufficient to take the cases of Table 1 into account.

Therefore, Nash equilibrium solution of the competition is obtained from one of the
following cases.

Case 1 (λij = 0 and λij− = 0). Strategies of SC and rival chain are obtained by part
(i) of Proposition 4.3. Here, both coupled constraints are satisfied at (w∗

Mj
,m∗

Rj i
, S∗

Rj
) and

(w∗
Mj−

, m∗
Rj−i

, S∗
Rj−

).

Case 2 (λij = 0 and λij− > 0). The coupled constraint (4.7) is binding only for rival SC.
Therefore, the optimal strategies of SC j are achieved by part (i) of Proposition 4.3. However,
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Table 1: Four possible cases for competing chains associated with customer segment i.

λij = 0 λij > 0
λij− = 0 Case 1 Case 2
λij− > 0 Case 3 Case 4

rival chain takes the optimal strategies of the first SC into account and computes optimal
strategies by part (ii) of Proposition 4.3.

Case 3 (λij > 0 and λij− = 0). In this case, the situation is contrary to Case 2 and the coupled
constraint is binding only for SC j.

Case 4 (λij > 0 and λij− > 0). Here, both coupled constraints for competing SCs are binding.
This rare condition takes place only if

∑2
j=1(1−φij) = 1. The optimal strategies of SC and rival

are obtained by part (ii) of Proposition 4.3.

Note that the values of 1−φij are subjective probabilities which decision makers in one
SC specify it independently of rival chain. This probability is not revealed for rival. The value
of 1 − φij is determined based on importance and worth of customer segment i and expresses
that SC partners are content to sacrifice profit to win customer segment i with the least
probability of 1 − φij . The assumption

∑2
j=1(1 − φij) ≤ 1 insures that a permanent equilibrium

point exists in the competition, and resulting strategiesXij(Xij−) andXij−(Xij) satisfy the least
probability conditions for both SCs. Otherwise, SCs involve eternal competition to present
the customer more favorable products, and no equilibrium exists in a one-shot competition.
However, in a multiperiod competition, presenting more favorable products to the customers
to increase business is the very essence of competition which brings about innovation and
improvement in technology and knowledge. For instance, consider the dynamics of the
microprocessor market which drives severe competition between two main suppliers, that
is, AMD and Intel. The main customers of microprocessors are major original equipment
manufacturers (OEMs) such as Dell, IBM, and HP which enjoy this rivalry. Throughout
years of competition, Intel and AMD contest to win customers’ business not just on price
and service level, but on all aspects of their products including quality, performance, and
reliability.

Consider an example with the following default values for parameters corresponding
to customer segment i:

θ01 = 150, θ1i1 = 0.3, θ2i1 = 0.7, θ02 = 200, θ1i2 = 0.25,

θ2i2 = 0.75, αi = 5000, γi = 10, βi = 0.5.
(4.15)

Additionally, assume the following values for parameters of competing SCs:

ηR1 = ηR2 = 0.1, cM1 = cM2 = 100, FCM1 = FCM2 = 20000,

FCR1 = FCR2 = 10000, P−
i1, P

+
i1 = 5,

S−
R1i

, S+
R1i

= 5, P−
i2, P

+
i2 = 5,

S−
R2i

, S+
R2i

= 5, 1 − φi1 = 0.4, 1 − φi2 = 0.3.

(4.16)
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Table 2: An example for competing chains associated with customer segment i.

λi1 = 0 λi1 > 0

w∗
M1

m∗
R1i

S∗
R1i

w∗
M2

m∗
R2i

S∗
R2i

w∗
M1

m∗
R1i

S∗
R1i

w∗
M2

m∗
R2i

S∗
R2i

237.9 137.9 275.9 236.8 136.8 205.1 238.5 138.5 318.8 236.8 136.8 205.1
λi2 = 0 Ui1 = 230.34, Ui1 = 260.06, Ui2 = 260.47

Ui2 = 260.47 which is not feasible Λi1 = 5.9727 which is feasible

237.9 137.9 275.9 236.2 136.2 163.5 Not feasible

λi2 > 0 Ui1 = 230.34, Ui2 = 231.19
Λi2 = −5.44 which is not feasible
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Figure 3: The products utility of SCs versus the profit margin of retailer 2 with different customer
rationality parameters (with δi1 = 1).

Now for the RUM for customer segment i behavior (i.e., τi = 1) and with 100%
confidence level about rival strategies (i.e., δij = δij− = 1), we can compute four cases in
Table 1 as follows in Table 2. In Case 1, coupled constraint for SC 1 is not satisfied, thus
the solution is not acceptable. Since negative value for λi2 is not permitted, Case 3 is not
feasible, as well. Case 4 is impossible because two coupled constraints cannot be binding
simultaneously. Therefore, the single equilibrium solution for GNEP is obtained in Case 2
where λi1 > 0 and λi2 = 0. Case 2 expresses that SC 1 will win customer segment i with the
least acceptable probability (i.e., 0.4), whereas rival chain will win the customer with higher
probability than 0.3.

Table 2 represents a Nash solution for SCs competition. However, in the real-world
competition, one SC may decide to cut prices or increase service level to affect the other party
(or parties). For instance, assume that in the solution of Table 2, retailer in SC 2 increases his
products utility by declining profit margin. Since θ1i1/θ2i1 < ki1(1 − φi1)βi/ηR1 , it is obvious
from Proposition 4.5 that rising service level is a more efficient strategy for SC i against the
rival retailer. Figure 3 shows that SC 1 increases its products utility along with rival’s ones to
hold customer segment iwith the least probability of 0.4. Another important point in Figure 3
is illustrating the impact of customer rationality on SCs competition. Like QRE concept, τ can
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Figure 4: The minimum possible profit of retailer 1 versus the profit margin of retailer 2 with different
customer rationality parameters (with δi1 = 1).

be interpreted as a rationality parameter which specifies customer responsiveness to utility of
products in which τi = 1 leads to RUM of McFadden [7]. When τi = 0, the customer segment
is totally indifferent about product utility and chooses the brand of products completely
by chance. Herein, coupled constraints (4.7) are nonbinding for both rivals and optimal
SCs strategies certainly are obtained from Case 1 of Table 1. Adversely, τi → ∞ yields
deterministic utility model. Here, in the case of certainty about rival strategies (i.e., δj

ij− = 1

or ρjij− = 0), both coupled constraints are binding, and rivals require to offer product with the
same utility to the customer; therefore, the optimal strategies of SCs are achieved from Case
4 of Table 1.

We can conclude that, when a customer segment is highly responsive to utility, each
SC needs to present products with utility close to rival’s ones which brings about more severe
competition. Therefore, customer purchasing behavior dictates severity of competition in the
market which is consistent with the real-world competition.

Figures 4 and 5 illustrate profit variation of the retailer and manufacturer in SC 1
against price cutting strategy of retailer 2. Since rising service level investment and product
price are reactive strategies of SC 1, profit of retailer 1 declines due to higher service level.
However, increasing product price leads to rise in profit of manufacturer 1.

Figure 6 shows the wholesale and retail-sale prices, and service level investment in the
case of existence of vagueness about rival chain strategies. In Figure 5, lower confidence level
δi1 brings about lesser price and service level investment. From Figure 7, it can be concluded
that lower δi1 makes offering products with lesser utility for the customer. Therefore,
by decreasing δi1, there is more possibility to lose the customer. Figure 8 demonstrates
variation in the possible profit of the retailer and manufacturer in SC 1 against different
confidence level. When δi1 = 0, the confidence level to win the customer segment approaches
zero; thus, fixed cost and service level cost cause a negative profit for the retailer and
manufacturer.
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Figure 6: Strategies of SC 1 versus the confidence level of rival fuzzy strategy (with τi = 1).

4.3. Extension of Retailers and Manufacturers Problems in a Market

Consider a product marketMwhich consists of n customer segments with different demands
and utility functions. In the real-world competitions, SCs often present different prices
and service levels to the customer segments. Each segment selects one product type based
on RUM. In this case, the SC competition model can be extended for this market. The
possible profit of the manufacturer in a market is obtained from the aggregate possible profit
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Figure 7: The products utility of SCs versus the confidence level of rival fuzzy strategy (with τi = 1).
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from customer segments. Therefore, the problem of the manufacturer in SC j is defined as
follows:

max
wMj

E
(
πMj

)
=
∑

i∈M
kij
(
1 − φij

)(
wMj − cMj

)[
αi − γi

(
wMj +mRji

)
+ βiSRj i

]
− FCMj , (4.17)

subject to

θ0j − θ0j− − θ1ij
(
wMj +mRji

)
+ θ1ij−Pij− + θ2ijSij − θ2ij−S2ij− ≥ Qij , ∀i ∈ M. (4.18)
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Additionally, the mathematical formulation of the retailer in SC j is as follows:

max
mRj i

,SRj i

E
(
πRj

)
=
∑

i∈M

[
kij
(
1 − φij

)
mRji

[
αi − γi

(
wMj +mRji

)
+ βiSRj i

]
− 1
2
ηRjSRj i

2
]
− FCMj ,

(4.19)

subject to constraint (4.18), where kij = [1 − φij + φij exp(ρ
j

ij−τi(1 − δ
j

ij−))]
−1

and Qij = (1/τi)

ln[(1 − φij)/φij] − (1 − δ
j

ij−)ρ
j

ij−.
Objective functions (4.17) and (4.19) indicate possible manufacturer and retailer from

purchasing products to customer segments set n, respectively. Coupled constraint (4.18)
assures that the least probability of winning each customer segment is not less than the
minimum acceptable probability. Since the coupled constraints for both chains can be binding
or nonbinding with regard to each customer segment, 4n cases can occurr. Proposition 4.5
states that a single Nash equilibrium solution of the model will exist.

Proposition 4.6. When
∑2

j=1(1 − φij) ≤ 1 and B′
ij > 0 hold for each customer segment i and SC j, a

single Nash equilibrium for SCs strategies is found from 4n cases of KKT condition.

Parametric solutions of KKT condition for even two customer segments are too large to
summarize in the paper; however, the numerical examples can easily be solved by numerical
solvers. For instance, assume that two customer segments exist in the previous numerical
example with the following parameters:

θ01=150, θ02=200, θ111=0.3, θ211=0.7, θ112=0.25, θ212=0.75,

θ121=0.2, θ221=0.8, θ122=0.3, θ222=0.7, α1=5000, α2=6000,

γ1, γ2 = 10, β1=0.5, β2=0.8.

(4.20)

Additionally, assume the following parameters for competing chains:

P−
ij , P

+
ij , S

−
Rj i

, S+
Rj i

=5, ∀i, j ∈ {1, 2},

1−φ11=0.4, 1−φ12=0.3, 1−φ21=0.2, 1−φ22=0.25.
(4.21)

Therefore, in the case of τi = 1 and δ
j

ij− = 1 for all i, j ∈ {1, 2}, we have Q11 = −4.055,
Q12 = −8.473,Q21 = −1.386, andQ22 = −1.099. Since SCs compete for two customer segments,
42 cases in Table 2 should be investigated. Based on KKT conditions, the feasible and optimal
case is needed to hold λij ≥ 0 for all i, j ∈ {1, 2}, 4.055 ≤ U11 − U12 ≤ 8.473, and 1.386 ≤
U21 −U22 ≤ 1.099.

In the solutions of Table 3, the single feasible and optimal solution is related to λ11 =
λ21 = 0, λ12 = 11.22, and λ22 = 14.00. Therefore, in the Nash equilibrium, coupled constraint
for customer segment 1 and SC 2 and coupled constraint for customer 2 and SC 1 are
binding as well. Consequently, SC 2 will win customer segment 1 with the least probability
of 0.3; however, SC 1 will attract the customer segment 1 with probability more than 0.4.
Similarly, SC 1 (and 2) will win customer segment 2 with probability of 0.2 (more than 0.25).



22 Mathematical Problems in Engineering

Ta
b
le

3:
A
n
ex
am

pl
e
fo
r
co
m
pe

ti
ng

ch
ai
ns

fo
r
tw

o
cu

st
om

er
se
gm

en
ts
.

λ
11

=
0

λ
11

>
0

λ
21

=
0

λ
21

>
0

λ
21

=
0

λ
21

>
0

λ
ij
=
0

λ
21

=
−1

1.
10

λ
11

=
−1

5.
19

λ
11

=
−1

5.
31

,λ
21

=
−1

1.
12

λ
22

=
0

U
11

=
26

9.
71

U
12

=
19

7.
78

N
FS

U
11

=
27

0.
32

U
12

=
19

7.
78

N
FS

U
11

=
19

3.
72

U
12

=
19

7.
78

N
FS

U
11

=
19

3.
72

U
12

=
19

7.
78

N
FS

λ
12

=
0

U
21

=
35

1.
90

U
22

=
27

9.
96

U
21

=
27

8.
57

U
22

=
27

9.
97

U
21

=
35

2.
65

U
22

=
27

9.
97

U
21

=
27

8.
57

U
22

=
27

9.
97

λ
22

=
13

.8
9

λ
11

=
−1

5.
33

,λ
22

=
14

.0
4

λ
22

>
0

U
11

=
26

9.
71

U
12

=
19

7.
08

N
FS

N
F

U
11

=
19

3.
01

U
12

=
19

7.
07

N
FS

N
F

U
21

=
35

1.
90

U
22

=
35

0.
80

U
21

=
35

2.
65

U
22

=
35

1.
65

λ
12

=
11

.1
0

λ
21

=
−1

1.
09

,λ
12

=
−1

1.
20

λ
22

=
0

U
11

=
26

9.
71

U
12

=
26

1.
71

N
FS

U
11

=
27

0.
33

U
12

=
26

1.
85

N
FS

N
F

N
F

λ
12

>
0

U
21

=
35

1.
90

U
22

=
27

9.
41

U
21

=
27

8.
03

U
22

=
27

9.
41

λ
22

>
0

λ
12

=
11

.2
2,
λ
22

=
14

.0
0

U
11

=
26

9.
71

U
12

=
26

1.
24

FS
N
F

N
F

N
F

U
21

=
35

1.
90

U
22

=
35

0.
80

FS
:f
ea
si
bl
e
so
lu
ti
on

,N
F:

no
nf
ea
si
bl
e,
an

d
N
FS

:n
on

fe
as
ib
le

so
lu
ti
on

.



Mathematical Problems in Engineering 23

Note that confidence levels about rival strategies can be varied or equal for different customer
segments. Moreover, the degree of customer responsiveness to utility (rationality) will affect
the degree of severity of the competition between chains for that customer.

5. Conclusion

In this paper, we develop a generalized Nash equilibriummodel for the competition between
two SCs where their customers are free to choose. We examine the situation where SC’s
decision makers consider minimum probabilities for attracting the customers based on
customers worth for the SC. Using coupled constraints concept in GNEPs, these probabilities
are involved in competition model formulations. Finally, the equilibrium strategies for
consequent GNEPs are obtained from exploring possible cases of KKT condition. We show
that SCs competition is affected by customer purchasing behaviors due to two reasons. In
the first place, higher rational customers dictate more severe competition between chains.
Secondly, efficient response of an SC to the variation in rival strategies depends on the
sensitivity of the customer segment to price and service level. Moreover, we investigate
the impacts of vagueness regarding rival strategies on SC decisions. We find that decision
makers with different confidence levels about rival strategies may achieve different retail
price and service level. The less the confidence level about the rival strategies, the less the
actual probability of wining customer will be.

Appendix

Proof of Lemma 4.1. Constraint (4.2) can be transformed into

φij exp
(
τi
(
θ0j − θ1ijPij + θ2ijSRj i

))
≥ (1 − φij

)
exp
(
τi
(
θ0j− − θ1ij−P̃ij− + θ2ij−S̃Rj−i

))
. (A.1)

Natural logarithm of inequation (A.1) leads to

(
θ0j − θ1ijPij + θ2ijSRj i

)
−
(
θ0j− − θ1ij−P̃ij− + θ2ij−S̃Rj−i

)
≥ 1

τi
ln

(
1 − φij

φij

)
. (A.2)

Now let μP̃ij−(Pij−) and μS̃Rj− i
(y) be the membership functions of P̃ij− and S̃Rj−i as follows:

μP̃ij−

(
Pij−
)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max

{
0, 1 − Pij− − y

P−
ij−

}
if y ≤ Pij−,

max

{
0, 1 − y − Pij−

P+
ij−

}
if y > Pij−,
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μS̃Rj− i

(
y
)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max

{
0, 1 −

SRj−i − y

S−
Rj−i

}
if y ≤ SRj−i,

max

{
0, 1 −

y − SRj−i

S+
Rj−i

}
if y > SRj−i,

(A.3)

and let Y
δ
j

ij−
= {y | μP̃ij−(Pij−) ≥ δ

j

ij−, μS̃Rj− i
(y) ≥ δ

j

ij−, y ≥ 0} for each δ
j

ij− ∈ [0, 1] be the δ
j

ij−

level cut for the price and service level membership functions. By substituting δ
j

ij− level cut
of membership functions (A.3) into constraint (A.2) [62], we have

θ0j−θ0j−−θ1ijPij+θ1ij−Pij−+θ2ijSij−θ2ij−SRj−i ≥ ln

(
1 − φij

φij

)1/τi

−
(
1−δj

ij−
)(

θij1P
+
ij−+θij2S

−
Rj−i

)
.

(A.4)

Proof of Lemma 4.2. Regarding the uncertainty about competitor strategies, the term (1 −
δ
j

ij−)ρij appeared in the right hand side of constraint (4.4). This term causes a change in
probability of attracting the customer. Let 1−φ′

ij be the newminimumprobability of attracting
customer segment i. This probability is obtained from the following equation:

ln

(
1 − φij

φij

)1/τi

−
(
1 − δ

j

ij−
)
ρ
j

ij− = ln

(
1 − φ′

ij

φ′
ij

)1/τi

. (A.5)

By solving (A.5) for φ′
ij , we have

1 − φ′
ij =
(
1 − φij

) 1

1 − φij + φij exp
(
ρ
j

ij−τi
(
1 − δ

j

ij−
)) =

(
1 − φij

)
kij . (A.6)

Proof of Proposition 4.3. Consider KKT condition for manufacturer objective function (4.6) and
retailer objective function (4.9) along with constraint (4.7). Since ∂2E(πMj )/∂w

2
Mj

= −2γi ≤ 0,
objective function (4.6) corresponding to manufacturer j is concave on wMj . On the other
hand, Hessian matrix of retailer objective function (4.9) is

HRj =

[−2kij
(
1 − φij

)
γi kij

(
1 − φij

)
βi

kij
(
1 − φij

)
βi −ηRj

]
. (A.7)

E(πRj ) is concave function on (mRji, sRj ) if and only if the Hessian matrix is negatively
definite. Due to 0 ≤ kij(1 − φij) ≤ 1, γi, ηRj ≥ 0, and B′

ij > 0, retailer objective function
(4.9) is concave [54]. Moreover, since the left side of coupled constraint (4.7) is a linear
and continuous function and all gradients at point Xij = (wMj ,mRji, sRj ) exist, the constraint
qualification of KKT condition is satisfied at this point. If X∗

ij = (w∗
Mj

,m∗
Rj i

, s∗Rj
) is an optimal



Mathematical Problems in Engineering 25

strategy of the manufacturer and retailer in SC j corresponding to customer segment i, then
X∗

ij must satisfy constraint (4.7), and there must exist multiplier λij satisfying

kij
(
1 − φij

)[
αi − γi

(
w∗

Mj
+m∗

Rj i

)
+ βis

∗
Rj

]
− kij

(
1 − φij

)
γi
(
w∗

Mj
− cMj

)
− λijθ1ij = 0,

kij
(
1 − φij

)[
αi − γi

(
w∗

Mj
+m∗

Rj i

)
+ βiS

∗
Rj

]
− kij

(
1 − φij

)
γim

∗
Rj i

− λijθ1ij = 0,

kij
(
1 − φij

)
βim

∗
Rj i

− ηRjS
∗
Rj

+ λijθ2ij = 0,

λij
[
θ0j − θ0j− − θ1ij

(
w∗

Mj
+m∗

Rj i

)
+ θ1ij−Pij− + θ2ijS

∗
j − θ2ij−Sij− −Qij

]
= 0,

λij ≥ 0.

(A.8)

The optimal strategies (w∗
Mj

,m∗
Rj i

, s∗Rj
) are found by solving simultaneously system of (A.8)

which are equal to optimal values in the proposition. Thus, the Proposition 4.3 follows.

Proof of Proposition 4.4. Proof of the proposition is straightforward from the first-order
deviations of optimal strategies in Proposition 4.3.

Proof of Proposition 4.5. In Proposition 4.4, the denominators of all fractions are positive
because

2θ1ijEij − θ2ijkij
(
1 − φij

)
Fij = 3θ2

2ij γikij
(
1 − φij

)
+ 2θ2

1ijηRj − 3θ1ijθ2ijkij
(
1 − φij

)
βi, (A.9)

and from Bij = 3γiηRj − kij(1 − φij)βi
2 > 0 and 0 ≤ kij(1 − φij) ≤ 1, we know that 2

√
6γiηRj >

3kij(1 − φij)βi; therefore, it follows that

3θ2
2ij γikij

(
1 − φij

)
+ 2θ2

1ijηRj − 3θ1ijθ2ijkij
(
1 − φij

)
βi

≥ 3θ2
2ij γikij

(
1 − φij

)
+ 2θ2

1ijηRj − 2θ1ijθ2ij
√
6kij
(
1 − φij

)
γiηRj

=
(
θ2ij

√
3γikij

(
1 − φij

) − θ1ij
√
2ηRj

)2

≥ 0.

(A.10)

Since 2θ1ijEij − θ2ijkij(1 − φij)Fij > 0, all derivatives in Proposition 4.4 have the same sign as
their numerators. Thus, from Eij > 0 ⇔ θ1ij/θ2ij > kij(1 − φij)βi/ηRj and Fij > 0 ⇔ θ1ij/θ2ij >
3γi/βi, all statements in Proposition 4.5 follow.
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Proof of Proposition 4.6. First, we show that E(πRj ) is a concave function on mRji and SRji for
all i ∈ M. The Hessian matrix of E(πRj ) is

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2Ω11γ1 0 · · · 0 Ω11β1 0 · · · 0

0 −2Ω21γ2 · · · 0 0 Ω21β2 · · · 0

...
...

...
...

...
...

...
...

0 0 · · · −2Ωn1γn 0 0 · · · Ωn1βn

Ω11β1 0 · · · 0 −ηR1 0 · · · 0

0 Ω21β2 · · · 0 0 −ηR2 · · · 0

...
...

...
...

...
...

...
...

0 0 · · · Ωn1βn 0 0 · · · −ηRn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.11)

where Ωi1 denotes to ki1(1 − φi1). By performing elementary Gauss-Jordan operation using n
first rows ofH, the following upper triangular matrix is obtained:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2Ω11γ1 0 · · · 0 Ω11β1 0 · · · 0

0 −2Ω21γ2 · · · 0 0 Ω21β2 · · · 0

...
...

...
...

...
...

...
...

0 0 · · · −2Ωn1γn 0 0 · · · Ωn1βn

0 0 · · · 0
Ω11β1

2

2γ1
− ηR1 0 · · · 0

0 0 · · · 0 0
Ω21β2

2

2γ2
− ηR1 · · · 0

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · Ωn1βn
2

2γn
− ηRn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A.12)

From B′
ij > 0 and 0 ≤ kij(1 − φij) ≤ 1, it follows that all diagonal elements of the matrix

are negative; thus, Hessian matrix is negative definite and E(πRj ) is a concave function on
(mRji, SRj i) for all i ∈ M. [54]. Moreover, from ∂2E(πMj )/∂wMj

2 = −∑i∈M kij(1 − φij)γi <
0, it follows that E(πMj ) is concave on wMj . Retailers in both chains determine strategies
(m∗

Rj i
, S∗

Rj i
) and (m∗

Rj−i
, S∗

Rj−i
) regarding customer segment i independently of others segment.

Therefore, in KKT conditions of the GNEP, one case of Table 1 will give equilibrium solution
for each customer segment.
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