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In order to increase productivity, it is important to study the performance of a hydraulically
fractured well producing at constant wellbore pressure. This paper constructs a new productivity
formula, which is obtained by solving a weakly singular integral equation of the first kind, for
an infinite-conductivity hydraulically fractured well producing at constant pressure. And the
two key components of this paper are a weakly singular integral equation of the first kind and
a steady-state productivity formula. A new midrectangle algorithm and a Galerkin method are
presented in order to solve the weakly singular integral equation. The numerical results of these
two methods are in accordance with each other. And then the solutions of the weakly singular
integral equation are utilized for the productivity formula of hydraulic fractured wells producing
at constant pressure, which provide fast analytical tools to evaluate production performance
of infinite-conductivity fractured wells. The paper also shows equipotential threads, which are
generated from the numerical results, with different fluid potential values. These threads can be
approximately taken as a family of ellipses whose focuses are the two endpoints of the fracture,
which is in accordance with the regular assumption in Kuchuk and Brigham, 1979.

1. Introduction

Themain objective of hydraulic fracturing for well stimulation is to increase well productivity
by creating a highly conductive path some distance away from the skin zone into the
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formation. The fracture creates more surface area to the wellbore without drilling another
well. Sincemore reservoir area is in direct communicationwith thewellbore, a greater volume
of fluid can be produced into the wellbore per unit time, resulting in an increased production
rate. This basic objective has not changed since hydraulic fracturing was introduced in the
early 1950s. At the beginning, hydraulic fracturing was considered a good mean to increase
productivity of the wells completed in low-permeability reservoirs. Now, it has become an
integral part of most well completions.

For hydraulically fractured wells, unsteady-state pressure transient testings are useful
tools for evaluating insitu reservoir and wellbore parameters that describe the production
characteristics. The use of transient well testing for determining reservoir parameters and
productivity of fractured wells has become common, and determination of transient pressure
behavior and productivity for fractured wells has aroused considerable interest over the past
decades.

Numerous analytic solutions have been presented for the pressure behavior of a
fractured well producing at constant flow rate. An extensive literature survey on fractured
wells producing at constant flow rates can be found. Guppy et al. present for the first time
a technique that analyzes buildup and drawdown data from wells produced at constant
pressure with turbulent flow in the fracture [1]. Cinco-Ley and Samaniego-V studied the
early-time pressure data for a well intercepted by a finite-conductivity vertical fracture [2].
Ozkan et al. described the characteristics of a well producing at a constant pressure in a
natural fractured reservoir [3]. Guppy and Cinco-Ley presented semianalytic solutions for
unsteady-state flow behavior of a well intersecting a vertical fracture and analytic solutions
for defining certain portions of the early time data for various types of fracture conductivity
[4]. Nashawi discussed a semianalytical equationwhich incorporates the effects of non-Darcy
flow in the fracture [5]. Kuchuk and Brigham presented analytical solutions to elliptical flow
problems that are applicable to infinite-conductivity vertically fractured wells, elliptically
shaped reservoirs, and anisotropic reservoirs producing at constant rate or pressure [6].

Although most well test analysis methods for hydraulically fractured wells assume
constant rate production, it must be pointed out that the constant rate production is difficult
to maintain, and constant wellbore pressure production conditions are not uncommon.
Examples of conditions under which constant pressure is maintained at a well include
production into a constant pressure separator or pipeline, open flow to the atmosphere, or
production from a low permeability reservoir. It is important to consider wells producing
at constant pressure rather than constant rate during large portions of the production life of
tight reservoirs [4].

This paper proposes a new productivity model of an infinite-conductive hydraulically
fractured well producing at constant pressure. The weakly singular integral equation [7–9]
arising from this model has attracted much attention for its numerical solutions [10–12].

In order to solve the problem of constant wellbore pressure production, the numerical
solution to a weakly singular integral equation is required, and a new midrectangular
algorithm is used to solve theweakly singular integral equation; the corresponding numerical
results are compared with those by the Galerkin method.

Furthermore, the solutions of the weakly singular integral equation are used in
the productivity formulae of hydraulically fractured wells producing at constant pressure.
These formulae provide fast analytical tools to evaluate production performance of infinite-
conductivity fractured wells. And equipotential threads with different fluid potential values,
which can be approximately taken as a family of ellipses whose focuses are the two endpoints
of the fracture, are also shown.
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Figure 1: Schematic of ideal fracture.

The rest of this paper is organized as follows. In Section 2, the new model is derived.
In Section 3, the Galerkin method and the corresponding numerical results are presented.
In Section 4, the midrectangle algorithm is constructed, and the corresponding numerical
experiments are presented. Then conclusions are reached in Section 5.

2. Infinite-Conductivity Hydraulically Fractured Well Model
Producing at Constant Wellbore Pressure

In this section, we will construct a new productivity model of an infinite-conductivity
hydraulically fractured well producing at constant wellbore pressure.

Figure 1 represents an ideal vertical fracture. The usual assumptions apply; that is,
the porous medium is isotropic, horizontal, homogeneous, and uniform in thickness and has
constant permeability. Also, the fracture fully penetrates the vertical extent of the formation
and is the same length on both sides of the well.

The porous media domain is as follows:

Ω =
{(

x, y, z
) | x2 + y2 < Re

2, 0 < z < H
}
, (2.1)

where Re is cylinder radius and Ω is the cylindrical body. Since both the vertical well and
the hydraulic fracture are fully penetrating, we may use two-dimensional model to study
the pressure behavior. Assume the fracture length is L, L = 2xf , the fracture is taken as a
line sink in the two-dimensional space, and the coordinates of the two ends are (−xf , 0) and
(xf , 0). Supposing that point (x′, 0) is on the fracture, in order to obtain the pressure at point
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(x, y) caused by the point (x′, 0), we have to obtain the basic solution of the following partial
differential equation in Ω:

K

μ

∂2P

∂x2
+
K

μ

∂2P

∂y2
= −q(x′)δ(x − x′)δ(y), (2.2)

where P(x, y) is the pressure at point (x, y). K is the formation permeability, μ is viscosity,
q(x′) is the flow rate at point (x′, 0), δ(y), δ(x − x′) are Dirac functions and

x′ ∈ [−xf ,xf

]
, (2.3)

that is, the hydraulic fracture is between [−xf ,xf].
Let

P |r→∞ = Pi > 0, (2.4)

where P |r→∞ is the pressure at infinite distance away from the fracture. Because the
hydraulically fractured well is infinite conductivity, the pressure of the fracture denoted by
P0 is uniform. That is

P(x, 0) = P0 = constant, ∀x ∈ [−xf ,xf

]
. (2.5)

Thus, if q(x′) is known, the total productivity is given by

Q =
∫H

0

∫xf

−xf

q
(
x′)dx′dz = H

∫xf

−xf

q
(
x′)dx′. (2.6)

In order to simplify the previously mentioned equations, we take the following di-
mensionless transforms:

xD =
x

2xf
, yD =

y

2xf
,

PD =
Pi − P

Pi
, PD0 =

Pi − P0

Pi
.

(2.7)

Obviously, we obtain

∂xD

∂x
=

1
2xf

,

∂P

∂x
=
(

∂P

∂xD

)(
∂xD

∂x

)
=

1
2xf

∂P

∂xD
,

∂2P

∂x2
=

∂

∂x

(
∂P

∂x

)
=

1
4x2

f

∂2P

∂x2
D

.

(2.8)
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Since

PD =
Pi − P

Pi
, (2.9)

then

∂2P

∂x2
= − Pi

4x2
f

∂2PD

∂x2
D

. (2.10)

In the same manner, we have

∂2P

∂y2
= − Pi

4x2
f

∂2PD

∂y2
D

,

δ
(
x − x′)δ(y) = δ

[
2xf

(
xD − x′

D

)]
δ
(
2xfyD

)

=
(
2xf

)−2
δ
(
xD − x′

D

)
δ
(
yD

)
.

(2.11)

So

K

μ

∂2P

∂x2
+
K

μ

∂2P

∂y2
= − K

μ

Pi

4x2
f

(
∂2PD

∂x2
D

+
∂2PD

∂y2
D

)

= − q
(
xfx

′
D

)(
2xf

)−2
δ
(
xD − x′

D

)
δ
(
yD

)
.

(2.12)

That is,

∂2PD

∂x2
D

+
∂2PD

∂y2
D

= qD
(
x′
D

)
δ
(
xD − x′

D

)
δ
(
yD

)
, (2.13)

where

qD
(
x′
D

)
=

q
(
2xfx

′
D

)
μ

KPi
, x′

D ∈
[
−1
2
,
1
2

]
. (2.14)

Note that after taking the dimensionless transforms, producing section [−xf ,xf] of the
fractured well is changed to [−1/2, 1/2], and the initial conditions are changed as follows:

PD|rD →∞ −→ 0+,

qD
(
x′
D

)
= 0, x′

D /∈
[
−1
2
,
1
2

]
.

(2.15)
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It is well known that the fundamental solution of two-dimensional Laplace equation
is as follows [13, 14]:

g
(
x, y;x′, y′) = −

ln
[
(x − x′)2 +

(
y − y′)2]1/2

2π
.

(2.16)

Thus, if qD(x′
D) is known, the solution to (2.13) is given by

PD

(
xD, yD

)
=
∫1/2

−1/2
g
(
xD, yD;x′

D, 0
)
qD
(
x′
D

)
dx′

D. (2.17)

If the hydraulically fractured well is infinite conductivity, then we have

PD(xD, 0) = PD0, xD ∈
[
−1
2
,
1
2

]
, (2.18)

where PD0 is a constant.
From (2.17), we can obtain the following equation:

∫1/2

−1/2
g
(
xD, 0;x′

D, 0
)
qD
(
x′
D

)
dx′

D = PD0, (2.19)

and it can be simplified as follows:

( −1
2π

)∫1/2

−1/2
ln
∣∣xD − x′

D

∣∣qD
(
x′
D

)
dx′

D = PD0. (2.20)

Let

u
(
x′
D

)
=

qD
(
x′
D

)

2πPD0
, x′

D ∈
[
−1
2
,
1
2

]
. (2.21)

Consequently, we obtain the following first kind weakly singular integral equation:

∫1/2

−1/2
ln
∣∣x − y

∣∣u(x)dx = −1, ∀y ∈
[
−1
2
,
1
2

]
. (2.22)

Once u(x) is obtained from the previous equation, we can use it to compute

qD(x) = 2πPD0u(x), x ∈
[
−1
2
,
1
2

]
. (2.23)
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Table 1: Galerkin approximations of (2.22)with h = 1/32.

i 1 2 3 4
ci 2.6610334017 0.9490861410 0.8841883020 0.7384058892
ci+4 0.6653019950 0.6118426439 0.5732934677 0.5440894309
ci+8 0.5215521538 0.5039599049 0.4902132354 0.4795754716
ci+12 0.4715448802 0.4657790288 0.4620502406 0.4602190183
ci+16 0.4602190183 0.4620502406 0.4657790288 0.4715448802
ci+20 0.4795754716 0.4902132354 0.5039599049 0.5215521538
ci+24 0.5440894309 0.5732934677 0.6118426439 0.6653019950
ci+28 0.7384058892 0.8841883020 0.9490861410 2.6610334017

Using

qD
(
x′
D

)
=

q
(
2xfx

′
D

)
μ

KPi
, x′

D ∈
[
−1
2
,
1
2

]
, (2.24)

we can obtain

q
(
2xfx

′
D

)
=

KPi

μ
qD
(
x′
D

)
, x′

D ∈
[
−1
2
,
1
2

]
. (2.25)

The total productivity of the hydraulically fractured well is as follows:

Q = H

∫xf

−xf

q
(
x′)dx′

= 2xfH

∫1/2

−1/2
q
(
2xfx

′
D

)
dx′

D

= 2xf

(
KPiH

μ

)∫1/2

−1/2
qD
(
x′
D

)
dx′

D

= 4xfπPD0

(
KPiH

μ

)∫1/2

−1/2
u(x)dx

= 4xfπ

(
Pi − P0

Pi

)(
KPiH

μ

)∫1/2

−1/2
u(x)dx,

Q = 4xfπ
(Pi − P0)KH

μ

∫1/2

−1/2
u(x)dx.

(2.26)

Remark 2.1. Equation (2.22) is the first kind weakly singular integral equation, which can be
solved with the numerical methods introduced in Sections 3 and 4. And the total productivity
can be obtained by (2.26).
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Table 2: Galerkin approximations of (3.11) with different h.

i 1 2 3 4
Q(1/2i) 0.6932919850 0.7068397093 0.7139761064
Q(1/2i+4) 0.7176334503 0.7194835363 0.7204138104 0.7208802386
Q(1/2i+8) 0.7211137731 0.7212306202 0.7212890637 0.7213182904

Table 3:Mid-rectangle approximations of (2.22)with h = 1/32.

i 1 2 3 4
ci 2.4652280029 1.1168311123 0.8795040869 0.7498254718
ci+4 0.6700249966 0.6154959679 0.5759489664 0.5461808975
ci+8 0.5215521538 0.5039599049 0.4902132354 0.4807028032
ci+12 0.4725784047 0.4667483804 0.462979470 0.4611289341
ci+16 0.4611289341 0.462979470 0.4667483804 0.4725784047
ci+20 0.4807028032 0.4902132354 0.5039599049 0.5215521538
ci+24 0.5440894309 0.5732934677 0.6154959679 0.6700249966
ci+28 0.7498254718 0.8795040869 1.1168311123 2.4652280029

Remark 2.2. From Tables 1 and 2 in Section 3 or Tables 3 and 4 in Section 4, we can find that∫1/2
−1/2 u(x)dx is a constant. So the total productivity formula is as follows:

Q = 4xfπ
(Pi − P0)KH

μ

∫1/2

−1/2
u(x)dx

≈ 4xfπ
(Pi − P0)KH

μ
h
n−1∑
j=0

uj

≈ 4xfπ
(Pi − P0)KH

μ
0.7213

= 9.0641xf
(Pi − P0)KH

μ

= 4.53205
(Pi − P0)KHL

μ
,

(2.27)

where L is the length of the hydraulically fractured well.

3. Galerkin Method for Steady-State Productivity Computation of
the Hydraulically Fractured Well

In this section, we will present the Galerkin method, which has a mature analysis framework,
to solve the weakly singular integral equation (2.22). Once u(x) of (2.22) is known, the
approximation of (2.26) is also presented.
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Table 4: Mid-rectangle approximations of (4.16) with different h.

i 1 2 3 4
Q′(1/2i) 0.6859163596 0.7044679397 0.7134577603
Q′(1/2i+4) 0.7177072748 0.7196865358 0.7205981981 0.7210138248
Q′(1/2i+8) 0.7212012467 0.7212846926 0.7213212664 0.7213369747

Let

h =
1
n
, xj = −1

2
+ jh,

(
j = 0, . . . , n

)
,

Γ =
[
−1
2
,
1
2

]
, Γj =

[
xj−1,xj

]
,
(
j = 1, . . . , n

)
.

(3.1)

Clearly,

Γ =
n⋃
j=1

Γj . (3.2)

Let

ej(x) =
{

1, x ∈ Γj ,
0, x /∈ Γj ,

Sh = span
{
ej(x), j = 1, . . . , n

}
.

(3.3)

Define the energy inner product

[u, v] = (Ku, v)

= −
∫∫

Γ
ln
∣∣x − y

∣∣u(x)v(y)dsxdsy, ∀u, v ∈ L2(Γ)
(3.4)

and the energy norm

‖u‖2 = [u, u]. (3.5)

The weak formulation is to find u ∈ L2(Γ) such that

[u, v] =
(
g, v

)
, ∀v ∈ L2(Γ). (3.6)

And the Galerkin formulation is to find

uh(x) =
n∑
j=1

cjej(x) ∈ Sh (3.7)
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such that

[
uh, vh

]
=
(
g, vh

)
, ∀vh ∈ Sh. (3.8)

Then the matrix representation of the approximation is

Ac = g, (3.9)

where

A =
(
aij

)
n×n,

aij = −
∫

Γi

∫

Γj
ln
∣∣x − y

∣∣dsxdsy,
(
i, j = 1, . . . , n

)
,

c = [c1, c2, . . . , cn]T ,

g =
[
g1, g2, . . . , gn

]T
,

gj =
(
g, ej

)
=
∫∫

Γ
g(x)ej

(
y
)
dsxdsy,

(
j = 1, . . . , n

)
.

(3.10)

Once the solution of (3.9) is obtained, we can utilize it to obtain the total productivity
of the hydraulically fractured well by the following formula:

Q(h) = h
n∑
j=1

cj . (3.11)

In fact

Q(h) =
∫1/2

−1/2
uh(x)dx

=
∫1/2

−1/2

n∑
j=1

cjej(x)dx

=
n∑
j=1

cj

∫1/2

−1/2
ej(x)dx

=
n∑
j=1

cjh,

(3.12)

which completes the proof of Formula (3.11).
In the following, we will present the error estimate of the Galerkin approximation.

Since Sh ⊂ L2(Γ), then (3.6) and (3.8) lead to

[
uh − u, v

]
= 0, ∀v ∈ Sh. (3.13)



Mathematical Problems in Engineering 11

Hence

uh = Phu, (3.14)

where Ph : L2(Γ) 
→ Sh is the orthogonal projection with respect to the energy inner product.
Consequently, there holds

∥∥∥uh − u
∥∥∥ = inf

v∈Sh
‖u − v‖. (3.15)

Using (3.15), the following theorem, which is recalled from [7, 8], is valid.

Theorem 3.1 (see [7, 8]). If Γ is sufficiently smooth, g is a smooth function on Γ, and Sh is a subspace
which is construct of piecewise smooth constant functions, then there is a constant c > 0 such that

∥∥∥uh − u
∥∥∥ ≤ ch2/3,

∣∣∣
(
uh − u, g

)∣∣∣ ≤ ch3.

(3.16)

Now we turn to the implementation issue of (3.9). Clearly,

lim
h→ 0

h lnh = 0. (3.17)

Using (3.17), we can obtain

aij = −
∫

Γi

∫

Γj
ln
∣∣x − y

∣∣dsxdsy

=
1
2
(
j − i − 1

)2
h2 ln

∣∣(j − i − 1
)
h
∣∣ − (j − i

)2
h2 ln

∣∣(j − i
)
h
∣∣

− 3
2
h2 +

1
2
(
j − i + 1

)2
h2 ln

∣∣(j − i + 1
)
h
∣∣,

gj =
(
g, ej

)

=
∫∫

Γ
g(x)ej

(
y
)
dsxdsy
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=
∫

Γ
g(x)dsx

∫

Γ
ej
(
y
)
dsy

=
∫

Γ
g(x)dsxh.

(3.18)

In the numerical experiment, we choose g(x) = −1 and Γ = [−1/2, 1/2] in the previous
algorithm in order to obtain the numerical solutions of (2.22). Table 1 shows the Galerkin
approximations with h = 1/32, from which we can see that the solution is symmetric, that
is, ci = cn+1−i, i = 1, . . . , n. And Table 2 shows the total productivity of fractured well with
different h, which is convergent when h → 0. More observations and conclusions from the
numerical results will be presented at the end of Section 4.

4. Midrectangle Algorithm for Steady-State Productivity
Computation of the Hydraulically Fractured Well

In this section, we will construct and analyze a midrectangle algorithm, which is much more
convenient to implement but still has similar accuracy to that of the Galerkin method.

We first prove the following theorem, which will lead to the algorithm and provide the
error estimate of the method.

Theorem 4.1. For any g(x) ∈ C2
[t−a,t+a], there holds

∫ t+a

t−a
g(x) ln|x − t|dx = 2g(t)a(lna − 1) +O

(
a3 lna

)
. (4.1)

Proof. Let

h =
a

n
, xi = t − a + ih, (i = 0, 1, . . . , n − 1, n, n + 1, . . . , 2n). (4.2)

Obviously,

xn = t, xi + x2n−i = 2t. (4.3)

By Taylor expansion, we can obtain

g(xi) + g(x2n−i) = 2g(t) +
g ′′(ζi)

2
(xi − t)2. (4.4)

That is,

g(xi) + g(x2n−i) = 2g(t) +
g ′′(ζi)

2
((n − i)h)2. (4.5)
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Hence

∫ t+a

t−a
g(x) ln|x − t|dx = lim

h→ 0

[
h
n−1∑
i=0

g(xi) ln|xi − t| + h
2n∑

i=n+1

g(xi) ln|xi − t|
]

= lim
h→ 0

[
h
n−1∑
i=0

g(xi) ln(a − ih) + h
2n∑

i=n+1

g(xi) ln(ih − a)

]

= lim
h→ 0

[
h
n−1∑
i=0

g(xi) ln(a − ih) + h
2n−2n∑

i=n+1−2n
g(xi+2n) ln((i + 2n)h − a)

]

= lim
h→ 0

[
h
n−1∑
i=0

g(xi) ln(a − ih) + h
0∑

i=1−n
g(xi+2n) ln((i + 2n)h − a)

]

= lim
h→ 0

⎡
⎣h

n−1∑
i=0

g(xi) ln(a − ih) + h
−0∑

i=−(1−n)
g(x−i+2n) ln((−i + 2n)h − a)

⎤
⎦

= lim
h→ 0

[
h
n−1∑
i=0

g(xi) ln(a − ih) + h
0∑

i=n−1
g(x−i+2n) ln((−i + 2n)h − a)

]

= lim
h→ 0

[
h
n−1∑
i=0

g(xi) ln(a − ih) + h
n−1∑
i=0

g(x−i+2n) ln((−i + 2n)h − a)

]

= lim
h→ 0

[
h
n−1∑
i=0

g(xi) ln(a − ih) + h
n−1∑
i=0

g(x2n−i) ln(−ih + 2nh − a)

]

= lim
h→ 0

[
h
n−1∑
i=0

g(xi) ln(a − ih) + h
n−1∑
i=0

g(x2n−i) ln(a − ih)

]

= lim
h→ 0

[
h
n−1∑
i=0

(
g(xi) + g(x2n−i)

)
ln(a − ih)

]

= lim
h→ 0

[
h
n−1∑
i=0

(
2g(t) +

g ′′(ζi)
2

(
(n − i)h)2

))
ln(a − ih)

]

= lim
h→ 0

[
h
n−1∑
i=0

(
2g(t) ln(a − ih))

]
+ lim

h→ 0

[
h
n−1∑
i=0

g ′′(ζi)
2

((n − i)h)2 ln(a − ih)

]

= lim
h→ 0

[
h
n−1∑
i=0

(
2g(t) ln((n − i)h)

]
+ lim
h→ 0

[
h
n−1∑
i=0

g ′′(ζi)
2

((n − i)h)2 ln((n − i)h)

]

= I1 + I2.

(4.6)
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Here

I1 = lim
h→ 0

[
h
n−1∑
i=0

(
2g(t) ln((n − i)h)

]

= 2g(t) lim
h→ 0

[
h
n−1∑
i=0

(ln((n − i)h)

]

= 2g(t) lim
h→ 0

[
h

n∑
i=1

ln(ih)

]

= 2g(t)
∫a

0
lnxdx

= 2g(t)[x lnx − x]
∣∣a
0 = 2g(t)[a lna − a],

(4.7)

where we have used the result of lim
x→ 0

x lnx = 0. Now we consider I2. Letm ≤ g ′′(ζi) ≤ M, (i =

0, 1, . . . , n − 1). There exists such a constant k that

I2 = lim
h→ 0

[
h
n−1∑
i=0

g ′′(ζi)
2

((n − i)h)2 ln((n − i)h)

]

=
k

2
lim
h→ 0

[
h
n−1∑
i=0

((n − i)h)2 ln((n − i)h)

]

=
k

2
lim
h→ 0

[
h

n∑
i=1

(ih)2 ln(ih)

]

=
k

2

∫a

0
x2 lnxdx

=
k

2

(
x3

3
lnx − x3

9

)∣∣∣∣∣
a

0

=
k

2

(
a3

3
lna − a3

9

)
.

(4.8)

Plugging I1 and I2 into (4.6), the proof is completed.

Let

h =
1
n
, xj = −1

2
+ jh,

(
j = 0, 1, . . . , n

)
,

yj = −1
2
+
(
j +

1
2

)
h,

(
j = 0, 1, . . . , n − 1

)
.

(4.9)
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Clearly,

yj =
1
2
(
xj + xj+1

)
,
(
j = 0, 1, . . . , n − 1

)
. (4.10)

Let uj be the approximation of u(yj), and let yi = (1/2)(xi + xi+1), (i = 0, 1, . . . , n − 1)
be the singular points in (2.22). Then

∫1/2

−1/2
u(x) ln

∣∣x − yi

∣∣dx =
n−1∑
j=0

∫xj+1

xj

u(x) ln
∣∣x − yi

∣∣dx

=
i−1∑
j=0

∫xj+1

xj

u(x) ln
∣∣x − yi

∣∣dx +
∫xi+1

xi

u(x) ln
∣∣x − yi

∣∣dx

+
n−1∑
j=i+1

∫xj+1

xj

u(x) ln
∣∣x − yi

∣∣dx

=
i−1∑
j=0

h
[
u
(
yj

)
ln
∣∣yj − yi

∣∣ +O
(
h2
)]

+ 2u
(
yi

)h
2

(
ln

h

2
− 1
)

+O

((
h

2

)3

ln
h

2

)
+

n−1∑
j=i+1

h
[
u
(
yj

)
ln
∣∣yj − yi

∣∣ +O
(
h2
)]

=
n−1∑

j=0,j /= i

hu
(
yj

)
ln
∣∣yj − yi

∣∣ + hu
(
yi

)
ln

h

2e
+O

(
h2
)
.

(4.11)

Hence we obtain the following theorem.

Theorem 4.2. For all u(x) ∈ C′′
[−1/2,1/2], h = 1/n,xj = (−1/2) + jh, j = 0, 1, . . . , n, yj = −1/2 +

(j + 1/2)h, (j = 0, 1, . . . , n − 1), there holds

∫1/2

−1/2
u(x) ln

∣∣x − yi

∣∣dx =
n−1∑

j=0,j /= i

hu
(
yj

)
ln
∣∣yj − yi

∣∣ + u
(
yi

)
h ln

h

2e

+O
(
h2
)
, (i = 0, 1, . . . , n − 1).

(4.12)

From Theorem 4.2, we can construct the following midrectangle algorithm for (2.22):

−1 =
∫1/2

−1/2
u(x) ln

∣∣x − yi

∣∣dx

≈
n−1∑

j=0,j /= i

(
h ln

∣∣yj − yi

∣∣)uj +
(
h ln

h

2e

)
ui, (i = 0, 1, . . . , n − 1).

(4.13)
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The error estimate of this method is given by Theorem 4.2. And the matrix rep-
resentation of (4.13) is

Au = −I, (4.14)

where

u = [u0, u1, . . . , un−1]T , I = [1, 1, . . . , 1]T ,

A =
(
aij

)n−1
i,j=0,

ai,j =

⎧
⎨
⎩

h ln
h

2e
i = j

h ln
(∣∣j − i

∣∣h) i /= j
,
(
i, j = 0, 1, . . . , n − 1

)
.

(4.15)

After u in (4.14) is obtained, the total productivity of the hydraulically fractured well
can be approximated as follows:

Q′(h) = h
n−1∑
j=0

uj. (4.16)

Table 3 shows the midrectangle approximations with h = 1/32. And Table 4 shows the
total productivity of fractured well with different h. The numerical results perform similarly
to those of the Galerkin method presented in Tables 1 and 2.

From Tables 1 and 3, we can find that when a hydraulically fractured well is producing
at constant wellbore pressure, the point convergence intensity at endpoint is bigger than
that of midpoint, and the point convergence intensity is at monotone decreasing trend from
endpoint to midpoint.

From Tables 2 and 4, we can see that the numerical results converge to

0.7213 ≈
∫1/2

−1/2
u(x)dx ≈ Q(h) ≈ Q′(h). (4.17)

Furthermore, this constant is independent of well length, permeability, viscosity, and
other fluid properties. Hence this result can be used to calculate flow rates for many realistic
cases as follows:

Q = 0.7213 × 2π × L × KH

μ
× (Pi − P0). (4.18)

Here L is the length of the hydraulically fractured well,K is permeability, μ is viscosity
Pi is pressure at an infinite distance from the well, and P0 is wellbore pressure of the
hydraulically fractured well. From (4.18), we can see that when a hydraulically fractured
well is producing at constant wellbore pressure, its flow rate is directly proportional to well
length, permeability, and pressure difference.
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Figure 2: Profile of equipotential threads of a hydraulically fractured well.

If (Pi − P0) is a constant, the productivity index is given by

Jv = 0.7213 × 2π × L × KH

μ
= 4.53205 × KHL

μ
. (4.19)

Using (2.17) and the results in Table 1, we can calculate the pressure at a point (x, y)
as follows:

P
(
x, y

) ≈
(

h

2π

) 31∑
i=0

ui ln
(√

(x − xi+0.5)2 + y2
)
. (4.20)

And the points, which satisfy

P
(
x, y

) ≈
(

h

2π

) 31∑
i=0

ui ln
(√

(x − xi+0.5)2 + y2
)

= constant (4.21)

form equipotential threadswhen thewell is producing at constant wellbore pressure. Figure 2
shows equipotential threads with different fluid potential values. It can be found that the
equipotential threads can be approximately taken as a family of ellipses whose focuses are
the two endpoints of the hydraulic fractured well. This conclusion is in accordance with the
regular assumption in [6].

5. Conclusions

This paper proposes a new model using a weakly singular integral equation for the
productivity of infinite-conductivity hydraulically fractured wells producing at constant
wellbore pressure. A Galerkin method and a midrectangle algorithm are constructed to
solve this integral equation. And their numerical results are similar to each other. Then the
numerical solutions of this equation are utilized in the productivity formula, which provide
fast analytical tools to evaluate production performance of infinite-conductivity fractured
wells. Furthermore, the following conclusions are obtained.
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(1) The numerical results for the weakly singular integral equation are convergent.
Moreover, the point convergence intensity is symmetric. And the point convergence
intensity is monotonically decreasing from the endpoints to the midpoint when a
hydraulically fractured well is producing at constant wellbore pressure.

(2) The numerical approximation for the productivity is convergent when h → 0.

(3) The equipotential threads, which are generated from the numerical results, can be
approximately taken as a family of ellipses whose focuses are the two endpoints of
the hydraulically fractured well. This conclusion is in accordance with the regular
assumption in [6].
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