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A new four-scroll chaotic attractor is found by feedback controlling method in this paper. The
novel chaotic system can generate four scrolls two of which are transient chaotic and the other two
of which are ultimate chaotic. Of particular interest is that this novel chaotic system can generate
one-scroll, two 2-scroll and four-scroll chaotic attractor with variation of a single parameter. We
analyze the new system by means of phase portraits, Lyapunov exponents, fractional dimension,
bifurcation diagram, and Poincaré map, respectively. The analysis results show clearly that this is
a new chaotic system which deserves further detailed investigation.

1. Introduction

Since Lorenz found the first chaotic attractor, considerable research interests have been made
in searching for new chaotic attractors. Particularly, research interests are turning in searching
for new chaotic attractors in the three-dimensional (3D) autonomous ordinary differential
equations. For example, Lorenz system [1], Rössler system [2], Chen and Ueta system [3], Lü
and Chen system [4], and Liu system [5] were reported and analyzed.

In very recent years, creating complex multiscroll or multiwing chaotic attractors in
3D autonomous systems has been rapidly developed [6, 7]. It stimulates the current research
interest in creating various complex multiscroll chaotic attractors by using simple electronic
circuits and devices. After the rapid development in more than a decade, multiscroll chaotic
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attractors generation has become a relatively mature research direction [8]. In fact, most of
the multiscroll attractors were generated by increasing the breakpoints in the nonlinearity.
Recently, a four-wing or three-wing attractor was generated in some 3D systems by relying
on two embedded state-controlled binary switches [9]. But these 3D systems are not usually
smooth systems. Although a few 3D smooth autonomous chaotic systems have been reported
to display two-, three-, and four-wing attractor, respectively [10–17], how to generate
multiwing chaotic attractors remains an open problem. Therefore, it is important and even
necessary to investigate various possible chaotic behaviors such that we can establish a
unified theory for a 3D system generating chaos.

Particularly, over the last two decades chaos in engineering systems, such as nonlinear
circuits, has gradually been moved from simply being a scientific curiosity to a promising
subject with practical significance and applications. Recently, it has been noticed that
purposefully creating chaos can be a key issue in many technological applications such
as communication, encryption, and information storage. An appropriate system for such
applications could be chosen from a category of easier controlled chaotic system to optimize
factors such as robustness to errors in the parameters or immunity to noise [18]. Therefore, it
is obviously significant to create more complicated chaotic systems with simple expressions
in three-dimensional for engineering applications such as secure communications.

In this paper, we propose a four-scroll chaotic attractor which consists of the two-
scroll transient chaotic and the two-scroll chaotic. It is very desirable for engineering
applications such as secure communications. For example, in terms of decryption, we can
generate a certain degree of confusion by using chaos system of transient chaos feature
to encrypt. Moreover, this novel system can generate one-scroll, left two-scroll, right two-
scroll (according to the system’s geometric locations), and four-scroll chaotic attractors,
respectively, with the variation of a single parameter. This paper is devoted to a more detailed
analysis of this new chaotic attractor.

2. New Chaotic System

Based on the chaotification analysis [18, 19], the Liu-Chen system may be added with two
terms, which leads to the finding of the new chaotic attractor.

Start with the controlled Liu-Chen system [10]:

ẋ = bx + cyz + u1,

ẏ = dy + exz + u2,

ż = fz + gxy.

(2.1)

By various trial tests, we find a simpler anticontroller, that is,

u1 = ay,

u2 = −z,
(2.2)

which yields the following new chaotic system:

ẋ = ay + bx + cyz,

ẏ = dy − z + exz,

ż = fz + gxy,

(2.3)

where [x(t), y(t), z(t)]T ∈ R3 is the state vector and a, b, c, d, e, f , and g are real constants.
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This new system (2.3) is found to be chaotic in a wide parameter range and possesses
many interesting complex dynamical behaviors. For example, the system (2.3) can generate
four-scroll for the parameters a = 2.4, b = −3, c = 14, d = −11, e = 4, f = 5.85, g = −1 and the
initial conditions [1, 3, 5] (see Figure 1(a)).

Sprott [17] has suggested that the long calculation time helps ensure that the solutions
are steady states. Notably, in comparison with those of existing two-scroll or four-scroll
chaotic attractors in 3D autonomous systems, the novel chaotic attractor can generate four-
scroll consisted of the two-scroll transient chaotic and the two-scroll chaotic (see Figures 1(b)–
1(d)). After time t > 55, simulation results show that the attractor is no longer a four-scroll
attractor and becomes a two-scroll attractor.

3. Some Basic Properties of the New System

In this section, we will investigate some basic properties of the new system (2.3).

3.1. The Four-Scroll Chaotic Attractor

3.1.1. Equilibria

It is known that the number of equilibrium points of the system and the stabilities at the
equilibrium points are very important for the emergence of chaos. In the sequel, we consider
the equilibrium points of system (2.3).

Let

ay + bx + cyz = 0,

dy − z + exz = 0,

fz + gxy = 0.

(3.1)

Let a = 2.4, b = −3, c = 14, d = −11, e = 4, f = 5.85, g = −1. Equation (3.1) has five
equilibrium points as follows:

E1(0, 0, 0),

E2(4.1379, 1.0050, 0.7109),

E3(−3.8879, 1.2560,−0.8347),
E4(−3.8879 − 0.9981, 0.6633),

E5(4.1379,−1.2473,−0.8823).

(3.2)

As shown in Figure 2, the equilibria points of system (2.3), E2, E3, E4, and E5 are
located at the center of the four wings of the attractor, respectively, and the origin (E1) is
located at the center of whole chaotic attractor. Moreover, it can be seen from Figure 2 that
the equilibria E2, E5 play an important role in generating the two-scroll transients chaotic,
while the equilibria E3 and E4 play an important role in ultimate generating two-scroll chaotic
attractor.
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Figure 1: (a) The new chaotic attractor. (b) x-z phase plane of the new chaotic attractor. (c) When time
0 < t ≤ 55, the new system generate two-scroll transient chaotic. (d) When time t > 55, the new system
generate two-scroll chaotic attractor.
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Figure 2: Five equilibria of the new four-scroll chaotic attractor.
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For equilibrium E1, the system (2.3) is linearized, and the Jacobian matrix at E1 is as
follows:

J =

⎛
⎜⎜⎝

b a + cz cy

ez d ex − 1

gy gx f

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−3 2.4 0

0 −11 −1
0 0 5.85

⎞
⎟⎟⎠. (3.3)

To gain its eigenvalues, we let |λI − J | = 0.
So the corresponding eigenvalues at E1 are

λ1 = −3, λ2 = −11, λ3 = 5.85. (3.4)

Similarly, the corresponding eigenvalues at E2 are

λ1 = −12.9021, λ2 = 2.3761 + 7.0804i, λ3 = 2.3761 − 7.0804i. (3.5)

The corresponding eigenvalues at E3 are

λ1 = −12.8005, λ2 = 2.3252 + 7.7881i, λ3 = 2.3252 − 7.7881i. (3.6)

The corresponding eigenvalues at E4 are

λ1 = −12.5469, λ2 = 2.1984 + 6.9804i, λ3 = 2.1984 − 6.9804i. (3.7)

The corresponding eigenvalues at E5 are

λ1 = −13.1525, λ2 = 2.5013 + 7.8516i, λ3 = 2.5013 − 7.8516i. (3.8)

From (3.4)–(3.8), we know that E1, E2, E3, E4, and E5 are all unstable saddle points.

3.1.2. Dissipativity and the Existence of Attractor

For dynamical system (2.3), we can obtain

∇ · V =
∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
= b + d + f, (3.9)

where b + d + f = −8.15 is a negative value. Dynamical system (2.3) is a dissipative system,
and an exponential contraction of the system (2.3) is

dV

dt
= e−8.15. (3.10)

In the dynamical system (2.3), a volume element V0 is apparently contracted by the
flow into a volume element V0e

−8.15t in time t. It means that each volume containing the
trajectory of this dynamical system shrinks to zero as t → ∞ at an exponential rate −8.15.
So, all this dynamical system orbits are eventually confined to a specific subset that have zero
volume, and the asymptotic motion settles onto an attractor of the system (2.3).
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Figure 3: Lyapunov exponents.

3.1.3. Lyapunov Exponents and Spectrum Map

Any system containing at least one positive Lyapunov exponents is defined to be chaotic [20].
The Lyapunov exponent spectrum of the system (2.3) is found to be L1 = 2.8063, L2 = −0.0050,
L3 = −2.8020 (see Figure 3). In addition, the Lyapunov dimension of this system is

DL = j +
1∣∣Lj+1

∣∣
j∑
i=1

Li = 2 +
L1 + L2

|L3|

= 2 +
2.8013

|−2.8020| = 2.9998,

(3.11)

whichmeans that the system (2.3) is really a dissipative system, and the Lyapunov dimension
of this system is fractional. The fractal nature of an attractor does not merely mean this system
has nonperiodic orbits; it also causes nearby trajectories to diverge.

We can further find that the spectrum of system (2.3) exhibits a continuous broadband
feature as shown in Figure 4.

3.1.4. Forming Mechanism of the Four-Scroll Chaotic Attractor Structure

In order to reveal the forming mechanism of the four-scroll chaotic attractor structure, a
controlled system is proposed. The autonomous differential equations of this controlled
system are expressed as

ẋ = ay + bx + cyz,

ẏ = dy − z + exz,

ż = fz + gxy + u.

(3.12)

In this system, u is a parameter of control and the value of u can be changed within a
certain range.
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Figure 4: An apparently continuous broadband frequency spectrum Log |x|.

When the parameter u is changed, the chaos behavior of this system can effectively be
controlled. So it is a controller. In the numerical simulation, the initial values of the system
(3.12) is (1, 3, 5).

For u = −9, the attractor evolves into the limit cycles; the limit cycles are shown in
Figure 5(a).

For u = −5.11, the attractor evolves into the period-doubling bifurcations; period-
doubling bifurcations are shown in Figure 5(b).

For u = −1.94, the corresponding strange attractors are shown in Figure 5(c). Moreover
the attractors are evolved into the one lower-scroll attractor.

For u = −0.45, the strange attractors are shown in Figure 5(d), the attractor evolves
into the single left two-scroll attractor.

For u = 0.45, the corresponding strange attractors are shown in Figure 5(e); the
attractor evolves also into the single right two-scroll attractor.

For u = 1.94, the corresponding strange attractors are shown in Figure 5(f). Moreover,
the attractors are evolved into the one upper-scroll attractor.

For u = 5.11, the attractor evolves into the period-doubling bifurcations; period-
doubling bifurcations are shown in Figure 5(g).

For u = 9, the attractor evolves into the limit cycles; the limit cycles are shown in
Figure 5(h).

In the controller, one can see that when |u| is large enough, chaos attractor disappears;
when |u| is small enough, a complete chaos attractor appears. So |u| is an important parameter
to control chaos in the nonlinear system.

For −9 ≤ u ≤ 9 the bifurcation diagram of system (3.12) shows the complicated
bifurcation phenomena (see Figure 6). It is clear that the bifurcation phenomenon well
coincides with the forming mechanism.

3.2. The One-Scroll Chaotic Attractor

The system (2.3) has been found to generate a one-scroll chaotic attractor by only varying a
single parameter. Here, the parameter f is selected to be varied. For example, if we let a = 2.4,
b = −3, c = 14, d = −11, e = 4, f = 7, g = −1 then a one-scroll chaotic attractor can be observed,
as depicted in Figure 7.
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Figure 5: Phase portraits of the system (3.5) at (a) u = −9, (b) u = −5.11, (c) u = −1.94, (d) u = −0.45, (e)
u = 0.45, (f) u = 1.94, (g) u = 5.11, (h) u = 9.
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Figure 7: The new one-scroll chaotic attractor.

3.3. The Left and Right Two-Scroll Chaotic Attractor

With parameters a = 2.4, b = −3, c = 14, d = −11, e = 4, f = 6, g = −1, the system (2.3) can
exhibit a right two-scroll chaotic attractor (see Figure 8), and with parameters a = 2.4, b = −3,
c = 14, d = −11, e = 4, f = 5.5, g = −1, the system (2.3) can exhibit a left two-scroll chaotic
attractor (see Figure 9).

4. Poincaré Map, Bifurcation Diagram, and the Maximum Lyapunov
Exponent Spectrum of the New Chaotic System

Varying the parameter f , Poincaré mapping of the chaotic attractors of the systems (2.3) are
shown in Figures 10(a), 10(b), 10(c), and 10(d), respectively. Several sheets of the attractors
are displayed. It is noticeable that the Poincaré map of many chaotic systems such as the
generalized Lorenz system [19] only shows a branch with several twigs. The Poincaré map
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Figure 8: The new right two-scroll chaotic attractor.
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Figure 9: The new left two-scroll chaotic attractor.

in Figures 10(a), 10(b), 10(c) and 10(d), however, consists of virtually symmetrical branches
and a number of nearly symmetrical twigs.

The bifurcation diagramwould be far better to summarize all of the possible behaviors
as the parameter varies on one diagram. For 1 ≤ f ≤ 9.4 the bifurcation diagram of system
(2.3) shows the complicated bifurcation phenomena (see Figure 11).

5. Conclusions

In this paper, a new four-scroll chaotic attractor in 3D autonomous system has been reported
and confirmed analytically and numerically. In comparison with that of existing two-scroll
or four-scroll chaotic attractors in 3D autonomous system, the novel chaotic attractor can
generate four-scroll that consisted of the two-scroll transient chaotic and the two-scroll
chaotic. The particular interest is that this novel system can generate different scroll chaotic
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Figure 10: Poincaré maps of x-y plane for z = 0, (a) f = 7, (b) f = 6, (c) f = 5.58, (d) f = 5.5.
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attractors with variation of a single parameter. The topological structure of the new system
should be completely and thoroughly investigated. It is expected that more detailed theory
analyses and simulation investigations will be provided in a forthcoming paper.
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[19] S. Čelikovský and G. Chen, “On the generalized Lorenz canonical form,” Chaos, Solitons and Fractals,

vol. 26, no. 5, pp. 1271–1276, 2005.
[20] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov exponents from a time

series,” Physica D, vol. 16, no. 3, pp. 285–317, 1985.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


