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In complex aeronautical and space engineering systems, conventional sensors used for envi-
ronment perception fail to determine the orientation because of the influences of the special
environments, wherein geomagnetic fields are exceptional and the Global Positioning System
is unavailable. This paper presents a fisheye-lens-based visual sun compass that is efficient in
determining orientation in such applications. The mathematical model is described, and the
absolute orientation is identified by image processing techniques. For robust detection of the sun
in the image of the visual sun compass, a modified maximally stable extremal region algorithm
and a method named constrained least squares with pruning are proposed. In comparison with
conventional sensors, the proposed visual sun compass can provide absolute orientation with a
tiny size and light weight in especial environments. Experiments are carried out with a prototype
validating the efficiency of the proposed visual sun compass.

1. Introduction

Mobile robots possessing various sensors are widely employed for taking measurements and
performing tasks in outdoor applications in many fields, including the complex aeronautical
and space engineering systems. These applications present many great challenges, one of
which is that conventional sensors do not work in emerging special environments. For
example, in some planets, magnetic heading detection devices are nonfunctional because of
the negligible magnetic fields, and the Global Positioning System (GPS) receiver does not
work because there is no GPS available. Therefore, a novel sensor is required to perceive the
environment and the robot’s own state.
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The special aeronautical and space environments have little influence on visual
sensors. In addition, being a type of passive sensor, visual sensors do not need a precise and
complex mechanical structure, indicating that vibration has little effect on them and there is
no mechanical fault. More importantly, visual sensors can provide abundant information,
including details of depth, texture, illumination, and so on, with only one measurement
(image) [1, 2]. All of these characteristics ensure that visual sensors have the potential to
overcome the aforementioned challenges. Therefore, the visual sun compass is proposed to
determine orientation for applications in aeronautical and space engineering systems.

The concept of the sun compass is derived from studies of the migration of birds [3].
It has been found that birds navigate and orient themselves with the sun as the reference
during their migration. Some ornithologists analyzed this sun compass both in theory and
by experiment [3]. Then, sun compasses were designed and used for navigation. These
compasses were found to perform well in regions with exceptional geomagnetic fields where
the magnetic compass fails to work. However, the existing sun compasses (denoted as the
classical sun compass) were designed on the basis of the sundial. To obtain precise orientation
measurements, the sundial should be sufficiently large, which makes its volume and weight
very huge and limits its applications. As a mechanical sensor, it is difficult to embed such a
compass in a measuring system and coordinate it with electronic sensors.

The visual sun compass proposed in this paper is composed of a fisheye lens and a
camera. With improvements and advances in manufacturing techniques, fisheye lens and
cameras with high precision and compact structure have been developed, which make the
visual sun compass satisfy the requirements of many applications and be easily embedded
in a measuring system. In addition, such cameras can cooperate with other electronic sensors
because of its electronic output. This type of lens has a large field of view of about 180 degrees,
and there is no occlusion to the view and no requirement for precise mechanical assembly.

There exist some related works in the literature. The star tracker [4], which comprises a
conventional lens and an Active Pixel Sensor camera, is a very precise attitude-measurement
sensor. This sensor uses stars as the frame of reference and performs estimation of orientation
by identifying the observed stars and measuring their relative positions. However, this sensor
is susceptible to various errors, particularly the bright sunlight, because it has high sensibility
and is significantly dependent on the star identification algorithm. In addition, the high costs
limit its use. Sun sensors are another type of instrument that is similar to the proposed
visual sun compass. The sun sensor proposed by Cozman and krotkov [5] is made up of
a telephoto lens and a camera. Because a telephoto lens has a very small field of view, a
precise mechanical tracking system is needed to capture the sun, and this makes the sensor
susceptible to vibration and mechanical fault. Sun sensors proposed by Deans et al. [6] and
Trebi-Ollennu el al. [7], which comprise a fisheye lens and a camera, can determine the
relative orientation. The imaging model of a pinhole camera is used to describe the imaging
mechanism of the fisheye lenses. In addition, extensions with some distortion terms have
been proposed; these do not take the characteristics of fisheye lenses into account, but rather
introduce some nuisance parameters and increase the computational burden. The centroid of
pixels whose intensity values are above a certain threshold is taken as the image of the sun’s
center while taking image measurements of the sun [6–9]. In fact, the centroid of these pixels
may not be the image of the sun’s center because of image noise and outliers.

In this paper, a mathematical model of the visual sun compass, which takes into
account characteristics of fisheye lenses, is presented. An effective method for detecting
and delineating the sun’s image is provided to robustly calculate the azimuth and elevation
angle of the sun. Finally, with the knowledge of the celestial navigation, an estimation of
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Figure 1: Illustration of the classical sun compass. (a) A sketch of the principle of the classical sun compass.
(b) Angles on the dial plate (β: the direction to be measured, γ : the azimuth angle of the sun, ϕ: the angle
of the style’s shadow).

absolute orientation can be obtained. The remainder of this paper is organized as follows. In
Section 2, the classical sun compass has been introduced. The model of the proposed visual
sun compass has been described in Section 3. Section 4 provides a method for detecting and
delineating the sun’s image in the visual sun compass. Section 5 presents some experimental
results and, finally, in Section 6 the conclusions of this study are presented.

2. The Classical Sun Compass

The design of the classical sun compass is based on the sundial, which is originally used to
measure time on the basis of the position of the sun’s shadow. A sundial is composed of a
style (usually a thin rod or a straight edge) and a dial plate on which hour (or angle) lines are
marked. The sun casts a shadow from the style onto the dial plate (see Figure 1(a)). As the sun
moves, the shadow aligns itself with different angle lines on the plate. If the absolute direction
is known, the time at the measuring moment can be calculated on the basis of the shadow. The
classical sun compass inverts the traditional role of a sundial. Instead of measuring time, it
calculates the absolute direction with the shadow and the time information at the measuring
moment.

To calculate the absolute direction, first, the dial plate of the classical sun compass
should be adjusted to be horizontal. Then, the direction to be estimated should be aligned
with one angle line; in general, the angle line with mark 0 is selected. The angle of the style’s
shadow, that is, the angle ϕ in Figure 1(b), and the time at the measuring moment should be
measured. To determine the direction β (β = γ − α), the azimuth angle of the sun γ must be
calculated. With the knowledge of celestial navigation, the azimuth angle γ can be calculated.
As shown in Figure 2, O is the observer’s position, L is the latitude of the observer, N is the
north pole of the planet, P is the projection point of the sun on the planet, D is the declination
of the sun (the declination is the angle between the rays of the sun and the planet’s equator),
and H is the local hour angle (the local hour angle of a point is the angle between the half
plane determined by this point and the planet’s axis, and the half plane determined by the
sun’s projection point and the planet’s axis, and it can be used to describe the position of a
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Figure 2: Illustration of various angles on the planet when measuring with the sun compass (see text for
details of N, P , H, D, O, L, and γ).

point on the celestial sphere). In the spherical triangle ΔPNO, by the spherical law of cosines
(also called the cosine rule for sides), we have

cos(h) = sin(L) sin(D) + cos(L) cos(D) cos(H). (2.1)

In (2.1), the observer’s latitude L should be known, and from this the declination of the sun
D can be calculated on the basis of the time at measuring moment, and the local hour angle
H can be calculated with longitudes of the observer and the projection point of the sun. After
the side of spherical triangle ΔPNO, h, being obtained by the spherical law of cosines, the
azimuth angle of the sun, γ , can be expressed as

sin
(
γ
)
= −cos(D) sin(H)

sin(h)
. (2.2)

In addition, by the spherical cosine law for sides,

cos
(
γ
)
=

(sin(D) − cos(L) cos(h))
cos(L) sin(h)

. (2.3)

Thus, the azimuth angle γ can be determined uniquely, and the direction β(= γ − α) can be
obtained. In general, it is difficult to obtain precise values of the observer’s longitude and
latitude in advance. However, the exact position can be obtained with assumed values of two
or more positions and observed azimuth angles by the intercept method [10].

3. The Visual Sun Compass

The proposed visual sun compass, which is composed of a fisheye lens and a camera,
is essentially a fisheye camera. Figure 3 shows its imaging process. For a space point
P = [X Y Z]T (where [•]T denotes the transpose of a vector or matrix), its fisheye image
is p = [x y]T , whereas its virtual perspective image would be p′ = [x′ y′]T as obtained
by a pinhole camera. In comparison with a pinhole camera, a fisheye camera has a large
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Figure 3: Illustration of a visual sun compass. (a) Light path. (b) A captured image.

field of view of about 180 degrees, which ensures that the sun can be captured with only
one image when its optical axis points at the sky. Further, it can be regarded as a sundial,
where the optical axis is the style and the image plane is the dial plate. Thus, the sun
needs to be identified in the captured fisheye image. Then the azimuth and elevation angle
of the sun can be calculated with its imaging model. If the optical axis upright points at
the sky when capturing images, the absolute direction (and by the intercept method [10]
even the exact position) can be calculated with the time at the image-capture moment
and the longitude and latitude of the observer by the method presented in Section 2.
Otherwise, the measured azimuth and elevation angles should, first, be transformed
into the ground coordinate system with the assistance of an inclinometer or inertial
sensor.

The image of a space point P is p whereas it would be p′ by a pinhole camera; (θ,ϕ)
is the incidence angle of p (or the direction of the incoming ray from P); r is the distance
between the image point p and the principal point (u0, v0); and f is the focal length.

3.1. Imaging Model of Fisheye Camera

A pinhole camera model with some distortion terms is used to describe the fisheye lens
and determine the relative direction in [6, 7], which do not consider the characteristics of
fisheye lenses. In fact, fisheye lenses are usually designed to follow some types of projection
geometry. Table 1 shows some ideal projection models of fisheye lenses [11]. Because the ideal
model is not strictly satisfied and, in some cases, the type of a fisheye lens may be unknown
in advance; a more general mathematical model is needed to describe the visual sun
compass.

Various imaging models of fisheye cameras have been proposed in the literature. These
models can be divided into two categories as follows.
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Table 1: Projection geometry of fisheye lens.

Project type Model
Stereographic r = 2f tan(θ2)
Orthogonal r = f sin(θ)
Equidistant r = fθ

Equisolid angle r = 2f sin(θ/2)

3.1.1. Mapping from an Incident Ray to a Fisheye Image Point

A fisheye camera can be described by the mapping from an incident ray to a fisheye image
point: [X/R Y/R Z/R]T → [x y]T or θ → r, where R =

√
X2 + Y 2 + Z2, the incidence

angle θ is the angle between the principle axis and the incident ray p′P (see Figure 3), and

r =
√
x2 + y2.

3.1.2. Mapping from a Virtual Perspective Image to a Fisheye Image

A fisheye camera can also be described with the mapping from a virtual perspective image to

a fisheye image by [x′ y′]T → [x y]T or r ′ → r, where r ′ =
√
x′2 + y′2. The rational function

[12] belongs to this class

r =
ε1r

′

(1 − ε2r
′2)

, (3.1)

where ε1 and ε2 are two parameters for the lens type.
The former class is more straightforward and popular and represents the real imaging

process of a fisheye camera [12]. In fact, the latter class can also be described in the form of
the former. For example, (3.1) can be expressed as r = ε1f tan(θ)/(1 − ε2f

2tan2(θ)).
Different to fisheye cameras, central catadioptric cameras have an elegant unified

imaging model [13]. Ying and Hu [14] discovered that this unified imaging model could
be extended to some fisheye cameras.

As shown in Figure 4, the unified imaging model for central catadioptric cameras
can be described as follows. A space point [X Y Z]T is first projected to a point
[X/R Y/R Z/R]T on the unit sphere. Then, it is mapped on the image plane, z = −m, via a
projection from the point [0 0 ξ]T . The coordinates of the point on the image plane are

[
x y

]T =
[
(ξ +m)X
ξR − Z

(ξ +m)Y
ξR − Z

]T
. (3.2)

Now, with r =
√
x2 + y2, we have a mapping: θ → r,

r =
(ξ +m) sin(θ)
ξ + cos(θ)

. (3.3)
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Figure 4: The unified imaging model for central catadioptric cameras.

Equation (3.3) can describe the imaging process of catadioptric projections with parabolic,
hyperbolic, and elliptical mirrors with different ξ and m [13]. Let ξ = ∞, for all m/=∞; then
(3.3) can describe the imaging process of a fisheye camera with the orthogonal projection. Let
ξ = 1, m = 2f − 1, then (3.3) can describe the imaging process of a fisheye camera with the
stereographic projection. All of these mean that the unified imaging model (3.3) can be used
to describe some fisheye cameras, which are consistent with conclusions of Ying and Hu [14].

However, for fisheye cameras with equidistant and equisolid angle projections, which
are more widely used in real applications, the unified imaging model does not fit. Assuming
without loss of generality that m = 1 and f = 1, submit r = fθ and r = 2f sin(θ/2) into
(3.3), respectively. The obtained type parameters ξ are (sin(θ) − θ cos(θ))/(θ − sin(θ)) and
cos(θ/2)/(1 − cos(θ/2)). This shows that the parameters ξ of these two types of fisheye
cameras vary with the incident angle θ. This indicates that these fisheye cameras do not have
a unique central view point. Therefore, the unified model (3.3) does not exactly describe the
imaging process of all fisheye cameras.

In fact, the Maclaurin Series of all fisheye lenses listed in Table 1 have the same form

r = k1θ + k2θ
3 + k3θ

5 + · · · . (3.4)

Without loss of generality, we take (3.4) as the model of fisheye lenses. Different from the
model proposed by Trebi-Ollennu et al. [7], there are only odd-order terms. As shown in
Figure 5, there are only slight differences between the ideal models and their 3rd- and 5th-
order Maclaurin Series when θ ∈ [0,π/2], that is, within the field of view of fisheye lenses.
In practice, the 3rd-order Maclaurin Series is taken as a compromise between precision and
computation efficiency:

r = k1θ + k2θ
3. (3.5)
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Figure 5: The ideal models of fisheye lenses and their 3rd- and 5th-order Maclaurin Series.

Then, the projection procedure of a fisheye camera can be described with the following four
steps.

Step 1. A space point P in the world coordinate system is transformed to incident angles
(θ,ϕ) in the camera coordinate system with the relative rotation R and translation t of two
coordinate systems:

[
sin(θ) cos

(
ϕ
)

sin(θ) sin
(
ϕ
)

cos(θ)
]
T =

(RX + t)
‖RX + t‖ . (3.6)

Step 2. The incoming direction (θ,ϕ) is transformed into the normalized image coordinates
(x,y). In this case, the general form (3.5) of fisheye cameras’ model is considered. Then, the
normalized image coordinates can be expressed as

[
x y

]T =
(
k1θ + k2θ

3
)[

cos
(
ϕ
)

sin
(
ϕ
)]T

. (3.7)

Step 3. To compensate for deviations of the fisheye model from the real camera, distortion
terms, called radial distortion and decentering distortion, can be introduced. The former
represents the distortion of ideal image points along radial directions from the distortion
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center. The latter represents the distortion of ideal image points in tangential directions. The

distortions can be expressed as functions of radial distance r =
√
x2 + y2:

δx = x
(
m1r

2 +m2r
4
)
+
[
p1

(
r2 + 2x2

)
+ p2xy

](
1 + p3r

2
)
,

δy = y
(
m1r

2 +m2r
4
)
+
[
p1xy + p2

(
r2 + 2y2

)](
1 + p3r

2
)
,

(3.8)

where mi is the coefficient of radial distortions and pi the coefficient of decentering
distortions.

Step 4. Apply affine transformation to the coordinates (x,y). Assuming that the pixel
coordinate system is orthogonal, we get the pixel coordinates

[
u
v

]
=
[
fu 0
0 fv

]([
x
y

]
+
[
δx
δy

])
+
[
u0

v0

]
, (3.9)

where fu, fv are the scale factors along the horizontal and vertical directions, respectively,
and (u0, v0) is the principal point.

Therefore, we have a more general imaging model of fisheye cameras:

[
u
v

]
=
[
fu 0
0 fv

]((
k1θ + k2θ

3
)[cos

(
ϕ
)

sin
(
ϕ
)
]
+
[
δx
δy

])
+
[
u0

v0

]
. (3.10)

Parameters in this model can be obtained by camera calibration. It appears rational
that an elaborate model (3.10) with distortions (3.8) may perfectly model the real imaging
process. However, we find that, just like the case of a pinhole camera [15], a more elaborate
modeling would not help (negligible when compared with sensor quantization), but cause
numerical instability. In addition, it makes the calibration of the system more complicated
and brings in a very high computation cost, which most applications cannot afford currently.
Therefore, we omit distortions and take the following model in practice:

[
u
v

]
=
(
k1θ + k2θ

3
)[fu 0

0 fv

][
cos

(
ϕ
)

sin
(
ϕ
)
]
+
[
u0

v0

]
. (3.11)

3.2. The Model of the Visual Sun Compass

With the imaging model of fisheye cameras (3.11), the absolute direction of a point p in the
captured image can be determined from its pixel coordinates (u, v). Firstly the normalized
image coordinates can be expressed as

[
x
y

]
=
([

fu 0
0 fv

])−1([
u
v

]
−
[
u0

v0

])
. (3.12)
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Then, the incidence angles (θ,ϕ) of the incoming ray in the visual sun compass coordinate
system can be calculated with

ϕ = arctan 2
(
y,x

)
,

k1θ + k2θ
3 = sqrt

(
x2 + y2

)
.

(3.13)

If the optical axis upright points at the sky when taking images, which means the visual sun
compass coordinate system is parallel with the ground coordinate system and the rotation
matrix between them is a 3 × 3 identity matrix, angles (θ,ϕ) calculated by (3.13) are also the
incidence angles in the ground coordinate system. Otherwise, the calculated (θ,ϕ) should be
first transformed to the ground coordinate system. With an inclinometer or inertial sensor,
the rotation matrix from the visual sun compass coordinate system to the ground plane
coordinate system, Rf2g , can be obtained. The unit vector indicating the incidence angle of
an image point p is denoted as P̂s = [x̂s ŷs ẑs]T in the ground plane coordinate system,
which satisfies

P̂s =
[
x̂s ŷs ẑs

]T =
[
cos

(
ϕ̂
)

sin
(
θ̂
)

sin
(
ϕ̂
)

sin
(
θ̂
)

cos
(
θ̂
)]T

= Rf2g
[
cos

(
ϕ
)

sin(θ) sin
(
ϕ
)

sin(θ) cos(θ)
]T
.

(3.14)

The corresponding azimuth angle and elevation angle (θ̂, ϕ̂) in the ground plane coordinate
system can be expressed as:

θ̂ = arccos(ẑs),

ϕ̂ = arctan 2

⎛

⎜
⎝

x̂s

sin
(
θ̂
) ,

ŷs

sin
(
θ̂
)

⎞

⎟
⎠.

(3.15)

With (3.12)–(3.15), the incidence angle in the ground plane coordinate system of an image
point can be calculated, where parameters of the fisheye lens, (fu, fv, s, u0, v0, k1, k2), can be
calibrated off-line in advance. The obtained azimuth angle ϕ̂ corresponds to the ϕ shown
in Section 2. Then, with local time and estimated longitude, the angle γ can be calculated.
Finally, the absolute direction β can be derived with the obtained ϕ̂ and γ , as shown in
Section 2.

4. Detecting the Sun in the Image

To calculate the absolute direction with the proposed visual sun compass, the sun’s image
in captured images should be detected and measured. In practice, image noises may make
the apparent outline of the sun’s image greatly deviate from the real configuration, and
outliers may generate false alarms with regard to the sun’s image. Therefore, the conventional
method, which takes the centroid of pixels whose intensity values are above a certain
threshold as the image of the sun’s center, may fail to find the real image of the sun’s center.
Because the image of a sphere under the unified imaging model is an ellipse and fisheye
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lenses model (3.11) approximates the unified imaging model (3.3), we take the image of the
sun as a blob. Then, use a modified maximally stable extremal region (MSER) algorithm,
which can remove redundant blobs and accelerate the processing speed of MSER, to detect
the blob. Finally, fit an ellipse with the blob’s contour and take the ellipse’s center as the image
of the sun’s center. The details are as follows.

Firstly, narrow down the threshold’s varying range of the MSER and detect the
sun’s image. The MSER [16] was originally proposed to establish tentative correspondences
between a pair of images taken from different viewpoints. Its principle can be summarized as
follows [16]. For a gray-level picture, take all possible thresholds. The pixels whose intensity
values are equal to or greater than the threshold t are taken as white, and the others are
denoted as black. By increasing the threshold t continually, a series of binary pictures Et

would be seen, where the subscript t indicates the frame corresponding to a threshold t.
Initially, a white frame would be obtained. Thereafter, black spots corresponding to local
intensity minima would emerge and grow with increase in the threshold. Neighboring
regions corresponding to two local minima will merge to a larger one gradually, and the
last frame would be black. An MSER is a connected region in Et with little size change across
a range of thresholds.

By the original MSER method, not only the blob corresponding to the image of the
sun but also some blobs corresponding to other regions would be found. Consider that the
intensity value of the sun’s image is very close to 255 because it is sufficiently bright. Let
the threshold vary only in a small range [255 − δ1, 255] when performing MSER detection,
where δ1 is a variable of limiting the varying range of thresholds. The computation cost can
be dramatically reduced and those regions with great difference from the sun’s image in
intensity can be removed.

Secondly, remove the false alarms of the sun’s image with the aspect ratio constraint.
The sun’s image in the visual sun compass is close to a circle. The constraint that the aspect
ratio of the sun’s image approximates to 1 can be used to further refine detected MSERs. By
these modifications, only one or some nested MSERs can be obtained.

Thirdly, remove redundant nested MSERs and obtain the blob corresponding to the
sun’s image. In this step, the kernel MSER, which refers to the most stable one among nested
MSERs, is proposed to remove redundant nested MSERs. For a sequence of nested MSERs,
Q1, . . ., Qk−1, Qk, . . ., Qm, where Qk−1 ⊂ Qk, the kernel MSER Q̂ satisfies

Q̂ :
m

min
k=1

(
std

(
I
(
qk
)))

, qk ∈ Qk, (4.1)

where std(I(qk)) is the standard deviation of the intensity of all pixels qk in MSER Qk. The
kernel MSER takes not only the maximally stable region’s cardinality but also the statistical
property of intensity into account.

Fourthly, prune contour points are contaminated by image noise and fit ellipse with
the remaining points. Because the blob detected by the modified MSER is a continuous region,
only few contiguous outliers and noises contaminate the sun’s image. For further robust
processing, an ellipse is fitted with points of the blob contour to describe the sun’s image.
A direct method to fit ellipse is the constrained least squares (LS) method [17]. In images
captured by the visual sun compass, although contiguous outliers and contaminated points
are within the detected blob, they are far away from the real geometric configuration and
greatly change the shape of the sun’s image. Therefore, the distance from the boundary point
to the blob’s center is taken as the measure to purify the data. Points whose distance is the
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Figure 6: The prototype of the proposed visual sun compass.

least under a certain percentage are used to fit the ellipse, and other points which are far away
from the geometric configuration are taken as outliers and pruned. This method is called the
constrained LS with pruning.

Finally, use coefficients of the fitted ellipse to calculate its center. Then, take the center
as the image of the sun’s center to estimate the sun’s azimuth and elevation angle.

5. Experiments

A prototype of the visual sun compass (as shown in Figure 6) was built, which comprised a
Feith intelligent CANCam and a FUJION FE185C057HA-1 fisheye lens. A two-dimensional
(2D) calibration board [15] was used to calibrate the visual sun compass. The calibrated
parameters in (3.11) are k1 = 1.7941, k2 = −0.0043, fu = 166.1549, fv = 167.1770, u0 = 654.5771,
and v0 = 532.6644. Experiments with this prototype were conducted to validate the proposed
visual sun compass.

5.1. Detecting the Sun

Some images were captured with the optical axis of the sun compass’s prototype upright
pointing at the sky at different hours in the daytime from May to July. The sun was detected
in these images with the original MSER method, the conventional method, and the proposed
modified MSER method. Figure 7(a) shows an image captured by the visual sun compass.
Figure 7(b) shows the blobs detected by the original MSER method. It can be seen that, with
the original MSER method, some redundant blobs were detected and the image of the sun’s
center could not be uniquely determined. For the conventional method, the estimated center
is far away from the real configuration as shown in Figure 7(c), because intensity values of
outliers are close to those of the sun’s image. By applying the proposed modified MSER and
the constrained LS with pruning to this image, the obtained result is shown in Figure 7(d). It
is evident that only one region is obtained and the difference between the fitted ellipse and
the image of the sun is slight. These results prove the validity of the proposed method.
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(a) (b)

(c) (d)

Figure 7: An image captured by the visual sun compass and experiment results. (a) Image captured by the
visual sun compass. (b) Blobs detected by the original MSER. (c) The center detected by the conventional
method. (d) The detected sun and its center by the proposed method.

Table 2: Orientation results with visual sun compass (in degrees).

Elevation θ Angle ϕ Azimuth γ Orientation β

G.T. est. est. G.T. est. G.T. est.
35.47 36.57 −87.64 −89.87 −89.87 0.0 −2.23
60.43 60.86 −125.10 62.92 62.92 185.0 188.02
58.10 59.92 −115.66 68.78 68.77 185.0 184.43

5.2. Orientation Estimation

By the proposed visual sun compass model, the elevation angle of the sun θ and “the angle of
the style’s shadow” ϕ can be calculated with the calibrated parameters and the detected sun’s
center. Table 2 shows some results, where “G.T.” denotes the ground truth and “est.” denotes
the estimation. It is obvious that, for the estimated sun’s elevation angle θ, there is a little
difference from the ground truth (values from the astronomic almanac corresponding to the
time and the latitude and longitude information). Then, the azimuth angle γ of the sun and
the absolute directions β in the ground plane coordinate system are calculated with the time,
the latitude, and longitude information. Results are shown in Table 2. For the azimuth angle γ ,
the difference between the estimated values and the ground truth is very slight. The errors of
the absolute direction with proposed method are less than 3.5◦. They may arise from several
sources. The primary source is the current rudimentary experimental setup: the visual sun
compass is made horizontal using barely eye inspection with a spirit level, and the ground
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Figure 8: The mobile robot mounted with the visual sun compass prototype and an IMU.

Table 3: Absolute orientation results with a mobile robot (in degrees).

G.T. 30.00 60.00 90.00 150.00 180.00
est. 28.08 59.63 92.75 152.31 180.77

truth of the estimated direction is obtained by eye inspection of a simple magnetic needle
compass. Nonetheless, experiments show the validity of the proposed visual sun compass.

5.3. Application

We also applied the prototype of the visual sun compass on a mobile robot to carry out
orientation estimation. Figure 8 shows the mobile robot, on which the visual sun compass
prototype, a Crossbow VG700CB-200 IMU, and other sensors are mounted. The IMU can
provide its own attitude relative to the ground coordinate system. The relative rotation
between the IMU and the visual sun compass can be calibrated off-line in advance. Then,
the rotation from the visual sun compass to the ground coordinate system, Rf2g in (3.14), can
be determined. Orientation experiments are conducted with this mobile robot to validate the
proposed visual sun compass. Some results are shown in Table 3. With the help of the IMU,
the deviations from the ground truth are less than those reported above. All of these results
prove the validity of the proposed visual sun compass.

6. Conclusions

A visual sun compass is proposed in this paper. It is competent for orientation in
environments with a tiny size and light weight, such as in aeronautical and space applications
where the conventional sensors cannot function. A mathematical model and the absolute
orientation method are presented. Further, a modified MSER and constrained LS with
pruning are proposed to deal with severe distortion while detecting the sun in captured
images. Real image experiments show the validity of the proposed visual sun compass.
In comparison with conventional orientation sensors, the proposed visual sun compass
can not only work in special environments but also provide the absolute orientation. The
measurements of the proposed visual sun compass are not precise enough as yet. Future
steps for improvement of the proposed visual sun compass include building a more precise
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experiment platform, refining the measurements by finding a more precise calibration
method, and analyzing the uncertainties of the projection of the sun’s center.
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