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This paper investigates the delay-dependent stability of a teleoperation system based on the
transparent Generalized Four-Channel control (G-4C) scheme under time-varying communication
delays. To address stabilitywe choose here a primitive result providing a LinearMatrix Inequalities
(LMIs) approach based on Lyapunov-Krasovskii functionals. Firstly, the scheme is modeled as the
neutral-type differential-delayed equation; that is, the delay affects not only the state but also the
state derivative. Secondly, we apply a less conservative stability criteria based on LMIs that are
delay dependent and delay’s time-derivative dependent. The reason is that, for better performance
in the case of small delays, we must accept the possibility that stability is lost for large delays. The
approach is applied to an example, and its advantages are discussed. As a result, we propose to
modify the values of standard controllers in G-4C defining the γ-4C scheme, which introduces a
tuning factor γ to increase in practical conditions the stable region fixing the desired bounds on
time-varying delay, with the particularity of maintaining the tracking properties provided by this
transparent control scheme. The simulation results justify the proposed control architecture and
confirm robust stability and performance.

1. Introduction

A teleoperation system consists of master and slave mechanical systems where the master is
directly manipulated by a human operator and the slave, operating in a remote environment,
is designed to track the master closely. The main aspects in the analysis and synthesis of these
systems are stability and transparency, meaning this last condition the grade of achievement
of direct action ideal situation of the operator on the remote environment. In practice, there is
a compromise between these two goals mainly due to the presence of time delays generated
by the communication channel [1].
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Under this compromise, many control schemes for teleoperation have been proposed
in the last years. A first comparative study among them presented by Arcara and Melchiorri
can be seen in [2]. Following this work, as stability is concerned, the teleoperation schemes
are classified in intrinsically stable schemes (passivity based), and delay-dependent stable
schemes. Therefore, in the initial works, concerning constant delay, the stability is addressed
by means of frequency Laplace or passivity techniques, applied to linear time invariant
master-slave two-port systems [1–5]. On the other side, related with transparency properties,
the most successful control scheme in achieving a fully transparency under ideal conditions
is the four-channel control one [1, 2, 4].

But also, the low cost and availability offered by Internet have opened a new line of
research to establish Internet-based teleoperation [6–9], which requires transmitting the con-
trol signal through the network, exposing the system control loop to the varying time delay
of a packet-switched network. These new difficulties were already present in the historical
survey presented by Hokayem and Spong in [10] about the control theoretic approaches for
bilateral teleoperation.

Furthermore, Chopra et al. in [11] affirm that the bilateral teleoperators designed
within the passivity framework using concepts of scattering and two-port network theory
provide robust stability against constant delay in the network and velocity tracking, but
cannot guarantee position tracking in general. For these reasons, many recent results try to
extend the passivity-based architecture to solve these problems: see [12, 13] and references
therein. Concerning these techniques, the tutorial [14] revisits several of the most recent
passivity-based controllers, which include scattering-based, damping injection and adaptive
controllers, with guaranteed stability properties.

Nowadays, several efforts are being made in the development of delay-dependent
stability tools. In [15], the authors present an approach based on small-gain-type theorems in
the input-to-state stability framework. This promising approach can be applied for a wider
class of systems under very mild assumptions on time-varying delays and can be used even
when passivity is lost. Its application to teleoperators was used in [16].

More specifically, focusing on the stability of the delay-dependent teleoperation con-
trol schemes, in [17], we develop a powerful generic approach tomodel a teleoperation setup,
as a negative single feedback loop containing a linear time invariant block and an uncertain
time-varying delay. The main added value of the proposed approach is the possibility of
deriving frequency-domain conditions, based on the structured singular value by combining
input-output stability criteria and μ-analysis and synthesis techniques, for robust stability in
presence of time-varying delays and parametric uncertainties.

This paper focuses on the delay-dependent stability of the teleoperation systems that
can be described by neutral differential equations. The particularity of the neutral systems is
that the delay affects not only the state but also the state derivative. This makes the problem
more complex, and there are many less theoretical results for this kind of systems [18].

The other issue of our approach is that we use delay-dependent stability tools. The
rationale behind this is that, for better performance, as, for example, zero tracking error, in the
case of small network delays (the typical operating condition), we must accept the pertinent
possibility that stability is lost for large delays. It is more natural then to use LMI tools that
check this fact and provide estimations of the maximum allowable delays.

Some of the relevant theoretical results obtained on delay-dependent stability analysis
for neutral systems can be found in [18–20] for constant delay and [21] for time-varying
delay. Although the theory developed for this kind of systems provides a systematic method
to analyze the delay-dependent, neutral stability, there are limited applications of the theory
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in teleoperation. We can observe in [18] an outline of the basic guidelines to proceed, with
only a description of a scalar teleoperation case and constant delay. The limits of the direct
application of the stability conditions to these systems are due to the fact that several perti-
nent aspects have to be taken into account. First, the teleoperation system has to be remodeled
in a state-space model and second, the bounds’ values on the delay must be studied: some
stability results in the literature require an upper bound on τ(t), and some others may require
upper or lower bounds on τ̇(t).

Following this research line, in previous works we have analyzed the stability by
delay-dependent LMI techniques for constant delays and neutral control schemes belonging
to two-channel architecture in [22] and for varying delays and retarded (not neutral) control
scheme (Position-Error control) belonging to two-channel framework in [6, 7]. In [7]we also
studied the time-varying nature of the communication delay. We obtained actual bounds
for the delay magnitude and its derivative, appearing with UDP (user datagram protocol)
protocol for different Internet locations. This logic allows us to apply stability theorems
with delay-dependent conditions following, for example, Zhao et al. [21], which reduce the
conservativeness.

Hence, in the present work, we apply this stability tool [21] to the Generalized Four-
Channel control scheme (G-4C) as the one that accomplishes perfect transparency under ideal
conditions. As a result of the application of this analysis technique, we propose incorporating
a tuning factor γ in the G-4C standard controllers obtaining the new γ-4C scheme, to increase
in practical conditions the stable region fixing the desired bounds on time-varying delay, with
the particularity of maintaining the tracking properties provided by this transparent control
scheme.

The paper is organized as follows. In Section 2 an overall description of teleoperation
systems is introduced in order to define from the Generalized Four-Channel (G-4C) control
scheme the new γ-4C one and its model as a neutral system established in Section 3. This
Section also describes the robust stability condition under time-varying delay for neutral
systems and its implementation. The analysis and simulation results are presented in
Section 4. Finally, conclusions are discussed in Section 5.

2. Teleoperation System Description

A bilateral teleoperation system consists of master and slave mechanical systems, with
separated control loops closed around them. The system may be described by means of
the block scheme shown in Figure 1, where Fh and Fe are the forces imposed by the human
operator and by the environment, respectively, and Fmc, Fsc are the forces computed by the
local Km, Ks master/slave control algorithms. So the forces Fm applied to the master and Fs

applied to the slave can be defined as

Fm = Fh − Fmc,

Fs = Fe + Fsc.
(2.1)

The blocks labeled Master, Slave represent the dynamics of the master and slave
manipulators. A linear one degree-of-freedom dynamic model for master and slave systems
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Figure 1: Control scheme in teleoperation.

has been considered. In the time domain with independent variable t and in Laplace domain
with xm(0) = ẋm(0) = 0 and independent variable s, we have the following expressions:

fm(t) = Mmẍm(t), Fm(s) = Pm(s)xm(s) = Mms
2xm(s),

fs(t) = Msẍs(t), Fs(s) = Ps(s)xs(s) = Mss
2xs(s),

(2.2)

where Mi is the manipulator’s inertia coefficient, while Fi and xi are the force and the
position. The subscripts i = m and i = s indicate the master or slave manipulator, respectively.

In case of interaction with the environment at the slave side, in applications like robot
arms with tools interacting with it, the force imposed by the environment can be described as

fe(t) = −kexs(t) − Beẋs(t), Fe(s) = −kexs(s) − Besxs(s). (2.3)

This scheme also includes the signals’ flow ym, ys through the communication channel
characterized by a transmission delay ymd, ysd. It is important to define how the signals
sent from the master reach the slave and vice versa. In order to establish teleoperation via
Internet, the results in [8] conclude that UDP (user datagram protocol) is more adequate for
real-time control than TCP (transport control protocol), basically due to the time penalty of
the connection-oriented characteristic of the TCP stream. Another relevant property of time-
varying delay τ(t) is the behavior of the delay derivatives. For a discussion on varying delays
and derivative bounds in teleoperation systems, see [6], in which we present a different
explanation of derivative bounds based on the fact that there are two ways of interpreting the
time-varying law τ(t), as perceived by the emitter τe(t), and by the receiver τr(t). Regarding
the teleoperation systems like the one in Figure 1, the local controllers at each side, given
by Km, Ks, implement their dynamics as a function of their own states (master/slave) and
of delayed information on the state at the other side (slave/master). The delay should be
interpreted then as perceived by the receiver τ(t) = τr(t). In this way the bound on delay
derivatives discarding past samples (the protocol discards a sample if, when it reaches, the
receiver has a more recent value) verifies τ̇(t) < 1. Thus, the delay parameter is assumed to
be an unknown time-varying function that satisfies for all t ≥ 0:

0 ≤ τ(t) = h + η(t) ≤ hmax,
∣
∣η(t)

∣
∣ ≤ κ ≤ h,

|τ̇(t)| ≤ d < 1.
(2.4)
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Figure 2: Local controllers in G-4C control scheme.

Hence, we assume that the main effect of the communication channel is to introduce a
time-varying delay:

yid(t) =: yi(t − τ(t)), i = m, s. (2.5)

The study focuses on the Generalized Four-Channel-transparency optimized con-
troller. In this scheme (G-4C), the master and slave exchange four signals through the
communication channel, the velocities or positions and the forces in both directions. The local
controllers are defined as a function to the applied external force, the owner velocity/position
(master/slave), and the delayed velocity/position and force (slave/master) from the other
side. In the classical notation [1, 2, 4], the controllers, when the system exchanges positions
and forces (see Figures 1 and 2), are usually defined as

Fmc = Cmxm + C2Fsd + C4xsd − C6Fh,

Fsc = −Csxs + C3Fmd + C1xmd + C5Fe.
(2.6)

We select the previous architecture as themost general and representative of delay-dependent
ones. Values of the controllers in (2.6) can be found in [1, 2, 4] for seven nonpassive archi-
tectures (Generalized Four-Channel G-4C, Four-Channel 4C, three-channel architectures:
Environment-Force-Compensated EFC and Operator-Force-Compensated OFC, two-channel
architectures: Position-Error PE, Force-Reflection FR, Force-Force FF).

In the well-known design of the Four-channel Control scheme under ideal transparent
conditions for zero delay [1, 2, 4], the teleoperation system stability critically depends on the
exact implementation of control laws in order to achieve perfect cancellation of the dynamics
of themaster and slave; that is, to say, in practice there is a compromise between the two goals:
stability and transparency. In this design, the values of the controllers are Cm(s) = Bms + km,
Cs(s) = Bss + ks, C4(s) = −(Pm(s) + Cm(s)), C1(s) = Ps(s) + Cs(s), and C2, C3, C5, and C6 are
fixed constant values.

Now, we state one of the main results of this research.
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Definition 2.1. A G-4C control scheme, as described in Figures 1 and 2 and given by (2.1)–
(2.3), (2.5), (2.6), is said to be a γ-4C control scheme, if the controllers in (2.6) are defined in
the following form:

Cm(s) = Bms + km, Cs(s) = Bss + ks,

C4(s) = −Pm(s) + Cm(s)
γ

, C1(s) = Ps(s) + Cs(s),

C2 =
1 + C6

γ
, C3 = C5 − 1, C5 = −1, C6 = km ·

(

1 − 1
γ

)

− 1.

(2.7)

Remark 2.2. The controllers in γ-4C scheme incorporate a constant tuning factor γ > 1, named
from now the stability factor, that will increase in practical conditions the stability margin
while maintaining the tracking properties of the system, as we will explain and justify in the
next sections.

3. Delay-Dependent Stability for Neutral γ-4C-Based Teleoperation

In this paper we adopt some time-domain approach in order to obtain delay-dependent con-
ditions for robust stability of the teleoperated system. The sufficient conditions for stability
developed in Zhao et al. [21] are given in terms of the existence of solutions of some linear
matrix inequalities, based on Lyapunov functionals. This method formulates computable
criteria to check the stability for time-varying delays in the general case of neutral-type
systems:

ż(t) = Az(t) +Adz(t − τ(t)) + Cż(t − τd). (3.1)

With the initial condition

z(t) = φ(t), t ∈ [−max{τd, hmax}, 0]. (3.2)

Consider the operatorD : C([−τd, 0],�n) → �n defined in [23] asD(zt) = z(t)−Cz(t−
τd).

Definition 3.1 (see [23]). The operator D is said to be stable if the zero solution of the
homogeneous difference equation is uniformly asymptotically stable:

D(zt) = 0, t ≥ 0, z0 = ϕ ∈ {

φ ∈ C[−τd, 0] : Dφ = 0
}

. (3.3)

Themain theorem in Zhao et al. [21] says that given the scalars τd, hmax, and d, the sys-
tem (3.1), (3.2) is asymptotically stable, if the delay operatorD(zt) = z(t)−Cz(t−τd) as defined
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in [23] is stable and there exist W = WT > 0, P = PT > 0, Qi = QT
i > 0 (i = 1 · · · 2), R = RT > 0,

such that the following matrix inequality holds:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

φ11 φ12 φ13 0n×n φ15

φT
12 φ22 φ23 0n×n φ25

φT
13 φT

23 −Q2 0n×n 0n×n

0n×n 0n×n 0n×n −W φ45

φT
15 φT

25 0n×n φT
45 −S

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0. (3.4)

With

φ11 = ATP + PA +Q1 +Q2 − R,

φ12 = PAd + R,

φ13 = −ATPC,

φ15 = ATS,

φ22 = (d − 1)Q1 − R,

φ23 = −AT
dPC,

φ25 = AT
dS, φ45 = CTS, S = W + h2

maxR.

(3.5)

Another result presented in Lemma 2.1 in [19] established that A necessary and sufficient
condition for the stability of the operator D(zt) = z(t) − Cz(t − τd) as defined in [23] is the Schur-
Cohn stability of the matrix C (the spectral radius ρ(C) verifies ρ(C) < 1). Furthermore, the stability
is ensured for all positive values of the delay τd < ∞.

The main theoretical results of this paper can now be formulated as follows.

Proposition 3.2. Consider a γ-4C-based teleoperation system in Figures 1 and 2, by (2.1)–(2.7).
Consider the state-space vector z(t) ∈ �n as

z(t) =
(

xm(t) vm(t) xs(t) vs

)

(t)
T
, (3.6)
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where xm is the master position, xs is the slave position, vm is the master velocity, and vs is the slave
velocity. A state-space model of the closed-loop system is described with the following, neutral dif-
ferential equation, expression:

⎛

⎜
⎜
⎜
⎜
⎝

ẋm(t)

v̇m(t)

ẋs(t)

v̇s(t)

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

− km
Mm

− Bm

Mm
0 0

0 0 0 1

0 0 − ks
Ms

− ke(1 + C5)
Ms

− Bs

Ms
− Be(1 + C5)

Ms

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎝

xm(t)

vm(t)

xs(t)

vs(t)

⎞

⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0 0
km

γ ·Mm

Bm

γ ·Mm

0 0 0 0
ks
Ms

Bs

Ms
0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎝

xm(t − τ(t))

vm(t − τ(t))

xs(t − τ(t))

vs(t − τ(t))

⎞

⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0 0 0
1
γ
− C2 ·Ms

Mm

0 0 0 0

0 1 +
C3 ·Mm

Ms
0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎝

ẋm(t − τd)

v̇m(t − τd)

ẋs(t − τd)

v̇s(t − τd)

⎞

⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
1 + C6

Mm

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

· fh(t).

(3.7a)

In a compact form,

ż(t) = Az(t) +Adz(t − τ(t)) + Cż(t − τd) + B · fh(t) (3.7b)

and for nominal conditions (fh = 0),

ż(t) = Az(t) +Adz(t − τ(t)) + Cż(t − τd). (3.7c)

Proof. The proof of this proposition is presented in the appendix.

Theorem 3.3. Consider a γ-4C-based teleoperation system in Figures 1 and 2, given by (2.1)–(2.7)
and modeled in state space by (3.7a) and (3.7b) with state vector defined in (3.6). Given the scalars
hmax and d, the system (3.7a), (3.7b), and (3.7c) is asymptotically stable if matrix C is Schur-Cohn
stable, and there exist P = PT > 0, Qi = QT

i > 0 (i = 1 . . . 2), R = RT > 0, W = WT > 0 such that
the (3.4), (3.5) matrix inequality holds.
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Remark 3.4. Anecessary condition for stability is that the system (3.7a), (3.7b), and (3.7c)with
n = 4 state variables (3.6)must be Hurwitz stable for zero delay; that is, all the eigenvalues λi
of Λ = (In×n − C)−1(A +Ad) with an adequate selection of parameters must verify

real(λi) < 0 ∀i, i = 1 · · ·n, (3.8)

where rank (Λ) = n.

Remark 3.5. In the case of identical master and slave systems with controllers given by (2.7),
if γ = 1 the system for zero delay Λ = (In×n − C)−1(A + Ad) does not present maximum rank
in order to verify (3.8), a necessary stability condition, and two of the eigenvalues are zero.
This problem is solved selecting γ > 1 in (2.7).

Based on the state-space model we can also predict the tracking capabilities related
with the transparency properties. Let us consider zero delay τ = 0, then the dynamics (3.7a),
(3.7b) with Λ = (In×n − C)−1(A + Ad) and B = (In×n − C)−1B, under force input fh in case of
interaction with the environment fe(t) = −kexs(t) − Beẋs(t), are

ż(t) = Λz(t) + Bfh(t). (3.9)

Then the transfer function is

G(s) = (sIn×n −Λ)−1B. (3.10)

So the steady-state expected behavior is

G∞ = lim
s→ 0

G(s) =
1
Δ∞

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + C6

Cm∞

0

C1∞

(Cs∞ + (1 + C5)ke)
(1 + C6)
Cm∞

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + C6

km
0

ks
ks

(1 + C6)
km
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Δ∞ = 1 +
C1∞C4∞

(Cs∞ + (1 + C5)ke)Cm∞
= 1 +

−ks
(

km/γ
)

kskm
= 1 − 1

γ
.

(3.11)

That is, in the steady-state, with the values proposed in (2.7) the master and slave
positions will be (1 + C6)/km, meaning that the position tracking error between master and
slave will be zero. The master and slave velocity will also be zero.

Furthermore, selecting C6 = (km · Δ∞ − 1) we can also obtain the master and slave
positions that follow the fh reference with a steady-state zero error.

Remark 3.6. The tuning factor γ proposed in Definition 2.1 should not only be considered
as an additional parameter to make the stability conditions less conservative. The proposed
form inwhich this factor is included in the controllers in (2.7) increases in practical conditions
the stable region fixing the desired bounds on time-varying delay, with the particularity of
maintaining the tracking properties provided by this transparent control scheme.
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4. Analysis and Simulation Results

The robust stability tool under time-varying delay described in Section 3 provides an estimate
of the maximum allowable delays hmax that guarantees stability, depending on the bound
on the delay variation d (a communication channel characteristic), and the local controllers
applied to the system (values in A, Ad, and C).

We define first a simulation case for using with Simulink and Matlab, considering
dynamic models for the master and slave with numerical values given by Mm = Ms = 1.
We select the controllers as stated in (2.7) with Bm = Bs = 12, km = ks = 20. The idea is to
maintain the ideal tracking properties obtained by the standard controllers in G-4C control
scheme increasing, through γ factor, the stability margin in practical conditions, that is, when
there is time-varying delay in the signals transmission. In [7] we conclude, based on some
experimental analysis, that the results of the worst cases found for Internet Teleoperation
confirm delay fluctuations ranging from aminimum value of 120ms to amaximum of 265ms.
and that d, also in case of poor communication conditions, belongs to the interval (0.5,1).

The stability analysis is assessed applying Theorem 3.3 using Matlab and the Linear
Matrix Inequalities LMI-toolbox of this software. In all cases we have proved firstly, that the
system (3.7a), (3.7b), and (3.7c) is Hurwitz stable for zero delay. Furthermore, matrix C is
Schur-Cohn stable.

We study the performance through simulations when the human operator applies step
inputs as reference to follow by the slave, that it is in free motion until t = 18 s in which the
slave begins the contact with a hard environment modeled with ke = 3 × 105 to t = 25 s. In
these simulations we will show the reference given by fh and the master and slave positions,
the position tracking error xm-xs, and the force tracking error fm-fs.

First, for illustrating the effect of the γ factor in the stability, we apply Theorem 3.3
for the simulation case already described, fixing the following bounds on the delay: h = 3 s,
|η(t)| ≤ 0.1 s, and d = 0.7. The (3.4), (3.5)matrix inequality holds for γ > 22.6.

Then, we show in the established simulation conditions, the theoretical and simulation
results for γ = 22.7 (stable from Theorem 3.3) and γ = 22.6 (unstable from Theorem 3.3).

Case 1 (γ = 22.7). From Theorem 3.3, there exist:

P = 1 × 108

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2.4736 0.1707 −0.4519 −0.0364
0.1707 0.0304 0.0880 0.0097

−0.4519 0.0880 1.3797 0.1158

−0.0364 0.0097 0.1158 0.0138

⎞

⎟
⎟
⎟
⎟
⎟
⎠

> 0,

Q1 = 1 × 108

⎛

⎜
⎜
⎜
⎜
⎝

1.9416 0.0190 −0.4585 −0.0596
0.0190 0.0042 0.0495 −0.0019
−0.4585 0.0495 0.8503 −0.0040
−0.0596 −0.0019 −0.0040 0.0023

⎞

⎟
⎟
⎟
⎟
⎠

> 0,

Q2 = 1 × 108

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1.5564 0.0063 −0.4297 −0.0464
0.0063 0.0654 0.0699 −0.0021
−0.4297 0.0699 1.1095 −0.0110
−0.0464 −0.0021 −0.0110 0.0499

⎞

⎟
⎟
⎟
⎟
⎟
⎠

> 0,
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R = 1 × 108

⎛

⎜
⎜
⎝

5.6382 2.8504 0.2428 0.0942
2.8504 3.4776 0.1193 0.0550
0.2428 0.1193 2.0754 0.0589
0.0942 0.0550 0.0589 2.0816

⎞

⎟
⎟
⎠

> 0,

W = 1 × 108

⎛

⎜
⎜
⎝

2.1039 0 0 0
0 2.1024 0 −0.0001
0 0 2.1039 0
0 −0.0001 0 2.1038

⎞

⎟
⎟
⎠

> 0.

(4.1)

Such that the inequality (3.4) is feasible. Hence, the system (3.7a) and (3.7b) is asymp-
totically stable. See in Figure 3 the simulation results: the reference given by fh and themaster
and slave positions.

Case 2 (γ = 22.6). However, selecting γ = 22.6 with the same delay conditions as described
before, the LMI constraints were found infeasible. We can also see, through simulations
presented in Figure 4, the unstable results when Theorem 3.3 is not accomplished.

Now, applying the theorem, we obtain hmax(d), shown in Figure 5. The bound on delay
magnitude is calculated as a function of the bound d of the delay variation for the two values
of γ .

Remark 4.1. It has been detected by simulation that stability is preserved until a value is simi-
lar to the theoretical one, as we can see comparing the simulation results in both cases. We can
conclude that although the theorem conditions are sufficient, the results are not conservative.

Furthermore, it is very interesting for the control design procedure, to see how γ affects
the changes in the bound on the delay magnitude hmax(γ), for fixed values of the bound
on the delay variation d. Viewing in Figure 6 the theoretical results from Theorem 3.3, we
conclude that we can adjust the γ factor in order to ensure the stability of the system given the
desired delay characteristics, and also, for high values in γ , the system is practically
delay-independent. But then the following question is how these high values affect to the
performance and transparency.

We try to answer this question selecting another simulation case fixing bounds on the
delay: h = 3 s, |η(t)| ≤ 0.1 s, d = 0.99 and a high value in γ .

Case 3 (γ = 500). From Theorem 3.3, there exist

P = 1 × 105

⎛

⎜
⎜
⎝

2.3056 0.0333 −0.2301 −0.0292
0.0333 0.1088 0.0377 0.0087
−0.2301 0.0377 0.6221 0.0396
−0.0292 0.0087 0.0396 0.0244

⎞

⎟
⎟
⎠

> 0,

Q1 = 1 × 104

⎛

⎜
⎜
⎝

7.5672 1.9034 −0.6723 −0.6274
1.9034 7.2717 1.4226 −0.6165
−0.6723 1.4226 3.1138 −0.0926
−0.6274 −0.6165 −0.0926 0.8054

⎞

⎟
⎟
⎠

> 0,
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Figure 3: (a) Case 1. Reference and master and slave positions. (b) Force imposed by the environment.

Q2 = 1 × 104

⎛

⎜
⎜
⎝

6.9191 1.1173 −0.6417 −0.5087
1.1173 8.5898 0.7219 −0.3822
−0.6417 0.7219 4.0713 −0.0003
−0.5087 −0.3822 −0.0003 1.3680

⎞

⎟
⎟
⎠

> 0,

R = 1 × 105

⎛

⎜
⎜
⎝

1.2419 0.4566 0.0144 0.0225
0.4566 0.7594 −0.0034 0.0041
0.0144 −0.0034 0.4822 −0.0228
0.0225 0.0041 −0.0228 0.4471

⎞

⎟
⎟
⎠

> 0,

W = 1 × 104

⎛

⎜
⎜
⎝

7.7108 0 0 0
0 7.7109 0 0
0 0 7.7108 0
0 0 0 7.7108

⎞

⎟
⎟
⎠

> 0.

(4.2)
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Figure 4: Case 2. (a) Reference and master and slave positions. (b) The position tracking error xm-xs. (c)
The force tracking error fm-fs.

Such that the inequality (3.4) is feasible. The results in Figure 7 show the robust perfor-
mance of the system, without overshoot, with small settling time, and maintaining the null
error in force and position tracking.

5. Conclusions

This work has addressed a study on the stability of a certain teleoperation system, based on
recent results on Lyapunov-Krasovskii functionals for time-varying delays that also take into
account bounds on delay derivatives, to reduce conservativeness. The teleoperation scheme
chosen is the γ-4C based on G-4C one, applied to a 1 DoF master and slave manipulators, for
free motion and for slave in contact with the environment.

This scheme is modeled by means of 4-dimensional state-space equation, that results
in a differential-delayed equation, which is of the neutral type that is, the delay affects not
only the state but also the state derivative.
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Figure 5: Estimation of themaximum allowable delays hmax(d) that guarantee stability for Case 1 (γ = 22.7)
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Figure 6: Estimation of the maximum allowable delays hmax(γ) that guarantee stability for bounds d =
{0.5, 0.7, 0.99} on the delay variation.

Furthermore, as a result of the application of this analysis technique in teleoperation,
with actual bounds for the delay magnitude and its derivative appearing with UDP protocol
for different Internet locations, we propose new values for the standard controllers, incorpo-
rating a tuning factor to increase in practical conditions the stable region fixing the desired
bounds on time-varying delay, with the particularity of maintaining the tracking properties
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Figure 7: Case 3. (a) Reference and master and slave positions. (b) The position tracking error xm-xs. (c)
The force tracking error fm-fs.

provided by this transparent control scheme. Simulations confirm the robust stability under
time-varying delay besides of a good tracking behavior.

Appendix

Proof of Proposition 3.2. The state-space model in (3.7a) and (3.7b), with state-space vector
z(t) ∈ �n given by (3.6), is obtained from (2.1), (2.2), (2.3), (2.5), (2.6), and (2.7) as follows.

The relationship between positions and velocities ẋm(t) = vm(t), ẋs(t) = vs(t) provides
the first and third model equations that we will after rewrite in a compact form in (3.7a) and
(3.7b).

For the second and fourth ones, we substitute first (2.5) and (2.7) into (2.6) and then
the result in (2.1) to finally find from (2.2) v̇m = fm/Mm, v̇s = fs/Ms.
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Here for simplicity, we avoid the time dependence (unless strictly necessary) in the
equations and we show the steps only for the second equation (master velocity dynamic).
The fourth one can be obtained in a parallel form.

Knowing that from (2.5) ysd(t) =: ys(t − τ), y = f, x, and from (2.7) Cm(s) = Bms + km,
C4(s) = −(Pm(s) +Cm(s))/γ , C2 = (1 +C6)/γ , (2.6) fmc = Cmxm +C2fsd +C4xsd −C6Fh results
is

Cmxm = Bmvm + kmxm,

C2fsd = C2fs(t − τ) = C2Msv̇s(t − τ),

C4xsd = C4xs(t − τ) = −Mm

γ
v̇s(t − τ) − Bm

γ
ẋs(t − τ) − km

γ
xs(t − τ).

(A.1)

Then, from (2.1),

fm = fh − fmc = (1 + C6)fh − kmxm − Bmvm +
km
γ
xs(t − τ)

+
Bm

γ
ẋs(t − τ) +

[
Mm

γ
− C2Ms

]

v̇s(t − τ),

(A.2)

and v̇m = fm/Mm gives the second equation.
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