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In this study an observer-based novel design of robust control system with an estimate scheme of
sensor states to accommodate extended bounded-sensor faults is proposed. The sensor faults are,
in general, modeled as polytopic bounds in robust control framework and are usually given as a
priori assumption. But, in practice, the sensors that are subject to faults are especially vulnerable
to variant conditions, such as high temperature, and humidity. Thus, their faults may fall outside
the presumed polytopic bounds easily. An estimate scheme of sensor states integrated into the
observerbased control system captures the sensor faults outside the presumed region. The notion
of quadratic stability stabilizes the overall system and guarantees a robust performance measure
of an output error signal in the presence of a set of extended admissible sensor faults. A numerical
example shows the effectiveness of the proposed approaches.

1. Introduction

The problems of designing fault-tolerant control systems have attracted considerable
attention. Much efforts have gone to advancing practical usage of fault-tolerant systems
within the avionics industry, see [1–4], for example. These high-risk applications require fault
safe operation; that is, the system can withstand tolerable faults without effects on the system
operations. Theoretical results and application examples being developed in the literature
are, in general, divided into two broad spectrums: active [1, 5–8] and passive [2–4, 9–18]. In
the active approach, reconfigurable mechanism has been designed in the event of bounded
faults. Due to flexible capacity of the mechanism, the controller in such systems is not in a
fixed form. This increases the complexity of the control design. Such fault-tolerant control
systems use reconfigurable structure either online or predefined control law. [5] designed
a pseud-inverse technique that maintained the closed-loop system as much as possible to
the original system by reconfiguring the control law, once the faults encountered. [6] used
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eigenstructure assignment that was capable of recovering the nominal system after faults
occurred. The controller was insensitive to the variation of devices [7, 8], have used direct
adaptive control schemes to update control parameters and account for the case where the
sensing devices were stuck at some fixed values. The advantages of active approaches are the
use of reconfigurable or adaptive structure of online controller.

In contrast, the passive fault-tolerant control is to exploit the inherent redundancy of
the system components or to use the remaining functions of the component to design a fixed
compensator so as to achieve a tolerable system performance in the presence of component
faults. The designed fixed controller guarantees satisfactory system performance not merely
during normal operations, but under variant fault conditions. [9] tolerated faults by using
linear quadratic state-feedback control for a prescribed set of actuators. A given performance
boundwas guaranteed. The controller of [10] based on robust pole region assignmentmethod
guaranteed stability and maintained an acceptable performance in the event of actuator
faults. Taken as bounded measurement noises, sensor faults are estimated by fault estimation
techniques in [15]. The proposed estimator accomplished the observation of system states
and measurement noises simultaneously. [16] designed a fault estimation scheme for sensor
with bounded time derivative of faults. Based on linear matrix inequality techniques, [2–
4, 11, 12, 17, 18] have designed robust controllers for sensor or actuator faults in the prescribed
bounds with disturbance attenuation and satisfactory performance. In addition, [17, 18]
treated sensor fault as a state of the system, which implies the possible boundedness of
the faults. Notably, the aforementioned passive approaches have focused on the faults in a
fixed bound and given as a priori information. To increase flexibility of passive approach, the
advantages of active approach being adaptive are absorbed into passive design in this study.

This paper deals with extended bounded-sensor-faults, in which sensor faults may
fall outside the presumed bounds in time varying or nonlinear manners. A passive form of
observer-based controller with an integrated estimate scheme of sensor states captures the
phenomena of extended bounded-sensor-faults. A basic idea of control design to extended
faults of sensors in an observer-based control system relies on the plant states being correctly
estimated under the corrupted measurement signals. To reach this goal, [11] designed a
novel observer with an estimate scheme of sensor states in which the asymptotic stability
of the system was restricted to against bounded and piece-wise constant faults. This result,
however, is somewhat unrealistic. The study of this paper adopts the observer with estimate
scheme idea as [11] but relaxes the piece-wise constant restriction to allow the sensor faults
to be time-varying and/or nonlinear with bounds. Moreover, these presumed faulty sensors
are allowed not to be in the presumed bounds. The observer with estimate scheme identifies
these faulty conditions and computes the correct states for feedback. The notion of quadratic
stability not only ensures the asymptotic stability of the system but also establishes L2-gain
measure for the robust performance of a controlled error signal in the presence of a set of
extended admissible sensor faults.

This paper is organized as follows. In Section 2, the system including observer
structure and fault models of bounded piece-wise constant function is formulated. To proceed
with Section 2, Section 3 gives the preliminary results developed in [11]. Section 4 presents
the main results, which deal with the robust performance against extended bounded-
sensor faults and is divided into three subsections including system reformulation, quadratic
stability and Linear matrix inequality (LMI) characterizations. Section 5 includes the
synthesis of observer and control gains in terms of LMIs. Section 6 demonstrates effectiveness
of proposed method by a numerical example. Last section, Section 7, concludes the overall
results shown in the paper.
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2. Problem Formulation

Consider a linear time-invariant dynamical system with sensor faults

ẋ(t) = Ax(t) + Bu(t) + B1d(t), x(0) = x0,

y(t) = Cx(t),

ys(t) = diag
[
y(t)
]
φ(t) = diag

[
φ(t)
]
y(t),

(2.1)

where x(t) ∈ �n is the state vectors, and u(t) ∈ �m is the control signal of actuator. y(t) ∈ �l

is the output of the system, and ys(t) ∈ �l is the true measured output of sensor. d(t) ∈ �d

is the disturbance. The representation of diag[y(t)], when the vector y(t) is a vector with l
components, is a square matrix of dimension l with the elements of y(t) on the diagonal. The
sensor function, φ(t) ∈ �l, is to represent the remaining function of the associated sensor.
For example, if a sensor φk(t) = 0.8, in which φk(t) represents the remaining function of kth
sensor in the vector φ(t), then we say the sensor is 80% functioning.

Now, consider a state observer with control law of the following form:

˙̂x(t) = Ax̂(t) + Bu(t) + L
(
ys(t) − diag

[
φ̂(t)
]
Cx̂(t)

)
,

u(t) = Kx̂(t),
(2.2)

where the vectors x̂ ∈ �n are the state of observer, which is an estimate of x(t). Similarly,
φ̂(t), an estimate of φ(t), which will be shown later in the sequel, is useful to observe
the state x(t) in the presence of sensor faults. L and K are the observer gain and control
gain, respectively, to be designed such that the control objectives are achieved. Notice
that the following expressions are interchangeable when later deriving the formulas,
diag[Cx(t)]φ(t) = diag[φ(t)](Cx(t)) and diag[Cx̂(t)]φ(t) = diag[φ(t)](Cx̂(t)).

3. Preliminaries

The following assumptions are used for demonstrating the asymptotic stability based on
Lyapunovmethod shown in the Theorem 3.1, whichwill be then relaxedwhileL2-gain robust
performance is pursued in the next section.

(1) φk(t) ∈ [0, 1],

(2) limΔt→ 0(Δφk(ti)/Δt) = 0, where Δφk(ti) = Δφk(ti + Δt) − Δφk(ti), except at some
time instants that φk(t) jump toward zero.

The assumptions addressed above have the following interpretations: φk(t) = 0 means
the sensor fails. φk(t) = 1 means the sensor works properly. A fault sensor will be such that
0 < φk(t) < 1. Thus, it is a bounded sensor fault. The limΔt→ 0(Δφk(ti)/Δt) = 0 and φk(t)
jumping toward zero mean that the sensor fault not only is a piecewise constant process but
also indicate that φk(t) is a bounded above function. The analysis of asymptotic stability of
the closed-loop system against bounded and piecewise constant sensor faults is first studied
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in [11], which is revealed in the following theorem and is stated for the completeness. We
define the following sets:

Φ =
{
diag

[
φ
] | φ =

(
φT
1φ

T
2 · · ·φT

l

)T
, φk ∈ �, φk ∈

[
φ
k
, φk

]}
, (3.1)

and the vertex set of Φ is defined as

BΦ =
{
diag

[
φ
] | φ =

(
φT
1 · · ·φT

l

)T
, φk = φ

k
or φk = φk

}
, (3.2)

Notice that it is easy to see that there are 2l vertices in BΦ to represent the possible faults in a
known convex set.

Theorem 3.1. Assumptions 1 and 2 hold. Consider the system (2.1) and (2.2) for the case B1 = 0 and
diag[φ] ∈ BΦ.

If the following exist:

(1) the matrices Q and L satisfying

Q = QT > 0,

Ξ1(Q) < 0,
(3.3)

where

Ξ1(Q) =
(
A − L

(
diag

[
φ
])
C
)T
Q +Q

(
A − L

(
diag

[
φ
])
C
)
, (3.4)

(2) the matrices P and K satisfying

P = PT > 0,

Ξ2(P) < 0,
(3.5)

where

Ξ2(P) = (A + BK)TP + P(A + BK), (3.6)

(3) for a given matrix S > 0, the matricesW > 0 and Γ satisfying

Γ = ΓT > 0,

W +WT − S > 0,
(3.7)
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then the closed-loop system

ẋ = Ax + BKx̂, (3.8a)

˙̂x =
(
A + BK − L

(
diag

[
φ̂
])

C
)
x̂ + Lys, (3.8b)

˙̂φ =

{
Γ
(
diag [Cx̂]

)
LTQx̃ for φ̂ ∈ D

−ΓWφ̂ + Γ
(
diag[Cx̂]

)
LTQx̃ for φ̂ ∈ D,

(3.8c)

˙̃x = Ax̃ − L
(
diag

[
φ̂
])

Cx̂ + Lys (3.8d)

is asymptotically stable for φ̂ ∈ D, where D is as follows:

D =

{

φ̂ |
∥∥∥φ̂
∥∥∥
2 ≤ λl

ρ

}

, D =

{

φ̂ |
∥∥∥φ̂
∥∥∥
2
>

λl

ρ

}

. (3.9)

The state error is defined as x̃ = x̂ − x. The parameters, λ and ρ, are the maximum and minimum

eigenvalues ofWTS−1W andW +WT −S, respectively, for some positive definite symmetric matrices
W and S and W +WT − S > 0.

Proof. Refer to [11] for the proof.

Remark 3.2. The overall closed-loop system (3.8a)–(3.8d) decomposed into input-output
structured block diagram in Figure 1, where the error filter (3.8d), the adaptive law (3.8c),
and the state observer (3.8b) form the augmented observer. Without sensor faults, the block
diagram Figure 1 is simplified to Figure 2 where φ and φ̂ are both identity matrices, and the
block of adaptive law can be removed from Figure 1.

4. Robust Performance

In the last section the asymptotic stability, based on Lyapunov method, has been shown for
the system with bounded sensor faults under piecewise constant assumption. Now, a set of
extended sensor faults relax the previous restrictions to not only admit bounded time varying
and/or nonlinear sensor function in the vertex set, BΦ, but also let the true sensor faults,
which may fall outside the presumed bound, be norm bound. A closed-loop autonomous
system will be reformulated in the following subsection.
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State 
observer Error filterAdaptive law

Augmented observer

x y
CK

ẋ = Ax + Bu
u = K ꉱx

ꉱx ꉱφ

ys
φ(t)

Figure 1: The input-output structured block diagram of the closed-loop system (3.8a)–(3.8d).

Error filterState 
observer

x y
CK

ẋ = Ax + Bu
u = K ꉱx

ꉱx

x̃

Figure 2: An ordinary observer-based control system.

4.1. System Reformulation

Consider closed-loop system (3.8a)–(3.8d), which can be rewritten as

ẋc = Acxc + Bcw, xc(0) ∈ B,
q = Cqxc,

e = Cexc,

w = diag
[
φ̃
]
q,

(4.1)

where

xc =

⎛

⎜
⎝

x̃
x

φ̂

⎞

⎟
⎠, Bc =

⎛

⎝
−L
0
0

⎞

⎠, (4.2)

Cq =
(
C C 0

)
, Ce =

(
C 0 0

)
, (4.3)

Ac =

⎛

⎝
A − L

(
diag

[
φ
])
C 0 0

BK A + BK 0
Γ
(
diag[Cx̂]

)
LTX1 0 −ΓW

⎞

⎠, (4.4)
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diag[φ] ∈ BΦ, and diag[φ̃] = diag(φ̃1, . . . , φ̃l). B ⊂ �n defines a domain that contains the
origin. The matrices K, L, Γ, and X1 are to be determined in the sequel. The signal, w, is a
bounded exogenous signal that comprises φ̃ and Cx̂, that is, w = diag[φ̃]Cx̂, where φ̃ is the
difference of estimated sensor function, φ̂, and true sensor function, φ, that is φ̃ = φ̂ − φ. The
estimation error φ̃(t) is assumed to belong to the following diagonal norm-bound set:

Δ �
{
φ̃i(t) |

∣∣∣φ̃i(t)
∣∣∣ ≤ 1, i = 1, . . . , l

}
, (4.5)

which defines the extended sensor faults.

Remark 4.1. We have noticed that if the true sensor function falls within the presumed
polytopic bound, BΦ, then the diagonal norm-bound set, which is confined within Δ, is
partially (or maybe completely) overlaid with the BΦ. However, if the true sensor function
does not fall into the set BΦ, then it is possible that BΦ intersects Δ partially or their
intersection is an empty set.

Remark 4.2. It is worth noting that, under the above assumption, the signal w is such that

wTw = x̂TCT
(
diag

[
φ̃
])T(

diag
[
φ̃
])

Cx̂ ≤ x̂TCTCx̂, (4.6)

which for asymptotically stable systems can be bounded above and will be demonstrated in
the sequel.

4.2. Robust Performance Measure

This subsection defines a robust performance measure and states an important theorem
on which the robust performance is established. We assume that not all state information
is available and is concerned with designing a fixed structure observer-based controller to
stabilize the system (4.1) satisfying a given L2-gain constraint in response to all admissible
sensor faults. The following notion of stabilizability for the system (4.1) with robust L2-gain
measure is defined.

Definition 4.3. Let the constant γ > 0 be given. The system (4.1) is said to be stabilizable with
a robust L2-gain measure γ if there exists a fixed control law u = Kx̂ and observer gain L
such that for any admissible sensor faults the following conditions are satisfied.

(1) The system is uniformly asymptotically stable.

(2) Subject to the assumption of zero initial condition, the controlled output e satisfies

‖e‖2
‖w‖2

≤ γ. (4.7)

Here, the quadratic stability with an L2-gain measure was introduced [19]. This concept is
a generalization of that of quadratic stabilization to handle L2-gain measure constraint on
exogenous attenuation. To this end, the characterizations of robust performance based on
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quadratic stability will be given in terms of matrix inequalities, where if LMIs can be found,
then the computations by finite dimensional convex programming are efficient.

Theorem 4.4. Consider the closed-loop system (4.1), and the following statement holds: the closed-
loop system is said to be quadratically stable with a robust L2-gain measure γ from inputw to output
e if there exists X > 0 and λ ≥ 0 such that

Π < 0, (4.8)

where

Π =

(
AT

cX +XAc + CT
e Ce + λCT

qCq XBc

BT
c X −γ2I

)

. (4.9)

Proof. Let quadratic Lyapunov function be V (xc) = xT
c XxT

c , with X > 0 such that

∀xc, and w satisfying (4.1), (4.10)

d

dt
V (xc) + eTe − γ21w

Tw < 0, (4.11)

and constraint

wTw ≤ xT
c C

T
qCqxc. (4.12)

Then, it follows from the S procedure that the equivalent condition of (4.11) is the existence
of λ ≥ 0 satisfying

d

dt
V (xc) + eTe − γ21w

Tw + λ
(
xT
c C

T
qCqxc −wTw

)
≤ 0, (4.13)

which can be equivalently written as

d

dt
V (xc) + λxT

c C
T
qCqxc + eTe − γ2wTw ≤ 0 (4.14)

for γ2 = γ21 + λ. Then the L2-gain of the (4.1) is less than γ . To show this, we integrate (4.14)
from 0 to T , with the initial condition xc(0) = 0, to get

V (xc(T)) + λ

∫T

0
xT
c C

T
qCqxcdt +

∫T

0

(
eTe − γ2wTw

)
dt ≤ 0. (4.15)

Since V (xc(T)) + λ
∫T
0 xT

c C
T
qCqxcdt ≥ 0, this implies that

‖e‖2
‖w‖2

≤ γ. (4.16)
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The inequality (4.8) and definition (4.9) are obtained by substituting (4.1) into (4.14). Without
loss of generality, we will adopt only strict inequality in this paper. This completes the proof.

4.3. Matrix Inequality Characterizations

The following lemma is to show that the energy of the estimated output signals by observer
can be limited by some matrix inequalities, which provide an upper bound of the exogenous
signal, w.

Lemma 4.5. Given that

ẋc = Acxc, xc(0) ∈ B,
ŷi = Cq,ixc,

B =
{
xc | xT

c Xxc ≤ ν
}
, X > 0, ν > 0,

(4.17)

if there exist X > 0 and θi > 0 satisfying

AT
cX +XAc < 0,

Υi > 0, i = 1, . . . , l,
(4.18)

then the following statements are equivalent:

(1) ŷ2
i < (θi/ν),

(2) Θ̂ > 0, where

Υi =

⎛

⎜
⎝

X CT
q,i

Cq,i
θi
ν
I

⎞

⎟
⎠, (4.19)

Θ̂ =
(
diag[Cx̂]

)
(−νI)(diag[Cx̂]) + Θ,

Θ = diag(θ1, . . . , θl).
(4.20)

Proof. B is an invariant ellipsoid. Let V (xc) = xT
c Xxc. Since

V̇ (xc) = xT
c

(
AT

cX +XAc

)
xc < 0 (4.21)

then we have

V (xc(t)) ≤ V (xc(0)) ≤ ν. (4.22)
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Hence, xc(t) ∈ B, for all t ≥ 0 and

ŷ2
i ≤ max

xc∈B
xT
c C

T
q,iCq,ixc. (4.23)

Let θi = maxxc∈Bx
T
c C

T
q,iCq,ixc. We have

⎛

⎜
⎝

X CT
q,i

Cq,i
θi
ν
I

⎞

⎟
⎠ > 0, ⇐⇒ CT

q,iCq,i <
θi
ν
X, ∀i. (4.24)

From (4.23) and (4.24), we have

ŷ2
i ≤ max

xc∈B
xT
c C

T
q,iCq,ixc <

θi
ν
, ∀i. (4.25)

This completes the proof of (1). The equivalence of (1) and (2) is straightforward.

Before stating the main theorem for the robust L2-gain measure γ of the closed-loop
system (4.1), which ensures the robust performance of the original system (2.1) and (2.2)
against sensor faults, the following matrices are defined:

Π1 =

⎛

⎝
Ξ2(X2) + λCTC X2BK + λCTC 0
(BK)TX2 + λCTC (�) −X1L

0 −LTX1 −γ2I

⎞

⎠,

Π2 =

(
−(ΓW)TX3 −X3(ΓW) + 2κX3 X3Γ

ΓTX3 −νI

)

,

(4.26)

where

(�) = Ξ1(X1) + (λ + 1)CTC + (X1L)Θ
(
LTX1

)
. (4.27)

Theorem 4.6. Let the γ > 0, κ > 0, and ν > 0 be given. The closed-loop system (4.1) with the
admissible bounded sensor faults is said to be quadratically stable with a robust L2-gain measure γ , if
one lets the matrix X be in the set χ

χ =
{
block diag(X1, X2, X3) | Xi = XT

i > 0
}
, (4.28)

there exist K, L, Γ > 0, Θ > 0, and X ∈ χ such that Π1 < 0,Π2 < 0, and Υi > 0, i = 1, . . . , l.
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Proof. We consider the signals e(·) in response to the signals w(·) with the zero initial states,
and a (candidate) quadratic Lyapunov function V (xc) � xT

c Xxc. For any nonzero vectors, ς1
and ς2 are defined as

ς1 =

⎛

⎝
x
x̃
w

⎞

⎠, ς2 =

(
φ̂

diag[Cx̂]LTX1x̃

)

. (4.29)

We have

� = ςT1Π1ς1 + ςT2Π2ς2

=
(
V̇ (xc) + λqTq + eTe − γ2wTw + x̃T (X1L)Θ̂

(
LTX1

)
x̃ + φ̂T (2κX3)φ̂

)
,

(4.30)

where Θ̂ is defined in (4.20). Let ζ = ( xc
w ), thus

� = ζTΠζ + x̃T (X1L)Θ̂
(
LTX1

)
x̃ + φ̂T (2κX3)φ̂, (4.31)

whereΠ is defined by (4.9). If the matrix inequalities,Π1 < 0,Π2 < 0, and Υi > 0, are satisfied,
we have � < 0, or equivalently,

ζTΠζ < −x̃T (X1L)Θ̂
(
LTX1

)
x̃ − φ̂T (2κX3)φ̂ < 0, (4.32)

for nonzero x̃ and φ̂, which implies that Π < 0. Hence, by Theorem 4.4, the closed-loop
system is quadratically stable with a robustL2-gain measure γ is ensured. This completes the
proof.

Remark 4.7. It is highlighted that the κ is defined to be the decay rate of the estimated sensor
function φ̂ shown in (3.8a)–(3.8d) such that limt→∞eκt‖φ̂‖ = 0, when φ̂ ∈ D.

Remark 4.8. The ideas of using χ to set the block diagonal matrix are from the separation
principle, where the observer and control gain are designed independently [20], and the
lower triangular matrix structure of Ac, where the diagonal elements are the major concerns
of the design [21]. It is shown later in the next section that the computation of Lyapunov
matrix for controller (X2) and observer (X1) is independently accomplished. Hence, in
contrast to the general conservative issue of LMI due to the use of a single Lyapunov
matrix for all design, the implementation of the proposed block diagonal matrix χ obtains
less conservativeness. To demonstrate the fact, the robust L2-gain measure in the numerical
example shows that the indexed number γ is much less than the number shown in [12].

Before presenting the synthesis results in the next section, a useful and important
lemma will be stated for clarity.
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Lemma 4.9 (Elimination Lemma see [19]). Given H = HT ∈ �n×n, V ∈ �n×m, and U ∈ �n×p

with Rank(V) < n and Rank(UT ) < n, there exists a matrix K such that

H + VKUT +UKTVT < 0 (4.33)

if and only if

VT
⊥HV⊥ < 0, UT

⊥HU⊥ < 0, (4.34)

where V⊥ and U⊥ are orthogonal complement of V and U, respectively; that is, VT
⊥V = 0 and (V⊥V)

are of maximum rank.

5. Control and Observer Gain Synthesis

In this section according to the analyzed results shown in the last section, the observer gain,
L, and control gain, K, will be synthesized. The general LMI synthesis problem involves sets
of the form X ∈ χ and a list of matrices A,B,C, L,K,Γ, and W and scalars ν, κ, and θi. We
will conclude the quadratic stability with a robust L2-gain measure γ control problem in an
convex optimization fashion. We will also specify the details in the following, and the results
will be concluded in an algorithm of computation.

Assume diag[φ] ∈ BΦ and φ̃i ∈ Δ, for all i. Given prespecifiedmatricesA,B,C,W > 0
and scalars ν > 0 and κ > 0. If, according to Theorem 4.6, there exist matrices X ∈ χ, L,K,Γ,
Θ > 0 and γ2 such that Π1 < 0, Π2 < 0, and Υi > 0, for all i, are satisfied, then the closed-
loop system is quadratically stable with a robust L2-gain measure γ . Let the matrix Π1 be
decomposed into

Π1 = Π1 1 + Π1 2 < 0, (5.1)

where

Π1 1 =

⎛

⎝
Ξ2(X2) X2BK 0
(BK)TX2 (��) −X1L

0 −LTX1 −γ2I

⎞

⎠, (5.2)

Π1 2 = λ

⎛

⎝
CT

CT

0

⎞

⎠(C C 0
)
, (5.3)

(��) = Ξ1(X1) + CTC + (X1L)Θ
(
LTX1

)
. (5.4)

Thus, we have

ςT1Π1ς1 = ςT1Π1 1ς1 + ςT1Π1 2ς1. (5.5)
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It is noted that

ςT1Π1 2ς1 = λqTq ≥ 0 (5.6)

for λ ≥ 0. Next, by S procedure, the requirement of ςT1Π1ς1 < 0 is equivalent to

ςT1Π1 1ς1 < 0, (5.7)

which implies thatΠ1 1 < 0. Hence, by thewell-known Schur complement, thematrixΠ1 1 < 0
can be rewritten as

⎛

⎜⎜
⎝

Ξ2(X2) X2BK 0 0
(BK)TX2 Ξ1(X1) + CTC −X1L X1L

0 −LTX1 −γ2I 0
0 LTX1 0 −Θ−1

⎞

⎟⎟
⎠ < 0. (5.8)

The inequality (5.8) can be again rewritten as

H + VKUT +UKVT < 0, (5.9)

where

H =

⎛

⎜⎜
⎝

ATX2 +X2A 0 0 0
0 Ξ1(X1) + CTC −X1L X1L
0 −LTX1 −γ2I 0
0 LTX1 0 −Θ−1

⎞

⎟⎟
⎠, (5.10)

V =

⎛

⎜⎜
⎝

X2B
0
0
0

⎞

⎟⎟
⎠, U =

⎛

⎜⎜
⎝

I
I
0
0

⎞

⎟⎟
⎠. (5.11)

Next, the orthogonal complement of V and U is given by

V⊥ =

⎛

⎜⎜
⎝

X−1
2 B⊥ 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎞

⎟⎟
⎠, U⊥ =

⎛

⎜⎜
⎝

I 0 0
−I 0 0
0 I 0
0 0 I

⎞

⎟⎟
⎠, (5.12)

In which B⊥ is defined as the orthogonal complement of B and is such that BT
⊥B = 0 and

[B⊥ B] is of maximum rank. Similarly, V and U are defined as orthogonal complement of V
and U, respectively.
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It is followed by using the well-known Elimination Lemma stated in Lemma 4.9 that
the matrix variable,K, can be eliminated from the inequality (5.9), which is equivalent to the
following two inequalities:

VT
⊥HV⊥ < 0, UT

⊥HU⊥ < 0. (5.13)

Substituting (5.10) and (5.12) into (5.13), we have

VT
⊥HV⊥ =

⎛

⎜⎜
⎝

BT
⊥
(
X−1

2 AT +AX−1
2

)
B⊥ 0 0 0

0 Ξ1(X1) + CTC −X1L X1L
0 −LTX1 −γ2I 0
0 LTX1 0 −Θ−1

⎞

⎟⎟
⎠ < 0, (5.14)

which is equivalent to

BT
⊥
(
X−1

2 AT +AX−1
2

)
B⊥ < 0, (5.15)

⎛

⎝
Ξ1(X1) + CTC −X1L X1L

−LTX1 −γ2I 0
LTX1 0 −Θ−1

⎞

⎠ < 0, (5.16)

UT
⊥HU⊥ =

⎛

⎝
ATX2 +X2A + Ξ1(X1) + CTC X1L −X1L

LTX1 −γ2I 0
−LTX1 0 −Θ−1

⎞

⎠ < 0. (5.17)

It is noted that (5.15), (5.16), and (5.17) cannot be solved simultaneously using LMI Toolbox
of Matlab due to its nonconvexity in matrix variable, X2. We, therefore, propose that X−1

2

of (5.15) be solved first. It is easy to find X2 using X−1
2 . If we let L̂ = X1L, then (5.16) and

(5.17) are LMIs in variables, X1, L̂, γ2, and Θ, which can be solved simultaneously by the
LMI Toolbox of Matlab. The rest LMIs considered areΠ2 < 0 for a prespecified decaying rate,
κ > 0, ν > 0, and matrix W > 0, we have

(
−Γ̂W −WT Γ̂T + 2κX3 Γ̂

Γ̂T −νI

)

< 0, X3 > 0, (5.18)

where Γ̂ = X3Γ. And lastly for Υi > 0 using Schur complement, we equivalently have

X −
(
ν

θi

)
CT

q,iCq,i > 0, i = 1, . . . , l, (5.19)

where Θ = diag(θ1, . . . , θl).

Remark 5.1 (step of computation). Now, we can summarize the step of computation.

(1) Find feasible solutions of X−1
2 > 0 and thus X2 where LMI (5.15) is satisfied.
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(2) Use the computed matrices X2 found in step (1), the robust L2-gain performance
problem is placed as the following optimization problem:

minimize γ2

subject to (5.16), (5.17), (5.18), and (5.19)

X1 > 0, X3 > 0, Θ > 0.

(5.20)

(3) Reconstruct control gain, K, and the matrices found in step (1) and (2) are
substituted into the inequality (5.9), which is LMI on one matrix variable, K and
can be solved by LMI Toolbox of Mtalab.

6. Numerical Example

This example adopted from [12] will be used to illustrate the proposed design with the
following parameters:

A =

⎛

⎝
0 1 0
0 0 1
6 −1 −4

⎞

⎠, B =

⎛

⎝
0
0
1

⎞

⎠, C =
(
1 0 0
0 1 0

)
. (6.1)

We will test three cases to verify the superiority of the designed observer-based controller.
First, case no. 1: one sensor fault where the conditions for simulation are similar to those in
[12], in which the sensor y1 is perfectly normal and sensor y2 is subject to faults with 50%
reduction in signal strength. That is, by Theorem 3.1, φ1 is equal to 1, and φ2 is allowed to be
time varying or nonlinear function and varies between 0 and 0.5, that is, 0 ≤ φ2 ≤ 0.5. In the
simulation, we let φ2 = 0.25 + 0.1 sin(10t) to examine the design. Using Matlab LMI control
toolbox and following the step of computation in Remark 5.1, the matrix, X2, is computed as
follows:

X2 =

⎛

⎝
1.5829 1.6959 0.9610
1.6959 3.8158 1.6959
0.9610 1.6959 1.5829

⎞

⎠. (6.2)

Then we solve optimization problem proposed by (5.20). We find that

X1 = 107
⎛

⎝
9.3574 −7.9408 −1.4166
−7.9408 8.8721 −0.9313
−1.4166 −0.9313 2.3478

⎞

⎠, L =

⎛

⎝
20.0010 0.0263
20.0010 0.0263
20.0010 0.0263

⎞

⎠,

K =
(−7.0000 −1.7000 1.3000

)
,

(6.3)

and the optimal value of γ2 is 56.0603. The control gain K places the eigenvalues of matrix
A+BK at {−1.00,−0.85± j0.5268}. It is of interest that the eigenvalues ofA−L(diag[φ])C are
placed around {−19,−2,−3} for all φ2 = 0.25 + 0.1 sin(10t). It is highlighted that L(diag[φ])C
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Figure 3: (Case no. 1): The comparison of the plant states, x, and observed states, x̂, of one sensor fault for
the true sensor function φ2 ∈ BΦ.

intends to closely map the fault sensor signal into its null space. This claim can be verified by
viewing

L
(
diag

[
φ
])
C =

⎛

⎝
20.0010φ1 0.0263φ2 0
20.0010φ1 0.0263φ2 0
20.0010φ1 0.0263φ2 0

⎞

⎠, (6.4)

where the effectiveness of φ2 on the eigenvalues ofA−L(diag[φ])C has been greatly reduced.
Figures 3 and 4 show the complete simulation results. In Figure 3, the observed states, x̂,
converge to the plant states, x, eventually. In Figure 4, it is noted that the estimate sensor
function φ̂1 approaches very closely to its true value. However, for fast variation of sensor
function φ2, the estimated sensor function, φ̂2, does not follow it but stay at certain value as
t → ∞. We must highlight that the estimate scheme of sensor function may not be able to
approach the true sensor function, see [22] for detail, if lacking of persistent excitation, but
to keep the the difference of estimated signal and true sensor function within a bound. It is
seen from Figure 9 that φ̃i ∈ Δ, i = 1, 2. In Figure 4, the control input, u, is also shown. It is
worth noting that the smallest possible value of γ2 obtained by [12]was 416.9764 (γ = 20.42).
Compare with 50.0603, the number of [12] is much larger. The reasons for that are not hard to
conduct; the adaptive law and estimate scheme of faults capture the rate of change of faults,
while [12] assumed only bounds of all faults.

The second simulation, case #2, uses the condition, which is similar to the previous
case, where true sensor function φ1 = 1 and the true sensor function φ2 are not in the designed
interval, that is, φ2 /∈ BΦ, which makes φ2 > 0.5 or φ2 < 0. In the simulation, we let true
sensor function, φ2 = 1.5 + 0.1 sin(10t). The simulation results can actually be predicted and
are similar to the previous case since the computed observer gain L closely maps the second
sensor signal into its null space. It is easy to predict that the states, x and x̂, will be similar to
Figure 1 and is shown in Figure 5. In Figure 6, the true sensor functions, φ1 and φ2, estimated
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Figure 4: (Case no. 1): True sensor functions, φ1 = 1 and φ2 = 0.25 + 0.1 sin(10t), and estimated sensor
functions, φ̂1 and φ̂2, for φ2 ∈ BΦ. The control input, u, is also shown.
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Figure 5: (Case no. 2): The comparison of the plant states, x, and observed states, x̂, of one sensor fault for
the true sensor function φ2 /∈ BΦ.

sensor functions, φ̂1 and φ̂2, and control signals, u, are depicted. It is shown that although the
estimated signal, φ̃2, is within the diagonal norm bound, Δ, which is shown in Figure 6, its
results are deteriorated by the poor guess of its initial states.

The third simulation, that is, (case no. 3), is to show two sensor faults. We allow the
true sensor function, φ1, shown in Figure 8, to be varying in the pulse form between 0.4 and
0.7 for the first 0.8 second and then φ1 = 0.6 + 0.03 sin(10t), t ≥ 0.8, while keeping φ2 = 0.25 +
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Figure 6: (Case no. 2): True sensor functions, φ1 = 1 and φ2 = 1.5 + 0.1 sin(10t), and estimated sensor
functions, φ̂1 and φ̂2, for φ2 /∈ BΦ. The control input, u, is also shown.
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Figure 7: (Case no. 3): The comparison of the plant states, x, and observed states, x̂, of two sensor fault for
the true sensor function φi ∈ BΦ, i = 1, 2.

0.1 sin(10t) for t ≥ 0. To compute K and L, we assume the polytopic bound with 0.4 ≤ φ1 ≤ 1
and 0 ≤ φ2 ≤ 0.5. We surprisingly found that K = ( −6.9980 −1.6965 1.3033 ), which is close to the
one sensor fault case, and LT =

(
199.9852 199.9852 199.9852
0.0333 0.0333 0.0333

)
. Under two sensor fault cases, we have

raised the γ2 = 222.5654. It is not surprising to have the result since the signals for feedback
are extremely weak. We have shown the comparison of the true states and observed states in
Figure 7, where the large ripples of the observed states are produced due to the pulses of the
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Figure 8: (Case no. 3): The true sensor functions, φ1= pulses shown in the upper figure for t ≤ 0.8 and
φ1 = 0.6 + 0.03 sin(10t), t ≥ 0.8 and φ2 = 0.25 + 0.1 sin(10t), and the estimated sensor functions, φ̂1 and φ̂2.
The control input, u, is also shown.
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Figure 9: Solid-diamond line represents |φ̃1|, and solid-star line represents |φ̃2|. (a), (b), and (c) are
associated with simulation cases 1, 2, and 3, respectively.
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true sensor function in the first 0.8 second but soon died out. In Figure 8, the control input,
the true sensor signals, and estimate sensor signals are depicted. We recognize again from
Figure 9 that although we assume that φ̃i ∈ Δ, i = 1, 2, it really depends on the good guess
of initial states on the estimate scheme due to viewing the fact that φ̂2 maintains at its initial
states. This, however, can be understood that the associated sensor function is not subject to
persistent excitation [22] since it is mapped closely to its null space. Notably, for the third
case, the method in [12] failed.

7. Conclusion

This paper has developed an observer-based robust control system with an estimate scheme
of sensor states against extended bounded-sensor faults. In this design, the control system
not only can deal with the sensor fault in a prescribed polytopic bound but also can endure
the faults outside the bound. Based on the notion of quadratic stability with a robust L2-gain
measure γ , sufficient conditions for the solvability of the robust control problem have been
obtained, and a complete solution was given in terms of LMIs. The numerical example shows
the effectiveness of the designed method.
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