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Mathematical model for the peristaltic flow of chyme in small intestine along with inserted
endoscope is considered. Here, chyme is treated as Williamson fluid, and the flow is considered
between the annular region formed by two concentric tubes (i.e., outer tube as small intestine
and inner tube as endoscope). Flow is induced by two sinusoidal peristaltic waves of
different wave lengths, traveling down the intestinal wall with the same speed. The governing
equations of Williamson fluid in cylindrical coordinates have been modeled. The resulting
nonlinear momentum equations are simplified using long wavelength and low Reynolds number
approximations. The resulting problem is solved using regular perturbation method in terms of a
variant of Weissenberg number We. The numerical solution of the problem is also computed by
using shooting method, and comparison of results of both solutions for velocity field is presented.
The expressions for axial velocity, frictional force, pressure rise, stream function, and axial pressure
gradient are obtained, and the effects of various emerging parameters on the flow characteristics
are illustrated graphically. Furthermore, the streamlines pattern is plotted, and it is observed that
trapping occurs, and the size of the trapped bolus varies with varying embedded flow parameters.

1. Introduction

The object of this study is to investigate the flow induced by peristaltic action of chyme
(treated as Williamson fluid) in small intestine with an inserted endoscope. Williamson
fluid is characterized as a non-Newtonian fluid with shear thinning property (i.e., viscosity
decreases with increasing rate of shear stress). Since many physiological fluids behave like a
non-Newtonian fluid [1], so chyme in small intestine is assumed to behave like Williamson
fluid. Peristaltic motion is one of the most characteristics fluid transport mechanism in
many biological systems. It pumps the fluids against pressure rise. It involves involuntary
movements of the longitudinal and circular muscles, primarily in the digestive tract
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but occasionally in other hollow tubes of the body, that occur in progressive wavelike
contractions. The waves can be short, local reflexes or long, continuous contractions that
travel the whole length of the organ, depending upon their location and what initiates their
action.

In human gastrointestinal tract, the peristaltic phenomenon plays a vital role
throughout the digestion and absorption of food. The small intestine is the largest part of
the gastrointestinal tract and is composed of the duodenum which is about one foot long,
the jejunum (5–8 feet long), and the ileum (16–20 feet long). The rhythmic muscular action
of the stomach wall (peristalsis) moves the chyme (partially digested mass of food) into
the duodenum, the first section of the small intestine, where it stimulates the release of
secretin, a hormone that increases the flow of pancreatic juice as well as bile and intestinal
juices. Nutrients are absorbed throughout the small intestine. There are blood vessels and
vessels contained a fluid called lymph inside the villi. Fat-soluble vitamins and fatty acids are
absorbed into the lymph system. Glucose, amino acids, water-soluble vitamins, and minerals
are absorbed into the blood vessels. The blood and lymph then carry the completely digested
food throughout the body [2].

The endoscope effect on peristaltic motion occurs in many medical applications.
Direct visualization of interior of the hollow gastrointestinal organs is one of the most
powerful diagnostic and therapeutic modalities in modern medicine. A flexible tube called
an endoscope is used to view different parts of the digestive tract. The tube contains several
channels along its length. The different channels are used to transmit light to the area being
examined, to view the area through a camera lens (with a camera at the tip of the tube), to
pump fluids or air in or out, and to pass biopsy or surgical instruments through [3]. When
passed through themouth, an endoscope can be used to examine the esophagus, the stomach,
and first part of the small intestine. When passed through the anus, an endoscope can be used
to examine the rectum and the entire large intestine.

After the pioneering work of Latham [4], a number of analytical, numerical and
experimental studies [5–13] of peristaltic flows of different fluids have been reported
under different conditions with reference to physiological and mechanical situations. Several
mathematical and experimental models have been developed to understand the chyme
movement aspects of peristaltic motion. But less attention has been given to its relevance
with endoscope effect. Lew et al. [14] discussed the physiological significance of carrying,
mixing, and compression, accompanied by peristalsis. Srivastava [15] devoted his study to
observe the effects of an inserted endoscope on chyme movement in small intestine. The
important studies of recent years include the investigations of Saxena and Srivastava [16, 17],
L.M. Srivastava and V.P. Srivastava [18], Srivastava et al. [19], Cotton and Williams [20], and
Abd El-Naby and El-Misery [21].

The aim of present investigation is to investigate the peristaltic motion of chyme,
by treating it as Williamson fluid, in the small intestine with an inserted endoscope. For
mathematical modeling, we consider the flow in the annular space between two concentric
tubes (i.e., outer tube as small intestine and inner tube as endoscope). Moreover, the flow
is induced by two sinusoidal peristaltic waves of different wave lengths, traveling along the
length of the intestinal wall. The solution of the problem is calculated by two techniques: (i)
analytical technique (i.e., regular perturbation method in terms of a variant of Weissenberg
number We), (ii) numerical technique (i.e., shooting method). The expressions for axial
velocity, frictional force, pressure rise, axial pressure gradient and stream function are
obtained and the effects of various emerging parameters on the flow characteristics are
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illustrated graphically. Streamlines are plotted, and trapping is also discussed. Trapping is
an important fluid dynamics phenomenon inherent in peristalsis. At high flow rates and
occlusions, there is a region of closed stream lines in the wave frame, and thus, some fluid is
found trapped within a wave of propagation. The trapped fluid mass (called bolus) is found
to move with the mean speed equal to that of the wave [9].

2. Mathematical Development

We consider the flow of an incompressible, non-Newtonian fluid, bounded between small
intestine (outer boundary) and inserted cylindrical endoscope (inner boundary). A physical
sketch of the problem is shown in the Figure 1(a). We assume that the peristaltic wave is
formed in nonperiodic rush mode composing of two sinusoidal waves of different wave
lengths, traveling down the intestinal wall with the same speed c. We consider the cylindrical
coordinate system (R,Z) in the fixed frame, whereZ-axis lies along the centerline of the tube,
and R is transverse to it. Also a symmetry condition is used at the centre.

The geometry of the outer wall surface is described as

h
(
Z, t
)
= r0 +A1 sin

2π
λ1

(
Z − ct

)
+A2 sin

2π
λ2

(
Z − ct

)
, (2.1)

where r0 is the radius of the outer tube (small intestine),A1 and λ1 are the amplitude and the
wave length of first wave, A2 and λ2 are the amplitude and the wave length of the second
wave, c is the propagation velocity, t is the time, and Z is the axial coordinate.

The governing equations in the fixed frame for an incompressible Williamson fluid
model [6] are given as follows:
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(2.2)

where P is the pressure, and U,W are the respective velocity components in the radial and
axial directions in the fixed frame, respectively. Further, the constitutive equation of extra
shear stress tensor τ for Williamson fluid [22] is expressed as

τ =
[
μ∞ +

(
μ0 + μ∞

)(
1 − Γ

∣∣∣γ̇
∣∣∣
)−1]

γ̇ , (2.3)
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Figure 1: (a) Physical sketch of the problem. (b) Comparison of numerical and perturbation solutions of
axial velocity w(r, z) forWe = 0.02, dp/dz = 0.7, and δ = 0.1.

where μ∞ is the infinite shear rate viscosity, μ0 is the zero shear rate viscosity, Γ is
characteristic time and the generalized shear rate γ̇ is expressed in terms of second invariant
strain tensor Π as,

∣∣∣γ̇
∣∣∣ =
√√√√1

2

∑
i

∑
j

γ̇ ij γ̇ ji =

√
1
2
Π, (2.4)

in which Π = tr (gradV + (gradV)T )
2
, and V denotes the velocity vector.
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We consider the case μ∞ = 0 and Γ|γ̇ | < 1 for constitutive equation (2.3). Hence, the
extra stress tensor can be written as

τ = μ0
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∣∣γ̇∣∣)−1
]
γ̇ ,
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(2.5)

such that
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In the fixed coordinates (R,Z), the flow is unsteady. It becomes steady in a wave frame
(r, z)moving with the same speed as the wave moves in theZ-direction. The transformations
between the two frames are

r = R, z = Z − ct,
u = U, w =W − c,

(2.7)

in which u and w are the velocities in the wave frame. The corresponding boundary con-
ditions in the wave frame are

w = −c, at r = r1,

w = −c, at r = h = r0 +A1 sin
2π
λ1

(z) +A2 sin
2π
λ2

(z),
(2.8)

where r1 is the radius of the inner tube (endoscope). In order to reduce the number of
variables, we introduce the following nondimensional variables:
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Here Re,We, and ε represent the Reynolds number, Weissenberg number, and wave number,
respectively. Moreover, φ1 and φ2 are nondimensional amplitudes of the waves, δ is the
annulus aspect ratio, and γ represents the wave length ratio between two waves. By using
(2.7) and (2.9), we get
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and components of the extra stress tensor take the following form:
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(2.11)

Under the assumption of long wavelength ε � 1 and low Reynolds number approxi-
mations, the above equations are further reduced to

∂p

∂r
= 0, (2.12)
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Equation (2.12) shows that p = p(z). Now putting expression of τ rz in (2.13) we get

−∂p
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+
1
r

[
r
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(
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= 0. (2.15)

The corresponding nondimensional boundary conditions thus obtained are

w = −1 at r = δ,

w = −1 at r = h = h(z) = 1 + φ1 sin 2πz + φ2 sin 2πγz.
(2.16)
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3. Solution of the Problem

3.1. Perturbation Solution

Since (2.15) is a nonlinear equation and the exact solution may not be possible, therefore, in
order to find the solution, we employ the regular perturbation method in terms of a variant
of Weissenberg numberWe. For perturbation solution, we expand w and p as

w = w0 +Wew1 +O
(
W2

e

)
,

p = p0 +Wep1 +O
(
W2

e

)
.

(3.1)

To first order, the expressions for axial velocity and axial pressure gradient satisfying
boundary conditions (2.16) directly yield

w(r, z) = −1 + 0.25
dp

dz
(a45) +We

dp

dz
(a46 − a47), (3.2)

dp

dz
= a48(a49 + a50 − a51 + a52), (3.3)

where the involved quantities are defined in Appendix.
The expressions of pressure rise Δp and the frictional forces F0 and F1 at the outer and

inner boundaries, respectively, in their nondimensional forms, are given as

Δp =
∫1

0

dp

dz
dz, (3.4)

F0 =
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0
δ2
(
−dp
dz

)
dz, (3.5)

F1 =
∫1

0
h2
(
−dp
dz

)
dz. (3.6)

where dp/dz is defined through (3.3), and flow rate Q in dimensionless form is defined as

Q = q − π
(〈
h2
〉
− δ2
)
, (3.7)

where q is flow rate in the fixed frame of reference, and 〈h2〉 is square of displacement of the
walls over the length of an annulus, defined as

〈
h2
〉
=
∫1

0

(
h2
)
dz. (3.8)
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Table 1: Numerical and perturbation solutions for axial velocity w(r, z).

r
Numerical Sol. Perturbation Sol. Error

w(r, z) w(r, z)
0.10 −1.0000 −1.0000 0.0000
0.15 −1.0284 −1.0286 0.0002
0.20 −1.0470 −1.0473 0.0003
0.25 −1.0599 −1.0601 0.0002
0.30 −1.0687 −1.0689 0.0002
0.35 −1.0745 −1.0748 0.0003
0.40 −1.078 −1.0781 0.0001
0.45 −1.0794 −1.0795 0.0001
0.50 −1.0790 −1.0790 0.0000
0.55 −1.0770 −1.0770 0.0000
0.60 −1.0734 −1.0734 0.0000
0.65 −1.0685 −1.0684 0.0001
0.70 −1.0622 −1.0622 0.0000
0.75 −1.0546 −1.0547 0.0001
0.80 −1.0461 −1.0460 0.0001
0.85 −1.0362 −1.0361 0.0001
0.90 −1.0251 −1.0252 0.0001
0.95 −1.0128 −1.0131 0.0003
1.0 −1.0000 −1.0000 0.0000

Also in order to establish stream lines, we obtain stream function by using the following
relation:

u = −1
r

∂ψ

∂z
, w =

1
r

∂ψ

∂r
, (3.9)

which yields

ψ =
r

480
(a30) + a31

[(
a32 − a33 − a34 + 5a26a212 − a35

)

×a36 − a37 − a38 + a39 + a40 + a41 − a42 + a43 + a44
]
,

(3.10)

where the involved quantities are defined in Appendix.

3.2. Numerical Solution

Equation (2.15) is solved numerically by using shooting method [23]. The numerical result
for axial velocity w(r, z) is compared with the perturbation result, and both results reveal a
very good agreement with each other, as demonstrated in Table 1 and Figure 1(b).



Mathematical Problems in Engineering 9

0 0.5 1 1.5 2 2.5

0

100

200

300

400

500

600

700

800

−200

−100

−0.5

∆
p

Q

We = 0.01
We = 0.03

We = 0.05
We = 0.07

(a)

0 0.5 1 1.5 2

0

100

200

300

400

500

600

700

−100
−0.5

γ = 0.6
γ = 0.7

γ = 0.8
γ = 0.9

∆
p

Q

(b)

0 0.5 1 1.5 2 2.5

0

500

1000

1500

−0.5

−500

φ2 = 0.03
φ2 = 0.05

φ2 = 0.07
φ2 = 0.09

∆
p

Q

(c)

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

90

100

−0.5

δ = 0.06
δ = 0.07

δ = 0.08
δ = 0.09

∆
p

Q

(d)

Figure 2: Variation of pressure rise per wavelength (Δp) for different values of (a) We with φ1 = 0.03, φ2 =
0.05, Q = 0.2, δ = 0.7 and γ = 0.9, (b) γ with φ1 = 0.03, φ2 = 0.05, Q = 2, δ = 0.7, andWe = 0.01, (c) φ2 with
φ1 = 0.01, Q = 0.2, γ = 0.9, δ = 0.7, and We = 0.01, and (d) δ with φ1 = 0.03, φ2 = 0.05, Q = 0.2, γ = 0.9,
andWe = 0.01.

4. Graphical Results and Discussion

In this section, the graphical representations of the obtained solutions are demonstrated
along with their respective explanation. The expressions for pressure rise and frictional
forces are not found analytically; therefore, MATHEMATICA software is used to perform
the integration in order to analyze their graphical behavior. It is also pertinent to mention
that the values of all embedded flow parameters are considered to be less than 1.

Figures 2(a) to 2(d) are graphs of pressure rise Δp versus flow rate Q to show the
effects of different parameters on pumping rate. For peristaltic pumping, we divide the whole
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Figure 3: Variation of frictional force at the inner wall (F1) for different values of (a) We with φ1 = 0.03,
φ2 = 0.05, Q = 2, δ = 0.7, and γ = 0.9, (b) γ with φ1 = 0.03, φ2 = 0.05, Q = 0.2, δ = 0.7, andWe = 0.01, (c) φ2
with φ1 = 0.01, Q = 0.2, γ = 0.9, δ = 0.7 andWe = 0.01, and (d) δ with φ1 = 0.03, φ2 = 0.05, Q = 0.2, γ = 0.9
andWe = 0.01.

region into three parts. The region corresponding to Δp > 0 and Q > 0 is known as the
peristaltic pumping region. At Δp = 0 is the free pumping region. And the region at Δp < 0
and Q > 0 is called augmented pumping. Figure 2(a) shows that the pumping rate decreases
by increasing the values of Weissenberg number We, and this behavior remains the same in
all three pumping regions. Figure 2(b) indicates the effect of the wavelength ratio γ on Δp.
Here, pressure rise decreases with an increase in γ peristaltic pumping region, and after a
critical value of Q = 1.4, it increases in the free and augmented pumping regions. Figure 2(c)
explains the effect of the amplitude ratio φ2 on Δp. Here, pressure rise decreases with an
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Figure 4: Variation of frictional force at the outer wall (F0) for different values of (a) We with φ1 = 0.03,
φ2 = 0.05, Q = 0.2, δ = 0.7, and γ = 0.9, (b) γ with φ1 = 0.03, φ2 = 0.05, Q = 2, δ = 0.7, andWe = 0.01, (c) φ2
with φ1 = 0.01,Q = 0.2, γ = 0.9, δ = 0.7, andWe = 0.01, and (d) δ with φ1 = 0.03, φ2 = 0.05, Q = 0.2, γ = 0.9
andWe = 0.01.

increase in value of φ2 in the free and peristaltic pumping region, and after a critical value of
Q = 1.5, it increases in the augmented pumping region. Figure 2(d) shows that pressure rise
decreases when annulus aspect ratio δ increases.

Similarly the effects of We, γ , φ2, and δ on frictional forces are plotted in Figures 3-4.
Figures 3(a) to 3(d) represent the variation of the frictional force at the outer wall (F0) and
Figures 4(a) to 4(d) indicate the variation of the frictional force at the inner wall (F1) with
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Figure 5: Pressure gradient dP/dz verses z for different values of (a) φ1 with φ2 = 0.06, Q = 0.2, γ = 0.9,
δ = 0.5, and We = 0.05, (b) φ2 with φ1 = 0.06, Q = 0.2, γ = 0.9, δ = 0.5, and We = 0.05, (c) We. with
φ1 = 0.04, φ2 = 0.06, Q = 0.2, δ = 0.5, and γ = 0.9, (d) δ with φ1 = 0.04, φ2 = 0.06, Q = 0.2, γ = 0.9 and
We = 0.05, and (e) γ with φ1 = 0.04, φ2 = 0.06, Q = 0.2, δ = 0.5 andWe = 0.05.
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Figure 6: Streamlines pattern for (a) φ2 = 0.08 (b) φ2 = 0.09 with φ1 = 0.04, Q = 0.2, δ = 0.4, γ = 0.9 and
We = 0.03.
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Figure 7: Streamlines pattern for (a)We = 0.01 (b)We = 0.02 with φ1 = 0.04, φ2 = 0.06, Q = 0.2, γ = 0.9 and
δ = 0.4.

flow rate Q. It can be noted that the phenomena presented in these figures possess opposite
character to the pressure rise for any given set of parameters. Also the graphs of both F0 and
F1 show similar behavior when compared to their respective parameters. It is significant to
mention that inner friction force F1 attains higher magnitude than outer friction force F0 with
increasing values of any given set of parameters.

In order to discuss the effects of variation of various parameters on the axial
pressure gradient dp/dz, MATHEMATICA has been used for the numerical evaluation of
the analytical results, and the results are graphically presented in Figures 5(a) to (5(e). In
these figures, the pressure gradient distribution for various values of φ1, φ2, We, γ , and
δ is depicted. It is observed that pressure gradient increases with increasing the values of
previously mentioned parameters.
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Figure 8: Streamlines pattern for (a) γ = 0.8 (b) γ = 0.9 with φ1 = 0.04, φ2 = 0.06, Q = 0.2, δ = 0.4 and
We = 0.03.
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Figure 9: Streamlines pattern for (a) δ = 0.4 (b) δ = 0.5 with φ1 = 0.04, φ2 = 0.06, Q = 0.2, γ = 0.9 and
We = 0.03.

The influence of various parameters on streamlines pattern is depicted in Figures 6,
7, 8, 9, and 10. It is noted that trapping is observed in all these cases. Figures 6, 7, 8, and 9
show that the size of trapped bolus increases for higher values of Weissenberg number (We),
wave length ratio (γ), and amplitude (φ2). Figure 9 exhibits the effects of radius ratio (δ) on
streamlines pattern. It can be seen that the size and number of the trapped bolus increase with
an increase in δ. However, the size and number of trapped bolus decrease with increasing
values of flow rate as shown in Figure 10.
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Figure 10: Streamlines pattern for (a) Q = 0.3 (b) Q = 0.5 with φ1 = 0.04, φ2 = 0.06, γ = 0.9, δ = 0.4 and
We = 0.03.

5. Conclusion

The peristaltic flow of chyme (treated as Williamson fluid) in small intestine with an inserted
endoscope is investigated. The flow is considered between annular space of small intestine
and inserted endoscope and is induced by two sinusoidal peristaltic waves of different wave
lengths, traveling along the length of the intestinal wall. Long wavelength and low Reynolds
number approximations are used to simplify the resulting equations. The solution of the
problem is calculated using analytical technique (i.e., regular perturbation method) and
numerical technique (i.e., shooting method). Also results of axial velocity for both solutions
are compared and found a very good agreement between them.

The performed analysis can be concluded as follows:

(1) the peristaltic pumping rate decreases with increasing the values of φ2,We, γ , and δ.
This shows that the effects of these parameters on the pressure rise are qualitatively
similar;

(2) frictional forces show an opposite behavior to that of pressure rise in peristaltic
transport;

(3) the inner friction force F1 attains higher magnitude than outer friction force F0 with
increasing values of any given set of parameters;

(4) Pressure gradient increases with increasing the values of all embedded parameters
that is, φ1, φ2,We, γ , and δ;

(5) an increase in radius ratio (δ) results in the increase of the size and number
of trapped bolus. Also the size of trapped bolus increases for higher values of
amplitude rate (φ2), Weissenberg number (We), and wave length ratio (γ);

(6) moreover, it is observed that the size and number of trapping bolus decrease with
increasing values of flow rate (Q).
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Appendix

The values of quantities appearing in the expressions (3.2), (3.3), and (3.4) are given as

a11 = logh + log r, a12 = logh + log δ, a13 = h2 − r2,
a14 = h2 − δ2, a15 = h − r, a16 = h − δ, a17 = h + δ,

a18 = h2 + δ2, a19 = h2 + r2, a20 = h4 − δ4, a21 = h6 − δ6,
a22 = h3 + δ3, a23 = h5 − δ5, a24 = h2 + δ2, a25 = h3 − δ3,
a26 = h7 − δ7, a27 = h4 + δ4, a28 = log δ3 − logh3,

a29 = logh log δ, a30 =
240ra28 + 720ra29a12

a312
,

a31 =
r(2Q + a14)(

300hδa216a log δ
3
17(−a14 + a24a12)

)3 ,

a32 = −10Wea
3
16a

3
17a12(2Q + a14),

a33 = hδa12
(
5a216a

2
17

)
(−24QWe + a14a12(−12We + a17)),

a34 = 10a14a12(a23 − 8QWe(a24 + hδ) − 4hδ(We(a14 + a20) + a25)),

a35 = 32Qa212We

(
a27 + hδa14 + h2δ2

)
+ 16We(a21 − hδa27 + 5hδa23)a312,

a36 = 30r3 − 8r4We −
15rWea

3
16a17

δa312

(
a17
h

+ logh
)
,

a37 =
1
a312

10r
(
h3We + δ2(3 − 7Weδ) + h2(−3 + 6Weδ) logh2

)
,

a38 = 20rδ2(3 −Weδ) logh3 + 5a16r log r

(
3a12

a216a
2
17

hδ
− 12a14a212

)
,

a39 = 4W2
e a12(a24 + hδ − a17),

a40 =
ra16

a312

(
15We

h
a14 log δ + 80h2We + 20δ(−3 + 4Weδ)

)
,

a41 = 20h(−3 + 7Weδ)a29 + a29 logh
(
60h − 20h3We + 120δ2 − 40δ3We

)
,

a42 = 70h2We + 10δ(−3 +Weδ) + 10h(−3 + 7Weδ) log δ2,

a43 =
ra29 log δ

a312

(
−120h2 + 40h3We − 60δ2 + 20δ3We

)
,

a44 =
20rh2 log δ3

a312
(3 − hWe), a45 = −a13 + a11a16

a12
a17,

a46 =
a15
12

(a19 + hr) +
a215a16a

2
17

16a212
+
a216a

2
17a11

16a212
,
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a47 =
a15a14
4a12

+
a11a16
12a12

(a18 + hδ) +
a316a

2
17a11

16hδ(a12)3
,

a48 =
1

5hδa216a
3
17(−a14 + a18a12)3

,

a49 = 8
(
(2Q + a14)

(
−5hδa316a17a12

)
+ 10hδa14(a23 − hδa22)a212 + a212

)
,

a50 = 8We

(
−10a316a317(2Q + a14)2 + 60hδa216a

2
17a12(2Q + a14)

)
,

a51 = 40hδa14a212(2Qa18 + a20 + a14)(2Qa18 + a20 + a14),

a52 = 16hδa3122Q
(
a20 + h2δa17 + hδ3

)
+ a21 + hδa20.

(A.1)
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