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The quaternion wavelet transform is a new multiscale analysis tool. Firstly, this paper studies the
standard orthogonal basis of scale space and wavelet space of quaternion wavelet transform in
spatial L2(R2), proves and presents quaternion wavelet’s scale basis function and wavelet basis
function concepts in spatial scale space L2(R2;H), and studies quaternion wavelet transform
structure. Finally, the quaternionwavelet transform is applied to image denoising, and generalized
Gauss distribution is used to model QWT coefficients’ magnitude distribution, under the Bayesian
theory framework, to recover the original coefficients from the noisy wavelet coefficients, and so as
to achieve the aim of denoising. Experimental results show that our method is not only better than
many of the current denoising methods in the peak signal to noise ratio (PSNR), but also obtained
better visual effect.

1. Introduction

Wavelet analysis is a rapidly developing branch of mathematics since 1980s; its research has
just been unfolding. As a mathematical tool, wavelet transform is a major breakthrough of
the Fourier transform and Fourier transform window known to many people; it has good
time-frequency features and multiple resolution and wavelet analysis theory has become
one of the most useful tools in signal analysis, image processing, pattern recognition and
other fields. In image processing, the basic idea of the wavelet transform is to decompose
image multiresolution; the original image is decomposed into different space and different
frequency sub-image, and then coefficients of sub-image are processed. Commonly used
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wavelet transforms are real discrete wavelet transform and complex wavelet transform and
so on. The real discrete wavelet and complex wavelet transform have two generals short-
coming; first, the real discrete wavelet transform signal small shift will produce the energy
of wavelet coefficient distribution change; second, dual-tree complex wavelet although
overcame the first problem, it can generate signal phase ambiguity when represented two-
dimensional image’s features. While the quaternion wavelet transform is a new multiscale
analysis image processing tool, it is based on the Hilbert two-dimensional transform theory,
which has approximate shift invariance and can well overcome the above drawbacks
[1–3].

At present, quaternion wavelet research is divided into two branches, one is based on
quaternion numerical function multiresolution analysis theory of quaternion wavelet, using
a single tree structure, the earliest in 1994, Mitrea gave quaternion wavelet form concept
[4]; in 2001, Traversoni used real wavelet transform and complex wavelet transform by
quaternion Haar kernel and proposed discrete quaternion wavelet transform [5] and gave
some applications in image processing; in 2004, He and Yu used matrix value function
multiresolution analysis structure for consecutive quaternion wavelet transform [6] and
gave some properties; in 2010, Bahri constructed discrete quaternion wavelet transform
through complex matrix function and proved some basic properties [7]; in 2011, Bahri et
al. introduced through quaternion wavelet admissibility conditions, systematically extended
the consecutive wavelet transform concept to consecutive quaternion wavelet concept [8],
and proved the reconstruction theorem and continuous quaternion wavelet basic properties.
But these are mainly the concepts and properties of promotion, because its filters’ structure
and implementation are difficulties, it has not made any progress in application at present.
Another branch is based on Bulow quaternion analytic signal [9]; using real filter and dual-
tree structure to achieve the quaternion wavelet transform, the filter has the advantages of
simple structure, relatively easy, and there was quaternion signal application background;
this forms the research focus as this paper focuses on this branch. In 2006, Corrochano
through quaternion Gabor filter constructed quaternion wavelet transform (QWT) [2] and
discussed the QWT properties and wavelet pyramid algorithm, pointing out DWT is without
phase, CWT only has one phase, while QWT can provide three phases and puting forward
the image multiresolution disparity estimation method based on the theory of QWT; in 2008,
based on the dual-tree complex wavelet, Chan et al. used the concepts and properties of
Bulow quaternion analytic signal and quaternion Fourier transform, constructed (dual-tree)
quaternion wavelet transform, and worked out the meaning of three phases, two of which
represent the image of local displacement information, another as image texture feature,
which can be used to estimate the image of the local geometric features [3]; in 2010, Xu et
al. used quaternion wavelet transform’s amplitude and phase method and applied it to the
face recognition [10], also obtained certain result; in 2011, Soulard and Carré applied the
quaternion wavelet transform to image texture analysis [11] and proved the feasibility of this
method.

In most cases, the image corruption is commonly modeled by a zero-mean additive
white Gaussian random noise leading to the following additive degradation model: g(x, y) =
f(x, y) + ε(x, y), where f(x, y), g(x, y), and ε(x, y) represent the clean image, the observed
noisy image, and the white Gaussian noise with variance σ2

n. The traditional image denoising
methods are mainly the Wiener filter, median filter, and weighted median filter, and so forth,
although these methods restrain the noise, they lose a lot of image detail information and
often cause image blur and generate a ringing phenomenon. Wavelet analysis has good
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properties of time-frequency localization and multiresolution denoising ability, which can
well reserve the detail of the image, thus becoming the main tool for image denoising.
The earliest wavelet denoising method is proposed by Mallat and Hwang in 1992 based
on modulus maximum denoising method [12]; its principle is observed through different
scales of the wavelet coefficients’ modulus maximal of regularity, removed by the noise
generated by the module maximum, with the remaining modulus maximal recovery signal.
In 1994, Donoho put forward to adopt universal threshold wavelet shrinkage method
[13]; the basic idea is comparison between different scale coefficients’ module a certain
threshold and obtained the de-noised signal by the inverse transform. Although the
implementation of thresholdingmethod is simple, it does not take into account the correlation
between wavelet coefficients. Due to that the wavelet coefficients have strong correlation,
researchers put forward many prior statistical models of the wavelet coefficients, so as
to get better denoising results. Then most of the research is based on a statistical model
of the noise reduction method, the key technology of this kind method is to choose an
accurate prior probability distribution model for the wavelet coefficients. In 1998, Crouse
et al. suggested hidden Markov model (HMM) [14] in wavelet transform domain; this
model can well capture interscale wavelet coefficients correlation, but it needs to get the
parameters through iterative calculation which cost much time. In 1999, Mihçak et al.
presented LAWML and LAWMAP methods [15], as the methods adopted local adaptive
coefficients distribution model, so it obtained better denoising results. However, retained
too much small wavelet coefficients, severe burr phenomenon appeared in the reconstructed
image. In 2000, Chang et al. used generalized Gaussian distribution simulates intrascale
wavelet coefficients’ relationship [16], the model can well reflect the wavelet coefficient
correlation between scales, and obtained certain results. In 2002, Şendur and Selesnick
considered the correlation of interscale wavelet coefficients and put forward BiShrink [17]
and Local—BiShrink [18] denoising methods and its main utilize bivariate non-Gaussian
distribution to manifest the correlation of wavelet coefficients between different scale and
as a prior distribution. Experiments show that denoising results based on bivariate non-
Gaussian distribution model can achieve very good results. In 2003, Portilla et al. [19]
proposed the GSM model which can indicate marginal distribution of coefficients and
embody the correlation of neighborhood coefficients. Later, many effective image denoising
methods based on this model combining different transforms are obtained [20, 21]. In
2005, Cho and Bui proposed the multivariate generalized Gaussian distribution model
[22], which adjusts different parameters and can include Gaussian, generalized Gaussian,
and non-Gaussian model, but parameters’ estimation is more complex in image denoising
process.

This paper gives and proves the properties of the Hilbert transform and the
standard orthogonal basis of scale space and wavelet space of quaternion wavelet
transform in spatial L2(R2), and then in the space L2(R2;H) it gives quaternion wavelet
basis function and scale function concepts, further gives quaternion wavelet transform
concept, and also studies quaternion wavelet transform’s structure and filter structure.
Its application is applied in image denoising; generalized Gauss distribution is used to
model the QWT coefficients’ magnitude, and then using the Bayesian minimum mean
square error estimation method, to recovery the original coefficients’ magnitude from the
noisy wavelet coefficients’ magnitude, and so as to achieve the purpose of denoising.
Experimental results show that our method is better than many other current denoising
methods.
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2. Quaternion Analytical Signal

2.1. 2D Hilbert Transform Concept

Definition 2.1 (see [8]). Set f(x, y) ∈ L2(R2), then f(x, y) along the x-axis and the y-axis and
along the x, y axis of the Hilbert transform fHx(x, y), fHy(x, y), and fHxy(x, y), respectively:

fHx
(
x, y

)
=

1
π

∫

R

f
(
ξ1, y

)

x − ξ1 dξ1, (2.1)

the corresponding frequency domain is ̂fHx(u, v) = −j sgn(u) ̂f(u, v);

fHy
(
x, y

)
=

1
π

∫

R

f(x, ξ2)
y − ξ2 dξ2, (2.2)

the corresponding frequency domain is ̂fHy(u, v) = −j sgn(v) ̂f(u, v);

fHxy
(
x, y

)
=

1
π2

∫∫

R2

f(ξ1, ξ2)
(x − ξ1)

(
y − ξ2

)dξ1dξ2, (2.3)

the corresponding the frequency domain is ̂fHxy(u, v) = − sgn(u) sgn(v) ̂f(u, v).

2.2. Quaternion Analytical Signal

The quaternion is proposed by W. R. Hamilton in 1843; quaternion is a complex promotion,
and it can be regarded as a special Clifford algebra.

Set H = {q = qr + iqi + jqj + kqk | qr, qi, qj , qk ∈ R}. Three imaginary i, j, k satisfy the
following rules:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. (2.4)

And define q as the quaternion.
The conjugate of quaternion q is given by q = Re(q)− Im(q) = qr − iqi− jqj −kqk and the

module of quaternion q is given by |q| =
√
qq =

√
q2r + q2i + q

2
j + q

2
k
. In addition, quaternion

q can also express as: q = |q|eiϕejθekψ , where |q| is the modulus of q, (ϕ, θ, ψ) are the-three
phase angles which is uniquely defined within the range (ϕ, θ, ψ) ∈ [−π,π] × [−π/2, π/2] ×
[−π/4, π/4] [9].

So L2(R2;H) = {f : R2 → H,
∫
R2 |f(x)|2d2x < ∞}, for all f, g ∈ L2(R2;H), define the

inner product 〈f, g〉 =
∫
R2 f(x)g(x)d2x, it is not difficult to prove L2(R2;H) is a Hilbert space.

Quaternion wavelet transform is based on quaternion analytic signal, and we give the
concept.
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Definition 2.2 (see [8]). Set f(x, y) is a real two-dimensional signals, then quaternion analytic
signal can be defined as fq(x, y) = f(x, y) + ifHx(x, y) + jfHy(x, y) + kfHxy(x, y).

where fHx(x, y), fHy(x, y), fHxy(x, y) are the f(x, y) along the x-axis and the y-axis
and along the x, y axis of the Hilbert transform.

3. Quaternion Wavelet Transform

This section is based on the study in [2, 3], in-depth study of quaternion wavelet theory,
which proved and presented the correlative properties and concepts of scale basis and
wavelet basis of quaternion wavelet, further, provided discrete quaternion wavelet transform
concept, and studied quaternion wavelet transform structure and filter structure.

3.1. Quaternion Wavelet’s Scale Basis and Wavelet Basis

Lemma 3.1. Let {ϕ(x − k)}k∈Z be the space of V ⊂ L2(R) standard orthogonal basis, set ϕg(x) =
H(ϕ(x)) (i.e., that ϕ(x) of Hilbert transform), so {ϕg(x − k)}

k∈Z is the standard orthogonal basis of
space Ṽ = HV ⊂ L2(R).

Proof. According to the theorem of the paper in [23], we know that standard orthogonal basis

in the frequency domain is equivalent to:
∑

k∈Z | ̂ϕ(ω + 2kπ)|2 = 1, by the concept and property
of Hilbert transform, the establishment of conclusion is right.

According to the lemma, it is not difficult to prove the following.

Theorem 3.2. Let {Vj}j∈z be a 1D orthogonal multiresolution analysis, the corresponding scale
function and wavelet function are ϕh(x) and ψh(x), respectively; note that Hx(ϕh(x)ϕh(y)) =
ϕg(x)ϕh(y) Hx(ϕh(x)ϕh(y)) are said to function as (ϕh(x)ϕh(y)) along x-axis direction Hilbert
transform, and the corresponding mark is similar

Hy

(
ϕh(x)ϕh

(
y
))

= ϕh(x)ϕg
(
y
)
,

Hxy

(
ϕh(x)ϕh

(
y
))

= ϕg(x)ϕg
(
y
)
.

(3.1)

So {ϕg(x − l)ϕh(y − k)}
l,k∈Z (or {ϕh(x − l)ϕg(y − k)}

l,k∈Z) are the standard orthogonal base of the

space V0
⊗
Ṽ 0 and the space Ṽ0

⊗
V0, where Ṽ0 = HV0.

We know that, in real orthogonal wavelet form 2D tensor product of wavelet, having a scale
function and form of standard orthogonal basis in scale space, there are three wavelet functions form
of standard orthogonal basis in wavelet space. For a function, it can be made along the x, y and
x, y axis direction’s Hilbert transform, so by Theorem 3.2 one knows {ϕg(x − l)ϕh(y − k)}

l,k∈Z
(or {ϕh(x − l)ϕg(y − k)}

l,k∈Z; total of 4) is the standard orthogonal basis of scale space L2(R2),
{ϕg(x − l)ψh(y − k)}

l,k∈Z({ϕh(x − l)ψg(y − k)}
l,k∈Z; total of 12) is the standard orthogonal base of

wavelet space L2(R2).
In fact, by Theorem 3.2 and the above analysis, it is easy to prove the following.
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Theorem 3.3. Let {Vj}j∈z be a 1D L2(R) orthogonal multiresolution analysis, ϕh(x), ψh(x) are scale
function and wavelet function of corresponding respectively.

Note

Φq(x, y
)
= ϕh(x)ϕh

(
y
)
+ iϕg(x)ϕh

(
y
)
+ jϕh(x)ϕg

(
y
)
+ kϕg(x)ϕg

(
y
)
,

Φq
j,k,m

(
x, y

)
= ϕh,j,k(x)ϕh,j,m

(
y
)
+ iϕg,j,k(x)ϕh,j,m

(
y
)

+ jϕh,j,k(x)ϕg,j,m
(
y
)
+ kϕg,j,k(x)ϕg,j,m

(
y
)
,

(3.2)

where ϕh,j,k(x) = 2−j/2ϕh(2−jx − k), j, k,m ∈ Z, corresponding mark is similar.
So {Φq

j,k,m(x, y)}k,m∈Z is the basis function of quaternion wavelet scale space. And called
Φq(x, y) is quaternion wavelet scale function in L2(R2;H); called {Φq

j,k,m(x, y)}k,m∈Z is discrete
quaternion wavelet scale function in L2(R2;H).

Further one has the following.

Theorem 3.4. Let {Vj}j∈z be a 1D orthogonal L2(R) multiresolution analysis, and ϕh(x), ψh(x) are
the scale function and wavelet function of corresponding, respectively; note that

Ψq,1(x, y
)
= ϕh(x)ψh

(
y
)
+ iϕg(x)ψh

(
y
)
+ jϕh(x)ψg

(
y
)
+ kϕg(x)ψg

(
y
)
,

Ψq,2(x, y
)
= ψh(x)ϕh

(
y
)
+ iψg(x)ϕh

(
y
)
+ jψh(x)ϕg

(
y
)
+ kψg(x)ϕg

(
y
)
,

Ψq,3(x, y
)
= ψh(x)ψh

(
y
)
+ iψg(x)ψh

(
y
)
+ jψh(x)ψg

(
y
)
+ kψg(x)ψg

(
y
)
.

(3.3)

The shift and expand of Ψq,1(x, y), Ψq,2(x, y) and Ψq,3(x, y) form of function family

{
Ψq,2
j,k,m

(
x, y

)
= ψh,j,k(x)ϕh,j,m

(
y
)
+ iψg,j,k(x)ϕh,j,m

(
y
)
+ jψh,j,k(x)ϕg,j,m

(
y
)

+ kψg,j,k(x)ϕg,j,m
(
y
)}

k,m∈z
,

{
Ψq,1
j,k,m

(
x, y

)
= ϕh,j,k(x)ψh,j,m

(
y
)
+ iϕg,j,k(x)ψh,j,m

(
y
)
+ jϕh,j,k(x)ψg,j,m

(
y
)

+ kϕg,j,k(x)ψg,j,m
(
y
)}

k,m∈z
,

{
Ψq,3
j,k,m

(
x, y

)
= ψh,j,k(x)ψh,j,m

(
y
)
+ iψg,j,k(x)ψh,j,m

(
y
)
+ jψh,j,k(x)ψg,j,m

(
y
)

+ kψg,j,k(x)ψg,j,m
(
y
)}

k,m∈z
,

(3.4)

where ψh,j,k(x) = 2−j/2ψh(2−jx − k), j, k,m ∈ Z, the corresponding mark is similar.
And Ψq,1(x, y),Ψq,2(x, y),Ψq,3(x, y) as the quaternion wavelet basis functions in L2(R2;H)

space; that {Ψq,1
j,k,m,Ψ

q,2
j,k,m,Ψ

q,3
j,k,m}j,k,m∈z

are discrete quaternion wavelet functions in L2(R2; H) space.

One can get concept of the quaternion wavelet transform.
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Definition 3.5. For for all f(x, y) ∈ L2(R2;H), make

cj,k,m =
(
f
(
x, y

)
,Φq

j,k,m

(
x, y

))
,

dij,k,m =
(
f
(
x, y

)
,Ψq,i

j,k,m

(
x, y

)) (
i = 1, 2, 3, j, k,m ∈ Z)

(3.5)

dij,k,m (i = 1, 2, 3) is called the discrete quaternion wavelet transform of f(x, y).

3.2. Quaternion Wavelet Transform’s Structure

The above discussion shows that quaternion wavelet transform by using four real discrete
wavelet transforms, the first real discrete wavelet corresponding quaternion wavelet real
part, the other real discrete wavelets are formed by the first real discrete wavelet transform
by Hilbert transform, corresponding to the three imaginary parts of quaternion wavelet,
respectively. In the last section, we know that Φq(x, y) is the quaternion scale function, and
Ψq,1(x, y),Ψq,2(x, y),Ψq,3(x, y) are the quaternion wavelet basis functions, if quaternion scale
function andwavelet function’s corresponding real component are taken out to form amatrix:

G =

⎛

⎜⎜⎜⎜⎜
⎝

ϕh(x)ϕh
(
y
)
ϕh(x)ψh

(
y
)
ψh(x)ϕh

(
y
)
ψh(x)ψh

(
y
)

ϕg(x)ϕh
(
y
)
ϕg(x)ψh

(
y
)
ψg(x)ϕh

(
y
)

ψg(x)ψh
(
y
)

ϕh(x)ϕg
(
y
)
ϕh(x)ψg

(
y
)
ψh(x)ϕg

(
y
)
ψh(x)ψg

(
y
)

ϕg(x)ϕg
(
y
)
ϕg(x)ψg

(
y
)
ψg(x)ϕg

(
y
)
ψg(x)ψg

(
y
)

⎞

⎟⎟⎟⎟⎟
⎠
. (3.6)

Then each row of the matrix G corresponds to the one real wavelet of quaternion wavelet,
the first column corresponding to quaternion wavelet scale function, the other columns
are quaternion wavelet’s three wavelet functions corresponding to horizontal, vertical and
diagonal three subbands. In the space L2(R2), there are four standard orthogonal real wavelet
bases, by wavelet frame and the concept of 2D real wavelet, we know that quaternion wavelet
base in L2(R2) form a tight frame, frame bound is 4.

Figure 1 shows the decomposition and reconstruction of quaternionwavelet transform
and an example of a QWT decomposition, where h0 and h1 are low-pass and high-pass
filter of real wavelet; g0 and g1 are low-pass and high-pass filter, corresponding to Hilbert
transform of h0 and h1, respectively; h̃0 and h̃1are synthesis filter.

3.3. The Magnitude and Phase Representation of Image

An image via quaternion wavelet transform, the coefficients can constitute a matrix Q:

Q =

⎛

⎜⎜
⎝

LLϕh(x)ϕh(y) LHϕh(x)ψh(y) HLψh(x)ϕh(y) HHψh(x)ψh(y)

LLϕg(x)ϕh(y) LHϕg(x)ψh(y) HLψg(x)ϕh(y) HHψg(x)ψh(y)

LLϕh(x)ϕg(y) LHϕh(x)ψg(y) HLψh(x)ϕg(y) HHψh(x)ψg(y)

LLϕg(x)ϕg(y) LHϕg(x)ψg(y) HLψg(x)ϕg(y) HHψg(x)ψg(y)

⎞

⎟⎟
⎠. (3.7)
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X

h0

h0

h1

h1

h0

h1

h0

h1

h0

h1

h0

h1

↓2

↓2

↓2

↓2

↓2

↓2

↓2

↓2
↓2

↓2

↓2

↓2

↓2

↓2

↓2

↓2

↓2

↓2

↓2

↓2

↓2

↓2

↓2

↓2

g0

g1

g0

g0

g1
g1

g0

g1

g0

g1

g0

g1

LL

LH

HL

HH

Real part

LLi

LHi

HLi

HHi

Imaginary tree (i)

LLj

LHj

HLj

HHj

Imaginary tree (j)

LLk

LHk

HLk

HHk

Imaginary tree (k)

(a) Decompose structure

X

LL

LH

HL

HH

LLi

LHi

HLi

HHi

LLj

LHj

HLj

HHj

LLk

LHk

HLk

HHk

↑2

↑2

↑2

↑2

↑2

↑2

↑2

↑2

↑2

↑2

↑2

↑2

↑2

↑2

↑2

↑2
↑2

↑2

↑2

↑2

↑2

↑2

↑2

↑2

⨁ 1
4

∼h0

∼h0

∼h1

∼h1

∼g0

∼g0

∼g1

∼g1

∼h0

∼h0

∼h1

∼h1

∼h0

∼h1

∼h0

∼h1

∼g0

∼g1

∼g0

∼g1

∼g0

∼g1

∼g0

∼g1

(b) Reconstruct structure

Figure 1: Continued.
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Real part Imaginary part i Imaginary part k

Analysis (see (a)) 

Imaginary part j

Synthesis (see (b))

1
4

+

(c) One level QWT decomposition on the Barbara image

Figure 1: The decomposition and reconstruction of quaternion wavelet.

Each column of matrix Q corresponding to a quaternion

q1 = LLϕh(x)ϕh(y) + iLHϕh(x)ψh(y) + jHLψh(x)ϕh(y) + kHHψh(x)ψh(y),

q2 = LLϕg(x)ϕh(y) + iLHϕg(x)ψh(y) + jHLψg(x)ϕh(y) + kHHψg(x)ψh(y),

q3 = LLϕh(x)ϕg(y) + iLHϕh(x)ψg(y) + jHLψh(x)ϕg(y) + kHHψh(x)ψg(y),

q4 = LLϕg(x)ϕg(y) + iLHϕg(x)ψg(y) + jHLψg(x)ϕg(y) + kHHψg(x)ψg(y).

(3.8)

The signal phase information reflects important local features; according to the concept of
quaternion q = |q|eiϕejθekψ , each quaternion wavelet coefficient can be represented using the
magnitude and phase; thus, we can obtain the amplitude and phase matrix of quaternion
coefficients (hereinafter referred to as magnitude and phase matrix)

F =

⎛

⎜⎜
⎝

LL|q1| LH|q2| HL|q3| HH|q4|
LLϕ1 LHϕ2 HLϕ3 HHϕ4

LLθ1 LHθ2 HLθ3 HHθ4

LLψ1 LHψ2 HLψ3 HHψ4

⎞

⎟⎟
⎠. (3.9)
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Assume that the size of original image is m × n and the size of magnitude and phase matrix
F is (22−jm) × (22−jn) in the jth scale QWT decomposition. Figure 2 shows an example of the
magnitude and phase representation of QWT coefficients.

3.4. Quaternion Wavelet Transform Filters Design

In order to calculate the coefficients of QWT, looking from the structure, the quaternion
wavelet filters’ system is similar to dual-tree complex wavelet, quaternion wavelet filters’
coefficients is quaternion, and it is realized by using the dual-tree algorithm, using an analytic
quaternion wavelet bases in order to satisfy the Hilbert transform. Quaternion wavelet filters
are dual-tree filters, each filters’ subtree part comprises 2 analysis filters and 2 synthesis filters,
respectively. In this paper, we use the quaternion wavelet with near-symmetric orthogonal
“Farrs” filters [24] at level 1 and Q-shift dual-tree filters [25] at higher levels.

4. Bayesian Image Denoising in Quaternion Wavelet Domain

4.1. Generalized Gaussian Distribution (GGD) Model

We find that the QWT coefficients of natural image is mainly distributed in the near to
zero, and the two sides have a long tail, the traditional Gauss distribution is not accurate
modeling of the QWT coefficients’ distribution. Through a large number of examples
research, generalized Gaussian distribution (GGD) model can be used as the prior model
of QWT coefficients in the high frequency subbands. The GGD [16] is

GGσ,β(x) = C
(
σ, β

)
exp

{
−[α(σ, β)|x|]β

}
, −∞ < x <∞, σ > 0, β > 0, (4.1)

where α(σ, β) = σ−1[(Γ(3/β))/(Γ(1/β))]1/2, C(σ, β) = (βα(σ, β))/(2Γ(1/β)).
And Γ(t) is the gamma function, the parameter σ is the wavelet coefficients’ standard

variance, and β is shape parameter. β in 1, GGD model becomes Laplace distributions, when
β in 2 is Gauss distributions. Figure 3 shows the finest horizontal subbands coefficients’
probability histograms of Lena image (perform 5 levels decomposition) and corresponding
GGD curves, where σ are 1.0918, 1.1924, 1.2936, and 1.3922 and β are 0.7519, 0.8042, 0.8521,
and 0.8011, respectively. As you can see from Figure 3, the GGD curves and the probability
histograms are better fitted, which proved again that GGD distribution can accurately
simulate the probability distribution of subbands coefficients.

4.2. Bayesian Threshold

In common cases, the clear image is corrupted by zero mean additive white Gaussian noise,
and the degradation model is

g
(
x, y

)
= f

(
x, y

)
+ ε

(
x, y

)
, (4.2)
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Figure 2: The quaternion wavelet transform of image Barbara. (a)–(e) Original image, magnitude, and the
3 terms of phase (ϕ, θ, ψ).

where f(x, y), g(x, y), and ε(x, y) represent the clean image, the observed noisy image, and
the white Gaussian noise with variance σ2

n. Image via QWT, get

w = m + n, (4.3)
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Figure 3: Probability histogram and corresponding GGD distribution for Lena image.

wherew,m, and n are the observed QWT coefficients, the original QWT coefficients, and the
noise QWT coefficients, respectively. The goal of denoising is estimate m̂ from w, make m̂ as
closer as possible to the original coefficients m. According to Bayesian theory, we can get the
threshold T [16]

T =
σ2
n

σ
. (4.4)

The formula (4.4) is under the frame of Bayesian theory, and it is suitable for the use of
soft thresholding function for image denoising. Soulard and Carré [11, 26] deeply studied
the amplitude and three phases of quaternion wavelet transform coefficients. In the image
coding experiments, they only code the QWT magnitude that can obtain better visual effect
than discrete wavelet transform, so they concluded that the QWT phase contains far more
information than the DWT sign. Moreover, since the real and imaginary parts of QWT
coefficients are not shift invariant individually but the magnitudes are. Based on the study of
the distribution of magnitudes of a large number of image quaternion wavelet coefficients,
statistics found that the histogram of magnitudes subtracting its mean can approximate for
GGD model. Although this is an approximation, the performance of our algorithm suggests
it is an acceptable assumption. Figure 4 shows the histogram of magnitudes subtracting its
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Figure 4: The histogram of magnitudes subtracting its mean of boat image.

mean of the finest horizontal subbands of boat image (perform 4 levels decomposition), and
the distribution of other natural images are similar. Therefore, we assume the magnitudes of
the QWT coefficients are corrupted by additive Gaussian noise.

In order to achieve better denoising effect, we amended formula (4.4), multiplied by a
parameter γ , and obtained

T = γ
σ2
n

σ
. (4.5)

For each subbands of QWT domain, the threshold is too low, the denoising effect is not
obvious, the threshold is high, andQWT coefficient excessive “killed”would losemore detail,
from formula (4.5) known that optimal threshold T mainly depends on the parameter γ .
Experiments show that although each image with different noise levels optimal parameter γ
is disaffinity, but the parameter γ is concentrated in a small range. Figure 5 shows the optimal
γ in the range between 0.6 and 1.1, and noise variance is bigger, the value γ is greater. In this
paper, the denoising algorithm used 5 levels QWT decomposition; in order to better remove
noise, we used the combined form of γ value, namely, the value of γ reduces gradually in the
scales from coarser to finer.

4.3. Denoising Algorithm

First we estimate the variance of noise σn
2. It can be estimated by the finest subbands

coefficients’ magnitude

σn =
Median

(∣∣wi,j

∣∣)

0.6745
, (4.6)

where wi,j is the finest subbands coefficient and |wi,j | denote its magnitude. Then calculate
the marginal variance σm2, because of

σw
2 = σm2 + σn2. (4.7)
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Figure 5: The average PSNR varies with γ of multiple images in different levels of noise variance.

Here σw2 is the noisy wavelet coefficient magnitude’s variance. We will estimate the variance
σw

2 by a square-shaped neighborhood windowW(k) that is centered at |wj |:

σw
2 =

1
N2

∑

|wj |∈W(k)

(∣∣wj

∣∣)2, (4.8)

whereN2 is the size ofW(k). Repeated experiments show thatW(k) take 5×5 square-shaped
neighborhood window will be more suitable. Thus, we can get the estimation for σm2:

σm
2 =

(
σw

2 − σn2
)

+
. (4.9)

Below, we summarize the main steps taken by the proposed image denoising method in this
paper.

Step 1. Perform the 5 levels QWT decomposition on the noisy image.

Step 2. Calculate the magnitude and phase of each subbands coefficients, and using (4.6) and
(4.9) calculate σn2 and σm2 values in each subbands.

Step 3. Compute noise-free coefficients’ magnitude using the multiplied threshold and soft
thresholding function.

Step 4. Perform inverse transform on the estimated magnitude and the original phase to
get QWT coefficients, and conduct the inverse QWT with estimated coefficients, and get the
denoised image.
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Table 1: Performance comparison of different denoising methods (PSNR).

σ Donoho’s HT LAWML SURE-LET P-Bivariate Our method
10 30.05 34.59 34.56 34.77 35.18

Lena 20 27.29 31.32 31.37 31.72 32.10
30 25.85 29.28 29.56 29.89 30.18
10 26.02 32.28 32.16 33.16 33.34

Barbara 20 23.38 28.81 27.96 29.75 29.36
30 22.38 26.83 25.82 27.77 27.07
10 27.42 32.11 32.91 32.72 33.15

Boat 20 25.08 29.04 29.47 29.66 29.88
30 23.83 27.18 27.63 27.83 27.92
10 24.57 30.54 31.17 30.51 31.45

Flinstones 20 21.72 27.17 27.40 27.28 28.12
30 19.95 25.02 25.29 25.35 26.04
10 30.07 33.18 34.27 34.28 34.75

House 20 27.09 29.98 30.90 30.89 31.76
30 25.49 27.96 28.96 28.94 29.88
10 26.09 30.92 32.07 31.63 32.87

Mit 20 22.78 27.08 27.88 27.77 28.62
30 20.95 24.91 25.60 25.60 26.22
10 26.87 31.47 32.35 31.81 33.08

Cameraman 20 24.05 27.94 28.51 28.27 29.13
30 22.54 26.00 26.48 26.38 27.05

4.4. Experimental Results and Discussion

In the experiment, we have tested various denoising method for a representative set of
standard 8-bit grayscale images such as Lena, Barbara, Boat, Flinstones (size 512 × 512), and
House, Mit, and Cameraman (size 512× 512) images, corrupted by simulated additive Gauss
white noise with zero mean, variance σn2. We compared the proposed method with several
other state-of-the-art outstanding denoising methods, namely, Donoho’s hard threshold
(“db8” wavelet) [13], the LAWML [15] in dual-tree complex wavelet domain, SURE-LET
[27], non-Gaussian bivariate distribution model in PDTDFB [28] domain (P-Bivariate), and
we evaluate denoising performance combining with PSNR and visual effects in this paper.
The PSNR is defined as

PSNR = 20 log10

(
255
MSE

)
, (4.10)

where MSE =
√
(1/N2)(X − Y )2, and X, Y are the original image and the denoised image,

respectively,N2 is image size.
The PSNR values are listed in Table 1, and denoised images are given in Figures 6, 7,

8, and 9.
From the experimental data and the denoised images, it can be seen that the proposed

method almost provides the highest objective data. The proposed method has obvious
advantage over hard thresholding shrinkage, and the PSNR has been greatly improved,
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Figure 6: Denoised image using different denoising methods (σn = 20, Lena).

compared with LAWML and SURE-LET which also has a certain degree of increase; the
denoised Barbara image of P-Bivariate method obtained higher PSNR values than our
method; it is mainly due to that PDTDFB has multidirection that it can well represent more
texture images. From that Figures 6–9, we can see that hard threshold denoised images’ fuzzy
phenomenon is very serious; LAWML and SURE-LET methods cannot effectivly remove the
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Figure 7: Denoised image using different denoising methods (σn = 20, Barbara).

noise, and there is still a lot of noise left in the denoised images; denoised images add a lot
of false information using the P-Bivariate denoising method; due to that the QWT phase can
compensate the loss of information, thus the proposed denoising method retains more detail
information and obtains better visual effect.
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Figure 8: Denoised image using different denoising methods (σn = 20, Flintstones).

5. Conclusions

Quaternion wavelet transform is established based on the quaternion algebra, quaternion
Fourier transform, and Hilbert transform; using four real discrete wavelet transform (DWT),
the first real discrete wavelet corresponding to quaternion wavelet real part, the other real
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Figure 9: Denoised image using different denoising methods (σn = 20, House).

discrete wavelet is obtained by the first real discrete wavelet transform’s Hilbert transform,
corresponding to quaternion wavelet three imaginary part, respectively, the four real wavelet
composed of quaternion analytic signal. It can be understood as the improved real wavelet
and complex wavelet’s promotion, which have approximate shift invariance, abundant phase
information, and limited redundancy and so forth, while still retaining the traditional wavelet
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time-frequency localization ability, filters design using Hilbert transform pair of dual-tree
structure, and it is easy to be realized.

This paper mainly studies some of the concepts and properties of quaternion wavelet
transform, gives quaternion wavelet scale and wavelet functions, and applies the quaternion
wavelet in image denoising, puts forward Bayesian denoising method based on quaternion
wavelet transform, considering wavelet coefficient’s correlation, and generalized Gaussian
distribution is used to model the probability distribution function of wavelet coefficients’
magnitude and the best range of the Bayesian thresholding parameter is found out. The
experimental results show that our method both in visual effect and PSNR are better than
many current denoising methods.
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