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An explicit analytical formula for the any order fractional derivative of Shannon wavelet is given
as wavelet series based on connection coefficients. So that for any L2(R) function, reconstructed
by Shannon wavelets, we can easily define its fractional derivative. The approximation error is
explicitly computed, and the wavelet series is compared with Grünwald fractional derivative by
focusing on the many advantages of the wavelet method, in terms of rate of convergence.

1. Introduction

Shannon wavelet theory [1, 2] is based on a family of orthogonal functions having many
interesting properties. They enjoy the many advantages of wavelets [3, 4]; moreover, being
analytical functions they are infinitely differentiable. Thus, enabling us to define the so-
called connection coefficients [5–7] for any order derivative. Connection coefficients are an
expedient tool for the projection of differential operators, useful for computing the wavelet
solution of integrodifferential equations [8–13].

Wavelets are localized functions, in time and/or frequency, which are the basis for
energy-bounded functions and in particular for L2(R)-functions. So that localized pulse
problems [14, 15] can be easily approached and analyzed. Moreover, wavelet allows the
multiscale decomposition of problems, thus emphasizing the contribution of each scale. By
defining a suitable inner product on the orthogonal family of scaling/wavelet functions, any
L2(R)-function can be approximated at a fixed scale, by a truncated series having, as basis, the
scaling functions and the wavelet functions. The wavelet coefficients of these series represent
the contribution of each scale.

Shannon wavelets are related to the harmonic wavelets [3, 5, 8], being the real part
thereof, and to the well-known sinc function, which is the basic function in signal analysis.
It should be also noticed that, as compared with other wavelet families, the main advantage
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of Shannon wavelets is that they are analytical functions, thus being infinitely differentiable.
Moreover, they are sharply bounded in the frequency domain, so that, by taking into account
the Parseval identity, any computation can be easily performed by their Fourier transforms.

The theory of connection coefficients was initially given [10, 13] for the compactly
supported wavelet families, such as the Daubechies wavelets [4]. The computation of these
connection coefficients was based on the recursive equations of the wavelet theory and the
explicit forms of these coefficients were given only up to the second order derivatives. The
connection coefficients are the wavelet coefficients of the derivatives of the wavelet basis.
These coefficients are a fundamental tool for the approximation of differential operators, with
respect to the wavelet basis.

In some recent papers, the connection coefficients for Shannon wavelets have been
explicitly computed up to any order derivative with a finite analytical form. This is due to
the analytical form of Shannon wavelets and the discovery by Cattani of a suitable series
expansion for the connection coefficients [2, 6, 7].

In the following, we will define the wavelet representation of fractional derivative,
so that the fractional derivative of an L2(R)-function can be easily computed by knowing
the connection coefficients. The fractional derivatives of the Shannon scaling/wavelet basis
are defined and the error of the approximation will be explicitly computed. Moreover, a
comparison with the classical definition of Grünwald formula [16, 17] is given, by showing
the major performance of wavelets, in terms of rate of convergence.

In particular, Section 2 gives some preliminary remarks, definitions, and properties
about Shannon wavelets. Their corresponding connection coefficients are discussed in
Section 3. This Section deals with some properties of connection coefficients, functional
equalities, and error of approximation. Fractional derivatives of the Shannon scaling function
and wavelets are given in Section 4. In this section, it is also shown that the fractional
derivative is a semigroup. The error of the approximation is explicitly computed and
compared with classical definitions of the fractional derivative, and in particular with the
Grünwald formula.

2. Preliminary Remarks

In this section, some remarks on Shannon wavelets and connection coefficients are given (see
also [7]).

Shannon wavelet theory (see e.g. [1, 2, 6, 7, 9]) is based on the scaling function ϕ(x),
also known as sinc function, and the wavelet function ψ(x), respectively, defined as

ϕ(x) = sincx def=
sin πx

πx
=
eπix − e−πix

2πix
,

ψ(x) =
sin 2π(x − (1/2)) − sin π(x − (1/2))

π(x − (1/2))

=
e−2 i π x

(−i + ei π x + e3 i π x + i e4 i π x
)

2π(x − (1/2))
.

(2.1)
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The corresponding families of translated and dilated instances wavelet [1, 2, 6, 7, 9], on which
is based the multiscale analysis [4], are

ϕnk(x) = 2n/2ϕ(2nx − k) = 2n/2
sin π(2nx − k)
π(2nx − k)

= 2n/2
eπi(2

nx−k) − e−πi(2nx−k)
2πi(2nx − k) ,

ψnk (x) = 2n/2
sin 2π(2nx − k − (1/2)) − sin π(2nx − k − (1/2))

π(2nx − k − (1/2))

=
2n/2

2π(2nx − k − (1/2))

2∑

s=1

i1+sesπi(2
nx−k) − i1−se−sπi(2nx−k) ,

(2.2)

being, in particular,

ϕ0
0(x) = ϕ(x), ψ0

0(x) = ψ(x), ϕ0
k(x) = ϕk(x) = ϕ(x − k),

ψ0
k(x) = ψk(x) = ψ(x − k).

(2.3)

Let

f̂(ω) = f̂(x) def=
1
2π

∫∞

−∞
f(x)e−iωxdx, f(x) =

∫∞

−∞
f̂(ω)eiωxdω (2.4)

be the Fourier transform of the function f(x) ∈ L2(R), and its inverse transform, respectively.
The Fourier transform of (2.1) give us [2]

ϕ̂(ω) =
1
2π

χ(ω + 3π) =

⎧
⎨

⎩

1
2π

, −π ≤ ω < π

0, elsewhere

ψ̂(ω) =
1
2π

eiω/2
[
χ(2ω) + χ(−2ω)],

(2.5)

with

χ(ω) =

{
1, 2π ≤ ω < 4π
0, elsewhere.

(2.6)

Analogously for the dilated and translated instances of scaling/wavelet function, in
the frequency domain, it is

ϕ̂nk(ω) =
2−n/2

2π
eiωk/2

n

χ
(ω
2n

+ 3π
)

ψ̂nk (ω) =
2−n/2

2π
eiω(k+1/2)/2

n

[
χ

(
ω

2n−1

)
+ χ

(
− ω

2n−1

)]
.

(2.7)
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Both families of Shannon scaling and wavelet are L2(R)-functions therefore, for each
f(x) ∈ L2(R) and g(x) ∈ L2(R), the inner product is defined as

〈
f, g

〉 def=
∫∞

−∞
f(x)g(x)dx = 2π

∫∞

−∞
f̂(ω)ĝ(ω)dω = 2π

〈
f̂ , ĝ

〉
, (2.8)

where the bar stands for the complex conjugate.
Shannon wavelets fulfill the following orthogonality properties (for the proof see e.g.,

[2, 7]):

〈
ψnk (x), ψ

m
h (x)

〉
= δnmδhk,

〈
ϕ0
k(x), ϕ

0
h(x)

〉
= δkh ,

〈
ϕ0
k(x), ψ

m
h (x)

〉
= 0, m ≥ 0, (2.9)

δnm, δhk being the Kronecker symbols.

2.1. Properties of the Shannon Wavelet

According to (2.2), Shannon wavelets can be easily computed at some special points, being
in particular

ϕk(h) = ϕh(k) = ϕ(h − k) = ϕ(k − h) = δkh, (h, k ∈ Z), (2.10)

so that

ϕk(x) =

{
0, x = h/= k, (h, k ∈ Z)
1, x = h = k, (h, k ∈ Z).

(2.11)

It is also [7]

ψnk (h) = (−1)2nh−k 21+n/2
(
2n+1h − 2k − 1

)
π
,

(
2n+1h − 2k − 1/= 0

)

ψnk (x) = 0, x = 2−n
(
k +

1
2
± 1
3

)
, (n ∈ N, k ∈ Z)

lim
x→ 2−n(h+(1/2))

ψnk (x) = −2n/2δhk.

(2.12)

In the following, we will be interested on the maximum values of these functions
which can be easily computed. The maximum value of the scaling function ϕk(x) can be
found at the integers x = k

max
[
ϕk(xM)

]
= 1, xM = k, (2.13)
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and the max values of ψnk (x) are

max
[
ψnk (xM)

]
= 2n/2

3
√
3

π
, xM =

⎧
⎪⎪⎨

⎪⎪⎩

−2−n
(
k +

1
6

)

2−n−1

3
(18k + 7).

(2.14)

Both families of scaling and wavelet functions belong to L2(R), thus having a bounded
range and (slow) decay to zero

lim
x→±∞

ϕnk(x) = 0, lim
x→±∞

ψnk (x) = 0. (2.15)

Let B ⊂ L2(R) the set of functions f(x) in L2(R) such that the integrals

αk
def=

〈
f(x), ϕk(x)

〉 (2.8)
=

∫∞

−∞
f(x)ϕ0

k(x)dx

βnk
def=

〈
f(x), ψnk (x)

〉 (2.8)
=

∫∞

−∞
f(x)ψnk (x)dx

(2.16)

exist with finite values, then it can be shown [2–4, 7] that the series

f(x) =
∞∑

h=−∞
αh ϕh(x) +

∞∑

n=0

∞∑

k=−∞
βnkψ

n
k (x) (2.17)

converges to f(x).
According to (2.8), the coefficients can be also computed in the Fourier domain [7] so

that

αk =
∫π

−π
f̂(ω) eiωkdω,

βnk = 2−n/2
[∫2n+1π

2nπ
f̂(ω)eiω(k+1/2)/2

n

dω +
∫−2nπ

−2n+1π
f̂(ω)eiω(k+1/2)/2

n

dω

]

.

(2.18)

In the frequency domain, (2.17) gives [7]

f̂(ω) =
1
2π

χ(ω + 3π)
∞∑

h=−∞
αhe

i ωh

+
1
2π

χ

(
ω

2n−1

) ∞∑

n=0

∞∑

k=−∞
2−n/2βnke

iω(k+1/2)/2n

+
1
2π

χ

(
− ω

2n−1

) ∞∑

n=0

∞∑

k=−∞
2−n/2βnke

iω(k+1/2)/2n .

(2.19)
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When the upper bound for the series of (2.17) is finite, then we have the approximation

f(x) ∼=
K∑

h=−K
αhϕh(x) +

N∑

n=0

S∑

k=−S
βnkψ

n
k (x). (2.20)

The error of the approximation has been estimated in [7].

2.2. Reconstruction of the Derivatives

In order to represent the differential operators in wavelet bases, we have to compute the
wavelet decomposition of the derivatives. It can be shown [2, 7] that the derivatives of the
Shannon wavelets are orthogonal functions:

d


dx

ϕh(x) =

∞∑

k=−∞
λ
(
)
hk ϕk(x),

d


dx

ψmh (x) =

∞∑

n=0

∞∑

k=−∞
γ (
)

mn
hk ψnk (x),

(2.21)

being

λ
(
)
kh

def=

〈
d


dx

ϕ0
k(x), ϕ

0
h(x)

〉

, γ (
)
mn
kh

def=

〈
d


dx

ψnk (x), ψ

m
h (x)

〉

, (2.22)

the connection coefficients [2, 5, 6, 8–13].
The computation of connection coefficients can be easily performed in the Fourier

domain, thanks to the equality (2.8)

λ
(
)
kh

= 2π

〈
̂d


dx

ϕk(x), ϕ̂h(x)

〉

, γ (
)
mn
kh = 2π

〈
̂d


dx

ψn
k
(x), ψ̂m

h
(x)

〉

. (2.23)

In fact, in the Fourier domain, the 
-order derivative of the (scaling)wavelet functions
are simply

̂d


dx

ϕn
k(x) = (iω)
ϕ̂nk(ω),

̂d


dx

ψn
k (x) = (iω)
ψ̂nk (ω),

(2.24)

and, according to (2.7),

̂d


dx

ϕnk(x) = (iω)


2−n/2

2π
eiωk/2

n

χ
(ω
2n

+ 3π
)
,

̂d


dx

ψnk (x) = (iω)


2−n/2

2π
eiω(k+(1/2))/2

n

[
χ

(
ω

2n−1

)
+ χ

(
− ω

2n−1

)]
.

(2.25)
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It has been shown [2, 6, 7] that the any order connection coefficients (2.22)1 of the
Shannon scaling functions ϕk(x) are

λ
(
)
kh =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(−1)k−h i



2π


∑

s=1


!πs

s![i(k − h)]
−s+1
[
(−1)s − 1

]
, k /=h

i
π
+1

2π(
 + 1)

[
1 + (−1)


]
, k = h,

(2.26)

or, by defining

μ(m) = sign(m) =

⎧
⎪⎪⎨

⎪⎪⎩

1, m > 0
−1, m < 0
0, m = 0,

(2.27)

shortly as,

λ
(
)
kh =

i
π


2(
 + 1)

[
1 + (−1)


](
1 − ∣∣μ(k − h)∣∣)

+ (−1)k−h∣∣μ(k − h)∣∣ i



2π


∑

s=1


!πs

s![i(k − h)]
−s+1
[
(−1)s − 1

]
,

(2.28)

when 
 ≥ 1, and for 
 = 0,

λ
(0)
kh = δkh. (2.29)

For the proof see [2].
Analogously for the connection coefficients (2.22)2 we have that the any order

connection coefficients of the Shannon scaling wavelets ψn
k
(x) are

γ (
)
nm
kh = μ(h − k)δnm

{

+1∑

s=1

(−1)[1+μ(h−k)](2
−s+1)/2 
!i
−s π
−s

(
 − s + 1)!|h − k|s (−1)
−s−2(h+k)2n
−s−1

×
{
2
+1

[
(−1)4h+s + (−1)4k+


]
− 2s

[
(−1)3k+h+
 + (−1)3h+k+s

]}}

, k /=h

γ (
)
nm
kh = δnm

[

i

π
2n
−1


 + 1

(
2
+1 − 1

)
1 +

(
(−1)


)]

, k = h,

(2.30)
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or, shortly

γ (
)
nm
kh = δnm

{

i

(
1 − ∣∣μ(h − k)∣∣)π


2n
−1


 + 1

(
2
+1 − 1

)(
1 + (−1)


)

+ μ(h − k)

+1∑

s=1

(−1)[1+μ(h−k)](2
−s+1)/2 
!i
−s π
−s

(
 − s + 1)! |h − k|s (−1)
−s−2(h+k)2n
−s−1

×
{
2
+1

[
(−1)4h+s + (−1)4k+


]
− 2s

[
(−1)3k+h+
 + (−1)3h+k+s

]}}

,

(2.31)

for 
 ≥ 1, and

γ (0)
nm
kh = δkhδnm, (2.32)


 = 0, respectively.
For the proof see [2].

3. Remarks on Connection Coefficients

3.1. Recursiveness

The connection coefficients fulfill some recursive formula as follows.

Theorem 3.1. The connection coefficients (2.26) are recursively given by

λ
(
+1)
kh =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩


 + 1
k − hλ

(
)
kh

− (−1)k−h i

π
+1

k − h
[
(−1)
 + 1

]
, k /=h

iπ

 + 1

 + 2

λ
(
)
kh +

(−i)
+1π
+1


 + 2
, k = h,

(3.1)

Proof. Let us show first when k = h. From the definition (2.26), it is

λ
(
+1)
kk

=
i
+1π
+2

2π(
 + 2)

[
1 + (−1)
+1

]

= iπ
(
 + 1)
(
 + 2)

i
π
+1

2π(
 + 1)

[
1 + (−1)
+1 + (−1)
 − (−1)


]

= iπ
(
 + 1)
(
 + 2)

i
π
+1

2π(
 + 1)

[
1 + (−1)
 + 2(−1)
+1

]
,

(3.2)

from where (3.1)2 follows. Analogously with simple computation we obtain (3.1)1.
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Shorty and with some caution, (3.1) can be written as

λ
(
+1)
kh = (1 − δkh)

[

 + 1
k − hλ

(
)
kh − (−1)k−h i


π
+1

k − h
[
(−1)
 + 1

]]

+ δkh

[

iπ

 + 1

 + 2

λ
(
)
kh +

(−i)
+1π
+1


 + 2

]

,

(3.3)

that is,

λ
(
+1)
kh =

[
(1 − δkh) 
 + 1

k − h + δkhiπ

 + 1

 + 2

]
λ
(
)
kh

− (1 − δkh)(−1)k−h i

π
+1

k − h
[
(−1)
 + 1

]
+ δkh

(−i)
+1π
+1


 + 2
.

(3.4)

It is not so easy to find out a similar property also for the γ-coefficients as a function of

 however, there is a simple rule for the recursiveness of the scale (upper) indexes, as follows.

Theorem 3.2. The connection coefficients (2.30) are recursively given by the matrix at the lowest
scale level:

γ (
)
nn

kh = 2
(n−1)γ (
)
11
kh . (3.5)

Proof. As can be seen from (2.30) parameter n appears only in the factor

2n
−1, (3.6)

so that (3.5) follows from the identity

2n
−1 = 2
(n−1)2
−1. (3.7)

Moreover, it can be shown also that

γ (2
+1)
nn
kh = −γ (2
+1)nnhk , γ (2
)

nn
hk = γ (2
)

nn
hk . (3.8)

3.2. Taylor Series

By using the connection coefficients, it is easy to show the following theorem.
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Theorem 3.3. If f(x) ∈ Bψ ⊂ L2(R) and f(x) ∈ CS the Taylor series of f(x) in x0 is

f(x) = f(x0)

+
S∑

r=1

[ ∞∑

h,k=−∞
αh λ

(r)
hk
ϕk(x0) +

∞∑

n=0

∞∑

k,s=−∞
2r(n−1)βnkγ

(r)11skψns (x0)

]
(x − x0)r

r!
+ RS(x, x0),

(3.9)

being αh and βnk given by (2.16), (2.18) and RS(x, x0) the error.

Proof. From (2.17), the 
-order derivative (
 ≤ S) is

f (
)(x) =
∞∑

h=−∞
αh

d


dx

ϕh(x) +

∞∑

n=0

∞∑

k=−∞
βnk

d


dx

ψnk (x),

(2.21)
=

∞∑

h=−∞
αh

∞∑

k=−∞
λ
(
)
hk ϕk(x) +

∞∑

n=0

∞∑

k=−∞
βnk

∞∑

m=−∞

∞∑

s=−∞
γ (
)

mn
sk ψms (x),

=
∞∑

h,k=−∞
αh λ

(
)
hk
ϕk(x) +

∞∑

n,m=0

∞∑

k,s=−∞
βnkγ

(
)mnsk ψms (x),

(3.10)

so that by taking into account (3.5) the proof follows.

In particular, by a suitable choice of the initial point x0, (3.9) can be simplified. For
instance, at the integers, x0 = h, (h ∈ Z), according to (2.10), (2.12) and (3.5), it is

f(x) ∼= f(h) +
S∑

r=1

[ ∞∑

h=−∞
αh λ

(r)
hh +

∞∑

n=0

∞∑

k,s=−∞
(−1)2nh−s 2r(n−1)+1+n/2

(
2n+1h − 2s − 1

)
π
βnkγ

(r)11sk

]
(x − h)r

r!
.

(3.11)

3.3. Functional Equations

The connection coefficients fulfill some identities as follows.

Theorem 3.4. For any k ∈ Z and 
 ∈ N, it is

(iω)
e−iωk =
∞∑

h=−∞
λ
(
)
kh
e−iωh, −π ≤ ω ≤ π, (3.12)

or

(iω)
 =
∞∑

h=−∞
λ
(
)
kh
e−iω(h−k), −π ≤ ω ≤ π, ∀k ∈ Z. (3.13)
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Proof. From (2.21), by a Fourier transform of both sides and taking into account (2.24), we get

(iω)
ϕ̂k(ω) =
∞∑

h=−∞
λ
(
)
kh ϕ̂h(ω)

(iω)
e−iωkχ(ω + 3π)
(2.7)
=

∞∑

h=−∞
λ
(
)
kh
e−iωhχ(ω + 3π),

(3.14)

from where the identity (3.12) follows.

In particular, by assuming, without restrictions, k = 0, we have the following (see
Figure 1).

Corollary 3.5. For any 
 ∈ N it is

(iω)
 =
∞∑

h=−∞
λ
(
)
0h e

−iωh, −π ≤ ω ≤ π, (3.15)

so that λ(
)0h are the Fourier coefficients of the power (iω)
 .
Analogously, from (2.21)2, we have the following.

Theorem 3.6. For any k ∈ Z and 
, n ∈ N it is

(iω)
e−iω(k+1/2)/2
n

=
∞∑

h=−∞
γ (
)

nn
khe−iω(h+1/2)/2

n

, ω ∈
[
−2n+1π,−2nπ

]
∪
[
2nπ , 2n+1π

]
, (3.16)

or

(iω)
 =
∞∑

h=−∞
γ (
)

nn
khe−iω(h−k)/2

n

, ω ∈
[
−2n+1π ,−2nπ

]
∪
[
2nπ , 2n+1π

]
. (3.17)

In particular, with k = 0, and taking into account (3.5), we have the following.

Corollary 3.7. For any 
, n ∈ N it is

(iω)
 = 2
(n−1)
∞∑

h=−∞
γ (
)

11
0he

−iωh/2n , ω ∈
[
−2n+1π ,−2nπ

]
∪
[
2nπ , 2n+1π

]
. (3.18)

As a consequence of the previous theorems we have the following.

Theorem 3.8. For any 
, n ∈ N it is

(iω)
 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞∑

h=−∞
λ
(
)
0h e

−iωh, −π ≤ ω ≤ π

2
(n−1)
∞∑

h=−∞
γ (
)

11
0he−iωh/2

n

, ω ∈ [−2n+1π,−2nπ] ∪ [2nπ, 2n+1π].
(3.19)
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−π π
−11 x

(a)

−π π
−11 x

(b)

−π π

−1

x

(c)

−π π
−1

x

(d)

Figure 1: Approximation of (iω)
 (plain) by the r.h.s of (3.15) at different scale: (a) �[(iω)3], k =
5, |hmax| = 5; (b) �[(iω)3], k = 5, |hmax| = 10; (c) [(iω)2], k = 7, |hmax| = 5; (d) [(iω)2], k = 7, |hmax| =
8.

There we have the following.

Corollary 3.9. The Fourier transform of the derivatives of a function is

̂d


dx

f(x) =f̂(ω) ×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞∑

h=−∞
λ
(
)
0h e

−iωh, −π ≤ ω ≤ π

2
(n−1)
∞∑

h=−∞
γ (
)

11
khe−iωh/2

n

, ω ∈ [−2n+1π,−2nπ] ∪ [2nπ, 2n+1π].
(3.20)
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If we express eiω as a Taylor series we have

eiω =
∞∑


=0

(iω)



!
, (3.21)

so that eiω with −π ≤ ω ≤ π is the solution of the functional equation

X =
∞∑


=0

∞∑

h=−∞

1

!
λ
(
)
0h X

−h. (3.22)

Moreover, the theorem of moments

∫

R

x
f(x)dx = i

df̂(ω)
dω


(3.23)

can be written as

∫

R

x
f(x)dx = i
f̂(ω) ×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

h=−∞
λ
(
)
kh e

−iωh, −π ≤ ω ≤ π
∞∑

h=−∞
γ (
)

nn
khe−iω(h−k)/2

n

, ω ∈ [−2n+1π,−2nπ] ∪ [2nπ, 2n+1π].

(3.24)

3.4. Error of the Approximation by Connection Coefficients

For a fixed scale of approximation in (2.21), it is possible to estimate the error as follows. It
should be noticed that the approximation depends on a the upper bound of the limits in the
sums.

Theorem 3.10 (error of the approximation of scaling functions derivatives). The error of the
approximation in (2.21)1 is given by

∣∣∣∣∣
d


dx

ϕh(x) −

N∑

k=−N
λ
(
)
hk

ϕk(x)

∣∣∣∣∣
≤
∣∣∣λ(
)h(−N−1) + λ

(
)
h(N+1)

∣∣∣. (3.25)

Proof. The error of the approximation (2.21)1 is defined as

d


dx

ϕh(x) −

N∑

k=−N
λ
(
)
hk
ϕk(x) =

−N−1∑

k=−∞
λ
(
)
hk
ϕk(x) +

∞∑

k=N+1

λ
(
)
hk
ϕk(x). (3.26)
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Concerning the r.h.s, and according to (2.13), it is

−N−1∑

k=−∞
λ
(
)
hk ϕk(x) +

∞∑

k=N+1

λ
(
)
hk ϕk(x)

≤ max
x∈R

[−N−1∑

k=−∞
λ
(
)
hk

ϕk(x) +
∞∑

k=N+1

λ
(
)
hk

ϕk(x)

]

= λ(
)
h(−N−1) ϕ−N−1(x) + λ

(
)
h(N+1) ϕN+1(x) ≤ λ(
)h(−N−1) + λ

(
)
h(N+1).

(3.27)

Theorem 3.11 (error of the approximation of wavelet functions derivatives). The error of the
approximation in (2.21)2 is given by

∣∣∣∣∣
d


dx

ψmh (x) −

N∑

n=0

S∑

k=−S
γ (
)

mn
hk ψnk (x)

∣∣∣∣∣
≤
∣∣∣∣∣
2
(m−1)+m/2 3

√
3

π

[
γ (
)

11
h(−S−1) + γ (
)

11
h(S+1)

]
∣∣∣∣∣
. (3.28)

Proof. The error of the approximation is

d


dx

ψmh (x) −

N∑

n=0

S∑

k=−S
γ (
)

mn
hk ψnk (x) =

∞∑

n=N+1

[ −S−1∑

k=−∞
γ (
)

mn
hk ψnk (x) +

∞∑

k=S+1

γ (
)
mn
hk ψnk (x)

]

. (3.29)

If m < N, the r.h.s. according to (2.30) is zero; therefore, we assume that m > N so that the
last equation becomes

d


dx

ψmh (x) −

N∑

n=0

S∑

k=−S
γ (
)

mn
hk ψnk (x) =

[ −S−1∑

k=−∞
γ (
)

mm
hk ψnk (x) +

∞∑

k=S+1

γ (
)
mm
hk ψnk (x)

]

(3.5)
= 2
(m−1)

[ −S−1∑

k=−∞
γ (
)

11
hk +

∞∑

k=S+1

γ (
)
11
hk

]

ψmk (x)

≤ 2
(m−1) max

{[ −S−1∑

k=−∞
γ (
)

11
hk +

∞∑

k=S+1

γ (
)
11
hk

]

ψmk (x)

}

= 2
(m−1)
[
γ (
)

11
h(−S−1)ψm(−S−1)(x) + γ

(
)11h(S+1)ψm(S+1)(x)
]

≤ 2
(m−1)
[
γ (
)

11
h(−S−1) maxψm(−S−1)(x) + γ

(
)11h(S+1) maxψm(S+1)(x)
]

(2.14)
= 2
(m−1)2m/2

3
√
3

π

[
γ (
)

11
h(−S−1) + γ (
)

11
h(S+1)

]
.

(3.30)
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4. Fractional Derivatives of the Wavelet Basis

The simplest way to define the fractional derivative is based on the assumption that the
noninteger derivative of the exponential function formally coincides with the derivative with
integer order so that

dν

dxν
eax = aνeax ν ∈ Q. (4.1)

For negative values of ν, this formula still holds true and it represents the integration.
It is known that the fractional derivative cannot be analytically computed except for

some special functions, such as (see e.g., [16–18]) the following:

dν

dxν
eax = aνeax ,

dν

dxν
cosax = aν cos

(
ax +

π

2
ν
)
,

dν

dxν
sinax = aν sin

(
ax +

π

2
ν
)
.

(4.2)

From these, classical examples, we can see that the fractional derivative can be also
interpreted as an interpolating function between derivatives with integer order, so that

dν

dxν
f(x) = (1 − ν)f(x) + ν d

dx
f(x), 0 ≤ ν ≤ 1. (4.3)

More in general, let f(x) be a single-valued real function, then the Riemann-Liouville
fractional order derivative is defined as [16]

dν

dxν
f(x) def=

1
Γ(1 − ν)

d

dx

∫x

0

f(ξ)
(x − ξ)ν dξ, (0 < ν < 1, x > 0), (4.4)

Γ(ν) being the gamma function.
Other equivalent representations were given by Caputo (for a differentiable function)

dν

dxν
f(x) def=

1
Γ(1 − ν)

∫x

0

f ′(ξ)
(x − ξ)ν dξ, 0 < ν < 1, (4.5)

and by Grünwald (see e.g., [17, 18])

dν

dxν
f(x) = lim

N→∞
1

Γ(−ν)
( x
N

)−νN−1∑

k=0

Γ(k − ν)
Γ(k + 1)

f

[(
1 − k

N

)
x

]
, (0 < ν < 1, x > 0). (4.6)

However, a drawback in the Grünwald definition, as well as in the Riemann-Liouville, is that
it cannot be computed for negative values of the variable (x < 0).
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4.1. Fractional Derivative of the Shannon Scaling Function

Let us assume that the fractional order derivative is defined by a linear interpolation of the
integer order derivatives, so that the fractional derivative of the scaling-wavelet basis

d
+ν

dx
+ν
ϕh(x),

d
+ν

dx
+ν
ψmh (x). (4.7)

with

0 ≤ ν ≤ 1, (4.8)

can be defined as

d
+ν

dx
+ν
ϕh(x)

def= (1 − ν) d



dx

ϕh(x) + ν

d
+1

dx
+1
ϕh(x),

d
+ν

dx
+ν
ψmh (x)

def= (1 − ν) d



dx

ψmh (x) + ν

d
+1

dx
+1
ψmh (x).

(4.9)

Let us show the following.

Theorem 4.1. The fractional derivative of the Shannon scaling functions is

d
+ν

dx
+ν
ϕh(x)

def=
∞∑

k=−∞
λ
(
+ν)
hk ϕk(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞∑

k=−∞

[
(1 − ν)λ(
)hk

+ νλ(
+1)
hk

]
ϕk(x), 
 > 0

∞∑

k=−∞

[
(1 − ν)δhk + νλ(1)hk

]
ϕk(x), 
 = 0.

(4.10)

Proof. From (4.9), by taking into account (2.21), it is

d
+ν

dx
+ν
ϕh(x)

def= (1 − ν)
∞∑

k=−∞
λ
(
)
hk
ϕk(x) + ν

∞∑

k=−∞
λ
(
+1)
hk

ϕk(x)

(3.1)
=

∞∑

k=−∞

[
(1 − ν)λ(
)hk + νλ(
+1)hk

]
ϕk(x),

(4.11)

and, when 
 = 0,

dν

dxν
ϕh(x) =

∞∑

k=−∞

[
(1 − ν)δhk + νλ(1)hk

]
ϕk(x). (4.12)

With this definition, the fractional order derivative of the scaling functions is a
commutative operator according to the following.
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Theorem 4.2. The operator (4.10) is a semigroup, so that

dμ

dxμ
dν

dxν
ϕh(x) =

dν

dxν
dμ

dxμ
ϕh(x) =

dμ+ν

dxμ+ν
ϕh(x). (4.13)

Proof. Without loss of generality, let us show that

dμ

dxμ
dν

dxν
ϕ(x) =

dν

dxν
dμ

dxμ
ϕ(x). (4.14)

According to (4.10)2, it is

dν

dxν
ϕ0(x) =

∞∑

k=−∞

[
(1 − ν)δ0k + νλ(1)0k

]
ϕk(x), (4.15)

that is

dν

dxν
ϕ(x) = (1 − ν)ϕ(x) + ν

⎡

⎢⎢
⎣λ

(1)
00 ϕ(x) +

∞∑

k /= 0
k=−∞

λ
(1)
0k ϕk(x)

⎤

⎥⎥
⎦, (4.16)

and, taking into account (2.26), by explicit computation we have

dν

dxν
ϕ(x) = (1 − ν)ϕ(x) + ν

∞∑

k /= 0
k=−∞

(−1)k
k

ϕk(x). (4.17)

By deriving, with respect to μ, we have

dμ

dxμ
dν

dxν
ϕ(x) = (1 − ν) d

μ

dxμ
ϕ(x) + ν

∞∑

k /= 0
k=−∞

(−1)k
k

dμ

dxμ
ϕk(x)

(4.17)
= (1 − ν)

⎡

⎢⎢
⎣
(
1 − μ)ϕ(x) + μ

∞∑

k /= 0
k=−∞

(−1)k
k

ϕk(x)

⎤

⎥⎥
⎦

+ ν
∞∑

k /= 0
k=−∞

(−1)k
k

dμ

dxμ
ϕk(x),

(4.18)
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that is, according to (2.26),

dμ

dxμ
dν

dxν
ϕ(x) = (1 − ν)

⎡

⎢
⎢
⎣
(
1 − μ)ϕ(x) + μ

∞∑

k /= 0
k=−∞

(−1)k
k

ϕk(x)

⎤

⎥
⎥
⎦

+ ν
∞∑

k /= 0
k=−∞

(−1)k
k

∞∑

s=−∞

[(
1 − μ)δsk + μλ(1)sk

]
ϕs(x)

= (1 − ν)

⎡

⎢
⎢
⎣
(
1 − μ)ϕ(x) + μ

∞∑

k /= 0
k=−∞

(−1)k
k

ϕk(x)

⎤

⎥
⎥
⎦

+ ν
(
1 − μ)

∞∑

k /= 0
k=−∞

(−1)k
k

ϕk(x) + νμ
∞∑

k /= 0
k=−∞

(−1)k
k

∞∑

s=−∞
λ
(1)
sk
ϕs(x).

(4.19)

From where,

dμ

dxμ
dν

dxν
ϕ(x) = (1 − ν)(1 − μ)ϕ(x) + [(1 − ν)μ + ν

(
1 − μ)]

∞∑

k /= 0
k=−∞

(−1)k
k

ϕk(x)

+ νμ
∞∑

k /= 0
k=−∞

(−1)k
k

∞∑

s=−∞
λ
(1)
sk ϕs(x),

(4.20)

the proof follows due to the symmetry of the change μ → ν.

It can be easily seen that together with (4.17) also the following equations hold:

dν

dxν
ϕ1(x) = (1 − ν)ϕ1(x) + ν

∞∑

k /= 0
k=−∞

(−1)k
k − 1

ϕk(x)

dν

dxν
ϕ−1(x) = (1 − ν)ϕ−1(x) + ν

∞∑

k /= 0
k=−∞

(−1)k
1 + k

ϕk(x),

(4.21)

and, in general,

dν

dxν
ϕh(x) = (1 − ν)ϕh(x) + ν

∞∑

k /= 0
k=−∞

(−1)k
k − h ϕk(x). (4.22)

Moreover, when μ + ν = 1, then we can see that the definition (2.26) reduces to the
ordinary derivative, according to the following.
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x

1

−1

= 0

= 1

π

A

A

Figure 2: Fractional derivative of the scaling functions (dν/dxν)ϕ(x) with upper limit N = 4 at different
values of ν = 0, 1/5, 2/5, 3/5, 4/5, 1.

Theorem 4.3. When μ + ν = 1, then

dμ

dxμ
dν

dxν
ϕh(x) =

dμ+ν

dxμ+ν
ϕh(x) =

d

dx
ϕh(x). (4.23)

Proof. If we restrict to ϕ(x), according to the definition (2.26), it is

dμ

dxμ
dν

dxν
ϕ(x) =

∞∑

k=−∞

[(
1 − (μ + ν

))
δ0k +

(
μ + ν

)
λ
(1)
0k

]
ϕk(x), (4.24)

and since (μ + ν) = 1 we have

dμ

dxμ
dν

dxν
ϕ(x) =

d

dx
ϕ(x) =

∞∑

k=−∞
λ
(1)
0k ϕk(x), (4.25)

According to the definition (4.10), the fractional derivative is an interpolation between
integer order derivative (see Figure 2).

4.2. Error of the Approximation of (4.10)

In the definition (4.10), the fractional derivative depends on a fixed bound N of the infinite
series. In this section, it will be shown that the rate of convergence of the series, on the r.h.s of
(4.10), is quite fast; already with low values ofN, the approximation is quite good (Figure 3).
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1 < N < 10

−π π
x

(a)

10 < N < 50

−π π
x

(b)

Figure 3: Fractional derivative of the scaling functions (d3/10/dx3/10)ϕ(x) with upper limit N = 1, . . . , 10
(a) andN = 10, . . . , 50 (b).

4.2.1. Rate of Convergence

If we compare the fractional derivative (dν/dxν)ϕh(x) given by (4.10) with the Grünwald
definition (4.6), we can see that the approximation by connection coefficients is good (see
Figure 4), with a lower number of terms. Moreover, the definition based on connection
coefficients can be extended also to negative values of the variable.

Since we have defined the fractional derivative on an infinite series N → ∞, as well
as the Grünwald formula, we can explicitly compute the error of the approximation as the
difference between the approximated value at N + 1 and the corresponding value of the
infinite series atN. For instance, with respect to (4.10), it is

ενN = max
x∈R

∣∣∣∣∣∣

N+1∑

k=−(N+1)

λ
(
+ν)
hk

ϕk(x) −
N∑

k=−N
λ
(
+ν)
hk

ϕk(x)

∣∣
∣∣∣∣
, (4.26)

while for the Grünwald formula (4.6) we have

ενN = max
x>0

∣∣∣∣∣
1

Γ(−ν)
( x

N + 1

)−ν N∑

k=0

Γ(k − ν)
Γ(k + 1)

f

[(
1 − k

N + 1

)
x

]

− 1
Γ(−ν)

( x
N

)−νN−1∑

k=0

Γ(k − ν)
Γ(k + 1)

f

[(
1 − k

N

)
x

]∣∣∣∣∣
,

(4.27)

Let us show the following.



Mathematical Problems in Engineering 21

1

−1

π 2π
x

(a)

1

−1

π 2π
x

(b)

1

−1

π 2π
x

(c)

1

−1

π 2π
x

(d)

Figure 4: Fractional derivative of the scaling functions (dν/dxν)ϕh(x) by Grünwald approximation (4.6)
(shaded) and connection coefficients interpolation (4.10)2 (plain): (a) ν = 1/10, h = 0 with upper limit
N = 1 (connection coefficients) and N = 4 (Grünwald); (b) ν = 1/10, h = 1 with upper limit N = 1
(connection coefficients) andN = 1 (Grünwald); (c) ν = 1/20, h = 1 with upper limitN = 2 (connection
coefficients) andN = 8 (Grünwald); (d) ν = 9/10, h = 1 with upper limitN = 10 (connection coefficients)
andN = 50 (Grünwald).

Theorem 4.4. For 
 = 0, the approximation error of (4.10)2 is given by

ενN = 2ν

∣∣∣∣∣
(−1)N+1h

(N + 1)2 − h2

∣∣∣∣∣
. (4.28)
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Proof. By taking into account (4.22), it is

N+1∑

k=−(N+1)

λ
(
+ν)
hk

ϕk(x) −
N∑

k=−N
λ
(
+ν)
hk

ϕk(x) = ν

[
(−1)N+1

−(N + 1) − hϕ−(N+1)(x)

+
(−1)N+1

(N + 1) − hϕ(N+1)(x)

]

(2.13)
< ν

[
(−1)N+1

−(N + 1) − h +
(−1)N+1

(N + 1) − h

]

=
2ν(−1)N+1h

(N + 1)2 − h2
.

(4.29)

Analogously, the following can be shown.

Theorem 4.5. For x > 0, the approximation error of (4.6)2 is given by

ενN =
Nν

Γ(−ν)
Γ(N − ν)
Γ(N + 1)

. (4.30)

Proof. At the integer x = 1, it is

1
Γ(−ν)

(
1

N + 1

)−ν N∑

k=0

Γ(k − ν)
Γ(k + 1)

f

[(
1 − k

N + 1

)]
− 1
Γ(−ν)

(
1
N

)−νN−1∑

k=0

Γ(k − ν)
Γ(k + 1)

f

[(
1 − k

N

)]

<
1

Γ(−ν)N
ν
N∑

k=0

Γ(k − ν)
Γ(k + 1)

f

[(
1 − k

N + 1

)]
− 1
Γ(−ν)N

ν
N−1∑

k=0

Γ(k − ν)
Γ(k + 1)

f

[(
1 − k

N

)]

(2.13)
<

Nν

Γ(−ν)
Γ(N − ν)
Γ(N + 1)

.

(4.31)

4.3. Fractional Derivative of the Shannon Wavelet

Analogously to (4.10), the following can be proved.

Theorem 4.6. The fractional derivative of the Shannon wavelet functions is

d
+ν

dx
+ν
ψmh (x)

def=
∞∑

k=−∞
γ (
+ν)

mm
hk ψmk (x)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2
(m−1)
[ ∞∑

k=−∞
(1 − ν)γ (
)11hk + ν 2m−1γ (
+1)

11
hk

]

ψm
k (x), 
 > 0

[ ∞∑

k=−∞
(1 − ν)δhk + ν2m−1γ (1)

11
hk

]

ψm
k (x), 
 = 0.

(4.32)
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Proof. From (4.9), by taking into account (2.21)

d
+ν

dx
+ν
ψmh (x) = (1 − ν)

∞∑

n=0

∞∑

k=−∞
γ (
)

mn
hk ψnk (x) + ν

∞∑

n=0

∞∑

k=−∞
γ (
+1)

mn
hk ψnk (x)

(3.5)
=

[

(1 − ν)
∞∑

n=0

∞∑

k=−∞
δmn2
(n−1)γ (
)

11
hk + ν

∞∑

n=0

∞∑

k=−∞
δmn2(
+1)(n−1)γ (
+1)

11
hk

]

ψnk (x)

=

[

(1 − ν)
∞∑

k=−∞
2
(m−1)γ (
)

11
hk + ν

∞∑

k=−∞
2(
+1)(m−1)γ (
+1)

11
hk

]

ψmk (x)

= 2
(m−1)
[ ∞∑

k=−∞
(1 − ν)γ (
)11hk + ν 2m−1γ (
+1)

11
hk

]

ψmk (x).

(4.33)

Analogously to the fractional derivative of the scaling function, also for the wavelet
function, the fractional order derivatives are enveloped by the integer order derivatives
(Figure 5).

4.4. Fractional Derivative of an L2(R) Function

Let f(x) ∈ B ⊂ L2(R) be a function such that (2.17) holds, then its fractional derivative can be
computed as

dν

dxν
f(x) =

∞∑

h=−∞
αh

dν

dxν
ϕh(x) +

∞∑

n=0

∞∑

k=−∞
βnk

dν

dxν
ψnk (x), (4.34)

where the fractional derivatives of the scaling functions ϕh(x) and wavelets ψnk (x) are given
by (4.10) and (4.32), respectively.

For instance, a good approximation of y = e−x
2
is (Figure 6)

e−x
2 ∼= 0.97ϕ(x) + 0.39

[
ϕ−1(x) + ϕ1(x)

]
. (4.35)

The fractional derivative is

dν

dxν
e−x

2 ∼= 0.97
dν

dxν
ϕ(x) + 0.39

dν

dxν
[
ϕ−1(x) + ϕ1(x)

]
, (4.36)
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Figure 5: Fractional derivative of the wavelet functions (dν/dxν)ψ0
0(x)with upper limitN = 4 at different

values of ν = 0, 1/5, 2/5, 3/5, 4/5, 1.
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Figure 6: Fractional derivative of the function y = e−x
2
with upper limit N = 4 at different values of

ν = 0, 1/5, 2/5, 3/5, 4/5, 1.
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so that by using (4.17) and (4.21) we have

dν

dxν
e−x

2 ∼= 0.97

⎡

⎢
⎢
⎣(1 − ν)ϕ(x) + ν

∞∑

k /= 0
k=−∞

(−1)k
k

ϕk(x)

⎤

⎥
⎥
⎦

+ 0.39(1 − ν)[ϕ−1(x) + ϕ1(x)
]

+ 0.39ν

⎡

⎢
⎢
⎣

∞∑

k /= 0
k=−∞

(−1)k+1
k

ϕk(x) +
∞∑

k /= 0
k=−∞

(−1)k
k − 1

ϕk(x)

⎤

⎥
⎥
⎦,

(4.37)

5. Conclusion

In this paper, fractional calculus has been revised by using Shannon wavelets. Fractional
derivatives of the Shannon scaling/wavelet functions, based on connection coefficients,
are explicitly computed and the approximation error is estimated. In the comparison with
the classical Grünwald formula of fractional derivative, Shannon wavelets and connection
coefficients make a better approximation and rate of convergence.
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