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In part I of the present article the formulation for a dynamic stationary semianalytical solution
for a spatially constant load applied over a rectangular surface within a viscoelastic isotropic
full-space has been presented. The solution is obtained within the frame of a double Fourier
integral transform. These inverse integral transforms must be evaluated numerically. In the present
paper, the technique to evaluate numerically the inverse double Fourier integrals is described. The
procedure is validated, and a number of original displacement results for the stationary loading
case are reported.

1. Introduction

In an accompanying paper [1], closed-form solutions, in the wave number domain, for
displacements within a viscoelastic homogeneous isotropic full-space excited by rectangular
loadings are furnished. Expressions for the solutions in the original physical domain were
obtained with the use of the inverse double Fourier integral transform. The resulting
expressions have to be integrated numerically. The present second part of the paper
describes the strategy used to perform numerically the inverses of the double Fourier
integral transforms. The strategy is validated by comparisons with known special cases. A
number of original numerical results for displacements within the three-dimensional full-
space under spatially rectangular loads of constant amplitude, harmonically varying in time
are furnished.
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2. Numerical Integration

2.1. Viscoelasticity and Singular Integrands

In the first part of this paper [1], a set of general expressions for the displacement response of
a 3D isotropic viscoelastic full-space were obtained. Equation (2.1) shows a typical expression
that needs to be evaluated. It is a typical expression resulting from the inversion of the double
Fourier integral transform. In this case it describes the vertical displacement of the full-space
due to a vertical load applied over a rectangular area with dimensions 2A×2B (see Appendix
for notation), UZZ:

UZZ

(
x, y, z

)
= DNPZ

∫∞

0

{∫∞

0
KZZ

(
β, γ, x, y, z

)sβcβx
A0kβ

dkβ

}
sγcγy

A0b0kγ
dkγ , (2.1)

KZZ

(
β, γ, x, y, z

)
=

αSαLe
−αL|z| − (

β2 + γ2)e−αS|z|

αS
. (2.2)

Equation (2.1) presents two improper integrations, to be performed over the wave
number variables kβ and kγ . An outer improper integration is performed over the variable kγ .
For every value of kγ , an improper inner integration over the variable kβ must be evaluated.
Now the structure of (2.1) is analyzed.

The integrand of (2.1) represents, without loss of generality, the behavior of the
integrands of all the remaining displacement terms Uij(i, j = x, y, z) furnished in part I
[1]. These integrands are composed by a kernel Kij(i, j = x, y, z) multiplied by oscillating
functions ci, cij , si and sij(i = β, γ), (j = x, y). For the elastic case, these kernels, here
represented by KZZ in (2.2), present two singularities, which correspond to the dilatational
and shear waves which can propagate in the isotropic full space.

Figures 1(a) and 1(b) show the behavior of the integrand kernel KZZ as a function
of the integration variable kβ for the following set of parameters: Lamé constant μ = 1 and
Poisson’s ratio ν = 0.25, loading half-width A = B = 1, nondimensional frequency A0 = 1,
and damping coefficient ranging from η = 0 (elastic case) to η = 0.2. It can be shown that, for
values of the integration variable kβ larger than 1, the absolute value of the kernel function
decays monotonically.

The singularities corresponding to the shear and dilatational waves can be observed
at kβ = 1 and kβ ≈ 0.55, in Figures 1(a) and 1(b), respectively. It is also observed that
these singularities are smoothed when internal damping η is introduced. In the present
work viscoelastic behavior is assumed (η /= 0) and the elastic constants are made complex,
according to the elastic-viscoelastic correspondence principle [1, 2]. As a consequence, the
singularities in the kernels Kij are smoothed and no integration over a singularity must be
evaluated [3].

Now consider the improper inner integration over kβ, described in (2.1). The difference
between the behavior of the full integrand and that of its kernel KZZ is the oscillating nature
of the former. Figure 2 shows the behavior of the complete integrand for the inner evaluation
given in (2.1). As can be seen, the integrand presents an oscillatory and decaying nature. The
singularity remains at the points kβ ≈ 0.55 and kβ = 1.

Figures 1 and 2 characterize the line of inner improper integration over kβ for the value
kγ = 0 of the outer improper integration variable. The integrands present the same behavior
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Figure 1: (a) Behavior of the typical integrand kernel KZZ as a function of the normalized wave number
kβ in the range 0 ≤ kβ ≤ 1.5, kγ = 0. (b) Detail of the singularity due to the dilatational wavefront. In the
range 0.5 ≤ kβ ≤ 0.65, kγ = 0.
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Figure 2: Behavior of the typical integrand with its oscillatory part, as a function of the normalized wave
number kβ in the range 0 ≤ kβ ≤ 4, for kγ = 0, A0 = 3.

with respect to the variable kγ . In Figure 3, the behavior of the kernel KZZ is shown for the
plane of double-integration variables kβ and kγ . Notice that, along the planes kβ = 0 and
kγ = 0, the integration kernels reproduce the behavior shown in Figure 1.
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Figure 3: Behavior of the integrand kernel KZZ for 0 ≤ kβ, kγ ≤ 1.5.

Figure 4: Regions of integration for the double inverse Fourier transform.

2.2. Numerical Inversion of the Fourier Integrals

Based on the behavior of the integrands shown in the previous section, the following
methodology of integration is devised. The plane of integration (kβ, kγ) is divided into 3
regions as shown in Figure 4.

Region I is the region in which the integrands may present a singularity. Mathemat-
ically, this region is determined by the ranges (0 ≤ kβ ≤ kβ0) and (0 ≤ kγ ≤ kγ0). Actually
it can be shown that the singularities in the plane (kβ, kγ) are to be found at the locations
determined by the equations k2

β
+ k2

γ ≈ 0.55 and k2
β
+ k2

γ = 1 (see Figure 3). In the present
implementation the values kβ0 = kγ0 = 1.2 have been chosen. It can also be shown that the
oscillatory character of the integrand increases for larger values of the distance x, y, and z,
as well as with the increase of the nondimensional frequency parameter A0.

In this first and limited integration region, the integrand presents a quasi-singular
character, superposed by an oscillating behavior. An adaptive 2D Gaussian quadrature
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scheme is applied to evaluate the integrands. The number of integration points is
systematically increased until a degree of convergence is obtained.

In Region II the integration is proper in one direction (0 ≤ kγ ≤ kγ0) and improper
in the other direction (kβ0 ≤ kβ < ∞). There is no singular or quasi-singular behavior of
the integrands in this region. There is an oscillatory behavior in the range (0 ≤ kγ ≤ kγ0)
and a monotonic decreasing oscillatory behavior in the direction of the improper integration
(kβ0 ≤ kβ < ∞). In the kγ direction, standard 1D Gaussian quadrature is employed.
For the kβ direction, in which the integrand is oscillating and monotonically decaying,
the scheme proposed by Longman [3] for improper integrals is applied. This is a very
efficient integration strategy. Recently the authors of this paper developed a scheme to
implement Longman’s strategy on general-purpose graphics processing units (GPGPUs)
[4]. The implementation of a GPGPU was able to increase the integration performance by
almost 900 times, making it feasible to evaluate this inverse double integral transforms on
commodity computers.

In Region III (kγ0 ≤ kγ ≤ ∞; kβ0 ≤ kβ ≤ ∞), the integrands oscillate and decay
monotonically in both directions, and Longman’s integration strategy is used in these two
directions.

3. Validation

The methodology described in the previous section was used to determine the displacements
Uij(i, j = x, y, z) within the full space due to a dynamic load uniformly distributed over
an area of sides 2A × 2B. For the synthesized solutions, the origin of the coordinate system
is at the center of the loading area. The solutions depend on many parameters such as the
coordinate of the point at which the solutions is calculated, x, y, and z, on the dimensionless
frequency A0, on the constitutive parameters μ and λ, on the dimensions of the loading area
A and B, and also on the internal damping coefficient η.

The present solution can be partially validated using the limiting case of a static
solution (A0 → 0) due to a concentrated point load (A → 0, B → 0). Kane [5] presents
a classical closed-form Green’s function for concentrated static loads in the interior of the 3D
isotropic full space, known as Kelvin’s solution. To simulate the case of a concentrated static
load, the nondimensional frequency was set to A0 = 0.001 and the half-widths of the loading
were set to A = B = 0.01. The other parameters are ν = 0.25, μ = 1, and η = 0.01. Figures
5(a) to 5(i) show the results obtained by the Kelvin solution and by the present approach (2-
Fourier). The 9 components of the displacement tensor Uij(i, j = x, y, z) are determined. The
solutions were obtained along the line of the full space given by y = z = 0.5 and −2 ≤ x ≤ 2.

The corresponding Kelvin solution for the dynamic load case is presented by Kitahara
[6]. This dynamic Kelvin solution for concentrated loads has been integrated over an area
with sides 2A × 2B using standard Gaussian quadrature in order to obtain results that could
be used to validate the present solution for distributed dynamic loads.

Figure 6 shows the complete set of 9 dynamic displacement components Uij(i, j =
x, y, z) obtained by integrating the solution presented by Kitahara [6] and the solution
obtained by the present implementation. In the graphics the results are indicated,
respectively, as (Kelvin) and (2-Fourier). The graphics show the real and imaginary parts
of the components of displacement along a line in the interior of the full space given by
y = z = 0.5 and −2 ≤ x ≤ 2. The other parameters are ν = 0.25, μ = 1, η = 0.01, A = B = 1, and
A0 = 5.
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Figure 5: Continued.
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Figure 5: Static displacements solutions due to a concentrated point load within the full-space along the
line −2 ≤ x ≤ 2, y = z = 0.5.

In Figure 7, the frequency-dependent behavior of the displacement solution is shown.
The real and imaginary parts of the components UXY and UZZ are determined for the point
within the full space with coordinates x = y = z = 0.5. The dimensionless frequency varies
from A0 = 0 to A0 = 4. The other parameters are μ = 1.0, ν = 0.25, η = 0.01, and A = B = 1.

Now consider an increase in the loading dimension B. If B is large enough, the
present 3D solution should approach the plane strain condition at the plane (x-z, y = 0).
Barros and De Mesquita Neto [7] determined the displacement solutions for 2D full spaces
under distributed loads of spatially constant amplitude. Figures 8(a) and 8(b) show the
displacements components UXX and UZX obtained for the 2D plane strain case [7] compared
to the present 3D formulation for the case in which the ratio B/A = 10. The other parameters
of the problem are −4 ≤ x ≤ 4, y = 0 (plane x-z), z = 0.5, A0 = 0.1, A = 1, ν = 0.25, μ = 1,
and η = 0.1. It can be seen that the 3D solution tends to the 2D case for increasing values of
the A/B ratio.

The difference observed in Figure 8 between the two solutions comes from the fact that
a 3D solution is being compared with one in which a plane strain condition is established (2D
case).

The results for the static and the dynamic solutions determined by the present
approach compare very well with the case of the Kelvin solution, with the integrated
Kitahara’s closed-form dynamic solution, and with Barros’ 2D plane strain solution. It
is understood that these comparisons, static and dynamic, for all components of the
displacement tensor Uij(i, j = x, y, z) validate the present approach and implementation.

4. Numerical Results

In this section a series of numerical studies are presented which allow assessing the influence
of the distinct parameters on the dynamic displacement solutions.

4.1. Influence of the Damping

Part I of this paper described how a model of hysteretic damping was introduced in the
formulation according to the elastic-viscoelastic correspondence principle [2]. Figure 9 shows
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Figure 6: Continued.
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Figure 6: Dynamic displacement components for the full space along the line −2 ≤ x ≤ 2, y = z = 0.5.
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Figure 7: Real and imaginary parts of the components (a) UXY and (b) UZZ with varying frequency.

the influence of distinct damping factors on the amplitude of the displacement components.
The vertical axis is shown in log scale. The other parameters of the problem are y = z = 0.5
and 0 ≤ x ≤ 10; A0 = 1, A = B = 1, ν = 0.25, and μ = 1.

It can be observed from Figure 9 that an increase in the internal damping coefficient η
will cause the amplitude to decay faster along the coordinate x. This increase in amplitude
decay of propagating waves in viscoelastic unbounded solids is in accordance with the
literature [8].

The frequency behavior of the solution is similar. Higher damping coefficients will
stiffen the domain and decrease the displacement amplitude compared to the ones with
smaller damping coefficients. This behavior can be seen in Figures 10(a) and 10(b) for the
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Figure 9: Effect of the damping factor on the amplitude of the displacement components.

components UYZ and UZZ. The other parameters used in Figure 10 are x = y = z = 0.5, A =
B = 1, ν = 0.25, and μ = 1.

4.2. Long-Distance Behavior

For the present formulation to be used, for instance, as an auxiliary state for the indirect
formulation of the boundary element method (BEM) [9], the displacement solutions must
be able to be determined at fairly large distances from the loading area. This section shows
a few examples of this case. Figure 11 shows the real part of two displacement components
at a line along the x axis with a low frequency A0 = 0.1. The parameters of this problem are
0 ≤ x ≤ 50, y = z = 0.5, A = B = 1, ν = 0.25, μ = 1 and η = 0.05.
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Figure 11: Displacements solutions far from the origin for a low frequency A0 = 0.1.

Figure 12 shows the real part of two displacement components at a line along the x
axis for the case of a higher frequency, A0 = 1.0. The parameters of this problem are: 0 ≤ x ≤
40, y = z = 0.5, A = B = 1, ν = 0.25, μ = 1, and η = 0.05.

Analogously, Figure 13 shows the real part of two displacement components at a line
along the z axis for an even higher frequency, A0 = 2.0. The parameters of this problem are
0 ≤ z ≤ 50, x = y = 2.0, A = B = 1, ν = 0.25, μ = 1, and η = 0.05.

These results indicate that the present implementation is capable of determining
displacement components at fairly large distances from the loading source, for low and
relative high frequencies.
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Figure 12: Displacements solutions far from the origin for a higher frequency, A0 = 1.0.
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Figure 13: Displacement solutions far from the origin along the z axis for the frequency A0 = 2.0.

4.3. Higher-Frequency Behavior

Frequency-dependent solutions may be used to obtain transient solutions via Laplace or
Fourier integral transforms, by relating the frequency parameter with the time variable. It
is also well known that there is a relation between the highest frequency in which a solution
may be determined and the smallest time step of the transient solutions [10]. Therefore, it is
important to verify if the present implementation is able to determine displacement solutions
at larger frequencies.

Figure 14 shows the frequency behavior for two displacement components for a
dimensionless frequency parameter varying from 0 < A0 < 20. The absolute value of the
displacement amplitude is shown. The components UXZ and UYY were calculated for the
parameters x = y = z = 2.0, A = B = 1, ν = 0.25, μ = 1, and η = 0.01.
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Figure 14: Frequency-dependent behavior of the displacement solutions.
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Figure 15: Behavior of the displacement solutions for higher frequencies.

Figures 15(a) and 15(b) show, exemplarily, the frequency behavior of the components
UYY and UZZ for frequencies up to A0 = 50. The parameters are x = y = z = 2.0, A = B =
1, ν = 0.25, μ = 1, and η = 0.1.

The presented results indicate that the synthesized and implemented frequency
domains solutions may be used to obtain transient solutions via, for instance, the FFT
algorithm. To exemplify this statement, consider a continuum with a shear wave velocity
of cS = 250 m/s and a load half-width A = 1 m. for these parameters, the solutions shown
in Figures 14 and 15 would lead to transient solutions with minimum time steps of Δtmin =
1.26 · 10−3 s and Δtmin = 0.5 · 10−3 s, respectively. These time steps are sufficiently small for
many transient applications.

4.4. Behavior of the Solution for Nearly Incompressible Continua

Figure 16 shows the frequency solution for the displacement components UXY (A0) and
UYY (A0) for the case in which Poisson’s ratio approaches the incompressibility limit
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Figure 16: Convergence of the displacement solutions near the incompressibility limit.

(ν → 0.5). Results for three distinct values of ν, namely, ν = 0.494, ν = 0.495, and ν = 0.496,
are shown in the figure. The other parameters are x = y = z = 2.0, A = B = 1, μ = 1, and
η = 0.01. These results show that the present implementation remains stable while going
to the incompressibility limit and may be used to determine solutions for the case of nearly
incompressible media.

5. Concluding Remarks

In the first part of the present paper, the displacement response of a three-dimensional
isotropic viscoelastic full space under stationary dynamic loading was synthesized using the
double Fourier integral transform. Expressions for the displacements in the original physical
domain were furnished as inverse double integral transforms. In the present paper, the
strategy applied to evaluate numerically the inverse double Fourier integral transforms is
described. The obtained results were validated by comparison with a static and a dynamic
concentrated load solutions. All the 9 components of the displacement tensor have been
presented and validated. Furthermore, the influence of the damping coefficient on the
solutions was investigated. It has been shown that, for the present 3D solution, an increase
in the ratio of the loading area A/B is able to recover the 2D plane strain solution. The
behavior of the displacement solutions at larger distances from the loading area have been
presented, showing the stability and accuracy of the implemented numerical scheme. The
behavior of the solutions for high frequencies is also investigated. Stable numerical results
for very high frequencies were obtained, indicating that the present solutions may be used
in conjunction with an FFT algorithm to obtain transient solutions. It is expected that the
determined displacement solutions may be used as auxiliary states in formulations such as
the indirect boundary element method.
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Appendix

In (2.1), the following notation is adopted:

k∗2
L =

ω2

c∗2
L

, c∗2
L =

λ∗ + 2μ∗

ρ
,

k∗2
S =

ω2

c∗2
S

, c∗2
S =

μ∗

ρ
,

α2
L =

(
β2 + γ2) − k∗2

L ,

α2
S =

(
β2 + γ2

)
− k∗2

S ,

DN =
2AB

π2μ∗
(
ηRS + iηIS

)
,

b0 =
B

A
,

β =
A0

A
kβ ,

γ =
A0

A
kγ ,

k∗2
S =

(
A0

A

)2 1
(
ηRS + iηIS

) ,

k∗2
L =

(
A0

A

)2 n2
(
ηRL + iηIL

) ,

sβ = sen
(
A0kβ

)
,

sβx = sen
(
A0kβ

x

A

)
,

sγ = sen
(
A0b0kγ

)
,

sγy = sen
(
A0b0kγ

y

B

)
,

cβ = cos
(
A0kβ

)
,

cβx = cos
(
A0kβ

x

A

)
,

cγ = cos
(
A0b0kγ

)
,

cγy = cos
(
A0b0kγ

y

B

)
.

(A.1)
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