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A variation of ZAD technique is proposed, which is to extend the range of zero averaging of the
switching surface (in the classic ZAD it is taken in a sampling period), to a numberK of sampling
periods. This has led to a technique that has been named K-ZAD. Assuming a specific value for
K = 2, we have studied the 2-ZAD technique. The latter has presented better results in terms of
stability, regarding the original ZAD technique. These results can be demonstrated in different
state space graphs and bifurcation diagrams, which have been calculated based on the analysis
done about the behavior of this new strategy.

1. Introduction

Currently, power electronics has an important place in industry. This is largely due to the
very extensive number of applications derived from these systems, including control of
power converters. This was the main motivation for researchers worldwide to develop new
advances in this field and has promoted the investigation on many mathematical models.
They correspond usually to variable structure systems, chaos, and control. The practical goal
is to obtain better devices or new and improved mechanisms for use in electronic controllers.

Bifurcation, chaos, and control in electronic circuits have been reported inmany papers
such as [1, 2]. Regarding power electronics, early works can be found in the literature from
the 1980s when first observed in [3, 4]. In 1989 several authors such as Krein and Bass [5], and
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Deane and Hamill [6] began to study chaos in various power electronic circuits. In his work
Wood [7] contributed to the understanding of chaos, showing in phase diagrams that the
pattern of the trajectories was messy as small variation on initial conditions and parameters
in the systemwere performed.Meanwhile Deane andHamill reported some of the best works
on bifurcations and chaos applied to electronic circuits. Their studies were based on computer
simulations and laboratory experiments [3, 4, 6].

Because of the multiple side effects that generation of chaos caused in these systems,
several authors proceeded to develop different control techniques, such as [8] by Ott et al.,
who found a way of controlling unstable orbits coexisting with chaos. They used small
disturbances. This resulted in the so well-knownOGYmethod (after the names of the authors
Ott, Grebogi, and Yorke). Pyragas [9] contributed to this topic with a feedback scheme using
a time-delayed control known as (time-delayed autosynchronization) TDAS.

Also the work by Utkin is very important in the control literature. He studied (pulse-
width modulation) PWM systems and variable structure systems [10]. He introduced a now
very popular control technique so-called sliding-mode control (SMC) and many applications
were proposed [11]. These studies were taken later as a starting point by Carpita et al. [12].
In his work, Carpita presents a sliding mode controller for a (uninterrupted power system)
UPS. Carpita uses a sliding surface which is a linear combination of error variable and its
derivative.

Some time after, a new technique, both conceptually different from sliding-mode
control (although very related to it) and as a practical implementation to SMC, appeared.
It was called (zero average dynamics) ZAD by the authors. This control technique forces the
system to have, at each clock cycle, a zero average of the sliding surface (instead to be zero all
the time, as in sliding-mode control). Application of this technique to a buck converter with
centered pulse and an approximation scheme needed for the practical implementations [12]
has obtained very good performance. Robustness, low stationary error, and fixed switching
frequency have also been achieved [13]. It has been observed that as the main parameter
in the surface ks is decreased, chaotic behavior appears which is not desirable in practice.
Then, several additional techniques such as TDAS (mentioned before) or (fixed point induced
control) FPIC must be implemented in order to guarantee a wider operation range [13]. FPIC
has obtained the best results with regards to stabilization and chaos control. Bifurcation
diagrams have shown flip or period-doubling bifurcations followed by border-collision
bifurcations due to the saturation of the limit cycle. This sequence of bifurcations leads the
system to chaotic operation for low values of ks. When saturation of the limit cycle appears,
the ZAD technique is degraded and thus zero average in each cycle is lost.

In order to solve this problem, we generalize the ZAD technique (from now on called
classical ZAD) to the so-calledK-ZAD technique. This generalization allows the surface to be
of zero average not in every cycle (as classical ZAD), but in a sequence of K cycles. Being a
weaker condition one can choose the duty cycles in such a way that they are not saturated (at
least not so frequently) and thus zero average and stabilization in a periodic orbit is obtained.

Specifically, our study has focused on the valueK = 2, which gives rise to 2-ZAD, that
is, two sampling periods for the zero average in the surface. We compare this generalization
with the classical ZAD through bifurcation diagrams.

The remaining of this paper is organized as follows. In Section 2 we explain in detail
mathematical modelling of this technique and we perform the corresponding algebraic
computations. In Section 3 the numerical implementation and the results are discussed.
Finally, conclusions and future work are stated in Section 4.
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Figure 1: Scheme of the Buck converter.

2. K-ZAD Strategy

The scheme for the buck converter is shown in Figure 1. We donot take into account the
diode full dynamics and thus we assume always continuous conduction mode (alternatively,
we can consider bidirectional switches which allow negative currents).

The classical diode-transistor scheme is changed by a transistors bridge linked with
the source. When transistors are in (1) position the pulse magnitude is +E, and when the
position is (2.2), then the magnitude is −E. As a result we have a PWM system which inverts
the polarity at each switching.

With the aim of obtaining a nondimensional system with nondimensional parameters,
which leads to easier analysis, we perform the following change of variables [13]:

x1 =
v

E
, x1ref =

Vref

E
, x2 =

1
V

√
L

C
i, γ =

1
R

√
L

C
. (2.1)

Also we normalize the sampling period

T =
Tc√
LC

, (2.2)

where Tc = 50μs, R = 20Ω, C = 40μF, L = 2mH, and E = 40V. These values come from
laboratory prototypes which can be found in the literature [13]. Thus we get the value T =
0.1767 and the following nondimensional system:

(
ẋ1

ẋ2

)
=
(−γ 1
−1 0

)(
x1

x2

)
+
(
0
1

)
u, (2.3)

which can be written in compact form as ẋ = Ax + bu where

A =
(−γ 1
−1 0

)
, b =

(
0
1

)
, ẋ =

(
ẋ1

ẋ2

)
, x =

(
x1

x2

)
. (2.4)
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The solution of this piecewise-linear system can be computed algebraically and the
expression for the Poincaré map corresponding to sampling every T time units is [14]

x((k + 1)T) = eATx(kT) +
(
eA(T−dk/2) + I

)
A−1

(
eA(dk/2) − I

)
b − eA(dk/2)A−1

(
eA(T−dk) − I

)
b.

(2.5)

u stands for the control action, which corresponds to a centered pulse, which can be mathe-
matically written as

u =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if kT < t < kT +
d

2
,

−1, if kT +
d

2
< t < kT +

(
T − d

2

)
,

1, if kT +
(
T − d

2

)
< t < kT + T.

(2.6)

d corresponds to the so-called duty cycle. It will be computed in such a way that the dynam-
ical system tends to the sliding surface defined as

s(x(t)) = (x1 − x1ref) + ks(ẋ1 − ẋ1ref). (2.7)

The ZAD technique imposes that the orbit must be such that when the variables are
replaced in the sliding surface in (2.7), the following equation is fulfilled:

∫ (k+1)T

kT

s(x(t))dt = 0. (2.8)

Computing d from (2.8) involves transcendental expressions which should be avoided
in practical applications. Thus in the literature, the sliding surface has been approximated
by a piecewise-linear function. This allows an algebraic solution for d, which is used in
applications.

2.1. Computations for the Classical ZAD Strategy

Figure 2 shows how the classical ZAD strategy works. The area under the curve s(x)must be
zero.
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Figure 2: Scheme for the classical ZAD strategy.

Using the piecewise-linear approximation, the integral can be written as

∫ (k+1)T

kT

s(x(t))dt ≈
∫kT+d/2

kT

(s(x(kT)) + (t − kT)ṡ1(x(kT))dt

+
∫ (k+1)T−d/2

kT+d/2

(
s(x(kT)) +

d

2
ṡ1(x(kT)) +

(
t −

(
kT +

d

2

))
ṡ2(x(kT))

)
dt

+
∫ (k+1)T

(k+1)T−d/2
s(x(kT)) + (T − d)ṡ2(x(kT)) + (t − (k + 1)T + d)ṡ1(x(kT))dt,

(2.9)

where s(x(kT)) is the value of the sliding surface at the sampling instant, ṡ1(x(kT)) is the
derivative in the first and third pieces of the piecewise-linear approximation and ṡ2(x(kT)) is
the derivative in the central piece. After some algebra we get

d =
2s(x(kT)) + Tṡ2(x(kT))
ṡ2(x(kT)) − ṡ1(x(kT))

. (2.10)

Since a value d > T or d < 0 is practically impossible, when this occurs the duty cycle
is saturated in such a way that we take 0 if d ≤ 0 and we take T if d ≥ T . In those cases where
d is saturated the ZAD strategy fails and thus the zero average condition is not fulfilled.

2.2. Computations for the K-ZAD Strategy

Now we consider the computations when the zero average condition is weakened to a
sequence of K cycles instead of every cycle. Previously, with the classical ZAD strategy we
had

∫ (k+1)T

T

s(x(t))dt = 0. (2.11)
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Figure 3: Scheme for the 2-ZAD technique.

Now, with the K-ZAD strategy, we have

∫ (k+1)T

kT

s(x(t))dt +
∫ (k+2)T

(k+1)T
s(x(t))dt + · · · +

∫ (k+K)T

(k+(K−1))T
s(x(t))dt = 0. (2.12)

This means that we extend the condition of zero average to an interval of K con-
secutive cycles.

2.3. Computations for the 2-ZAD Strategy

In the case K = 2 we get

∫ (k+1)T

kT

s(x(t))dt +
∫ (k+2)T

(k+1)T
s(x(t))dt = 0. (2.13)

In Figure 3 we depict a scheme for the 2-ZAD. The area under the curve between t = kT and
t = (k + 2)T must be zero.

Since we are now dealing with two cycles, we can have two different duty cycles and
different values for the derivatives of the piecewise-linear functions. Thus we introduce the
following notation.

(i) In the first cycle we write d1 for the duty cycle and we write d2 for the duty cycle in
the second cycle.

(ii) For the derivatives we use ṡ11 and ṡ21 for the first cycle. They correspond to
ṡ1(x(kT)) and ṡ2(x(kT)) for the first cycle. They are computed according to the
sign of u and are sampled at the beginning of the first interval (i.e., at t = kT). In
the second interval we will denote the derivatives by ṡ12 and ṡ22. They correspond
to ṡ1(x((k + 1)T)) and ṡ2(x((k + 1)T)) for the second interval. They are computed
sampling at the beginning of the second cycle (i.e., at t = (k + 1)T) as it is shown in
Figure 3.
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With this notation and some further algebra, we get

s = ṡ11(t − kT) + s(x(kT)). (2.14)

For the second piece of the first cycle t ∈ (kT+d1/2, (k+1)T−d1/2), with derivative ṡ21(x(kT))
we get

s = ṡ21

(
t − kT − d1

2

)
+ ṡ11

(
d1

2

)
+ s(x(kT)). (2.15)

For the third piece t ∈ ((k+1)T−d1/2, (k+1)T) of the first interval, with derivative ṡ11(x(kT)),
we get

s = ṡ11(t − (k + 1)T + d1) + ṡ21(T − d1) + s(x(kT)). (2.16)

For the second cycle t ∈ ((k + 1)T, (k + 2)T) we have derivatives ṡ12 and ṡ22 and the duty
cycle d2. In the first piece of the second cycle t ∈ ((k + 1)T, (k + 1)T + d2/2), with derivative
ṡ12(x((k + 1)T)), we get

s = ṡ12(t − (k + 1)T) + ṡ11(d1) + ṡ21(T − d1) + s(x(kT)). (2.17)

For the second piece in the second cycle t ∈ ((k + 1)T + d2/2, (k + 2)T − d2/2), with derivative
ṡ22(x((k + 1)T)), we get

s = ṡ22

(
t − (k + 1)T − d2

2

)
+ ṡ12

(
d2

2

)
+ ṡ11(d1) + ṡ21(T − d1) + s(x(kT)). (2.18)

Finally, for the third piece in the second interval t ∈ ((k+2)T −d2/2, (k+2)T), with derivative
ṡ12(x((k + 1)T)), we get

s = ṡ12(t − (k + 2)T + d2) + s22(T − d2) + ṡ11(d1) + ṡ21(T − d1) + s(x(kT)). (2.19)

Thus we have

∫T

0
s(x(t))dt +

∫2T

T

s(x(t))dt ≈
∫kT+d1/2

kT

ṡ11(t − kT) + s(x(kT))dt

+
∫ (k+1)T−d1/2

kT+d1/2
ṡ21

(
t − kT − d1

2

)
+ ṡ11

(
d1

2

)
+ s(x(kT))dt

+
∫ (k+1)T

(k+1)T−d1/2
ṡ11(t − (k + 1)T + d1) + ṡ21(T − d1) + s(x(kT))dt

+
∫ (k+1)T+d2/2

(k+1)T
ṡ12(t − (k + 1)T) + ṡ11(d1) + ṡ21(T − d1) + s(x(kT))dt
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∫ (k+2)T−d2/2

(k+1)T+d2/2
ṡ22

(
t − (k + 1)T − d2

2

)
+ ṡ12

(
d2

2

)

+ ṡ11(d1) + ṡ21(T − d1) + s(x(kT))dt

+
∫ (k+2)T

(k+2)T−d2/2
ṡ12(t − (k + 2)T + d2) + s22(T − d2) + ṡ11(d1)

+ ṡ21(T − d1) + s(x(kT))dt.

(2.20)

Solving the integral we have the following expression for d2 as a function of d1:

d2 =
−(3d1ṡ11 + 3Tṡ21 + 4s(x(kT)) + Tṡ22 − 3d1ṡ21)

(ṡ12 − ṡ22)
. (2.21)

Since we have d1 as an independent variable and d2 is dependant of d1, we can assume
that d1 is nonsaturated. Then our proposal is to choose d2 to be as the optimal value (in
a certain sense) taking d1 between 0 and T . Our optimal condition will be choosing d2 the
closest to the stationary theoretical value as possible. In this way we approximate x1 to the
desired regulation value as much as possible.

3. Numerical Results

Following [13] the stationary theoretical value for the duty cycle was computed as

deq = T
1 + x1ref

2
. (3.1)

Then according to the previous section, the following results are obtained.

3.1. Results

In the literature it was found that, for the classical ZAD strategy and centered pulse, stability
of the T -periodic orbit was obtained in the range ks > 3.23, approximately. Below this
value, period doubling and border collision bifurcation due to saturations lead the system
to big amplitude chaotic operation, which is inadmissible in practical devices. The ranges
considered for the 2-ZAD strategy contain values from ks = 0.01 to ks = 5. We can observe
the transition from stability to chaos.

Figure 4 shows bifurcations obtained for the classical ZAD strategy, for parameter
values less than ks = 3.23. For parameter values greater than 3.23, the T -periodic orbit is
stable. The duty cycle is approximately 0.1590 when x1ref = 0.8 and γ = 0.35. In the figures
we observe that chaos is obtained when ks decreases. For parameter values ks less than 1,
big amplitude chaos appears. The regulation error also grows. Close to ks = 3.23 we can also
observe a fast transition of the stable 2T -periodic orbit into saturation.

In the computations corresponding to Figure 5 we considered 2-ZAD strategy all the
time, for all values of parameter ks. We allowed saturations when it was impossible to get
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Figure 4: Bifurcation diagram with bifurcation parameter ks, in the classical ZAD strategy.

two nonsaturated duty cycles. In these figures it can be observed that the stability range
of the T -periodic orbit is wider than that for the classical ZAD strategy. From ks = 5 until
approximately ks = 0.5 the 2-ZAD strategy avoids the orbit to get far from the stable T -
periodic orbit. This is mainly due to the existence of nonsaturated duty cycles.

Figures 6, 7, 8, and 9 correspond to a reference value 0.8 and initial conditions x1 = x1ref

and x2 = γx1ref (stable state values according to [13]). Initial conditions close to the stable state
value are considered in order to check the performance of these techniques. With the aim of
getting a better insight of the behavior of the orbit in stable state, we take the last values of
the trajectory. Thus we compare both the classical ZAD strategy with 2-ZAD. Results show
that 2-ZAD performs much better than classical ZAD technique.

Regarding chaotic behavior, Figure 10 shows the Lyapunov exponents for both
techniques. It can be observed that in the 2-ZAD case the exponents are below zero for a
wider range than for the classical ZAD strategy. For the 2-ZAD, stability is kept almost until
ks close to 0.7. Then some small amplitude period-doubling bifurcations appear. Close to
ks = 0.25 and below, saturation in the duty cycle cannot be avoided and chaos appears.
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Figure 5: Bifurcation diagrams with bifurcation parameter ks when 2-ZAD strategy is considered.
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Figure 6: 2-ZAD strategy for ks = 2.5 and initial conditions close to the reference value.
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Figure 7: Classical ZAD strategy for ks = 2.5 and initial conditions close to the reference value.
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Figure 8: 2-ZAD strategy for ks = 1 and initial conditions close to the reference value.
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Figure 9: Classical ZAD strategy for ks = 1 and initial conditions close to the reference value.
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4. Conclusions and Future Work

A generalization of the so-called ZAD technique (named K-ZAD) was described. It can
be used as an alternative to classical ZAD when saturation effects lead the system to big
amplitude chaotic behavior. In fact, 2-ZAD shows better performance than classical ZAD
in all cases (regarding stability and nonsaturation). Even it can be used without additional
stabilization methods such as FPIC or TDAS. Thus the control algorithm becomes simpler.
Good performance of K-ZAD is mainly dependent on the way that the (independent) duty
cycles are computed. Several criteria can be chosen. The one chosen in this paper showed
very good success. But it is worth to note that different criteria will lead to probably very
different dynamics. Thus even better results than those shown in this paper can be obtained.

It is expected that as the value of K is increased, better results can be obtained. But
also it is evident that the control algorithm gets more complex. Some early results with 3-
ZAD (not shown in this paper) confirm this last sentence. Anyway, trying values bigger than
2 with some sort of optimal condition is proposed as our next step into further understanding
the ZAD strategy.
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