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A closed-loop supply chain network involves the manufactured and remanufactured homoge-
neous products. It comprises operation links to represent business activities including manufac-
turing/remanufacturing activities, treatment activities for EOL products, transportation activities,
and storage activities, which are performed by the firms. Among all closed-loop supply chain
problems, the horizontal merger of oligopolistic firms is so important and attracting to both
businessman and researchers. In this paper, the interaction of the competitive firms prior to
horizontal merger is analyzed. Three networks including prior to horizontal merger, postpartial
merger, and complete merger are studied. Simultaneously, three economical models for these
networks on different conditions of mergers are established and discussed. The variational
inequality formulations are used for these three models, whose solutions give out the production
quantity of new products, and remanufactured products, the product flows for new products,
remanufactured products and end-of-life products at every path, the demand quantity, the
recovery quantity of end-of-life products and the equilibrium prices. Finally, numerical examples
are tested and illustrated for the proposed models.

1. Introduction

In light of increasing environmental consciousness and stricter legislation, disposal of
plentiful EOL (end-of-life) products becomes a critical problem. EOL product recovery aims
to minimize the amount of waste sent to landfills by recovering materials and parts from
old or outdated products by means of recycling and remanufacturing [1]. Nowadays, EOL
product recovery has become an obligation to the environment and to the society itself.
Hence, more and more countries extend manufacturers’ responsibility and require them
to take back the EOL products. This concern for the environment has motivated increased
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interest in reverse logistics arose from EOL product recovery, which has become the subject
of growing attention over the last decade [2].

In an effort to curb pollution and achieve the goal of sustainable development, some
measures have been proposed in China to promote the traded-in of the automobiles and
home appliances covering five types of commodities: TV, refrigerator, washing machine, air
conditioner, and computer. The trial points of traded-in comprise Beijing, Shanghai, Tianjin,
Jiangsu, Zhejiang, Shandong, Guangdong, Fuzhou, and Changsha. The consumers who
purchase new home appliances and meet the requirements of subsidy can be provided a
subsidy worth 10 percent of the prices of the new products. The highest subsidies will be
determined by their types. The transportation cost of the products to the recovery centers for
treatment can be subsidized within a certain range. It shows the stronger background and
important meaning to deal with the EOL products in China.

Manufacturers have faced increasing pressures from both governmental regulations
and from consumers and become more environmentally responsible [3]. Under this back-
ground, manufacturers not only focus on their forward logistics, but also have to consider
reverse logistics. This may lead to open systems if the recovered content of the original
products leaves the original supply chains and is used by othermanufacturers tomanufacture
products serving a different purpose, but it may also encourage manufacturers to have
reverse flows implemented into their own supply chains, giving rise to a closed-loop supply
chain [4].

The study of closed-loop supply chain is a relatively new field of research. More
recently, a variety of closed-loop supply chain network optimization models have been
developed. Schultmann et al. [5] proposed a hybrid approach to establish a closed-loop
supply chain for spent batteries. It combines an optimization model for planning a reverse-
supply network and a flow-sheeting process model that enables a simulation tailored to
potential recycling options for spent batteries in the steelmaking industry. Easwaran and
Üster [6] presented a mixed-integer linear programming to determine the optimal locations
of the collection centers and remanufacturing facilities along with the integrated forward and
reverse flows and devised two Tabu Search heuristics—sequential and random neighborhood
search procedures to solve the problem. Wang and Hsu [7] considered the integration of
forward and reverse logistics. A generalized closed-loop model for the logistics planning
was proposed by formulating a cyclic logistics network problem into an integer linear
programming model, and a revised spanning-tree-based genetic algorithm was developed.
Moreover, concerning the uncertain factors, a stochastic programming model was developed
by Chouinard et al. aiming at evaluating impacts of randomness related to recovery,
processing, and demand volumes on the design decisions [8]. Francas and Minner presented
a two-stage stochastic programming model with normally distributed demands and returns
[9]. In addition, a multiperiod integer programming model [10] and a multiperiod and
multiproduct network model [11] were proposed in recent years.

Among all closed-loop supply chain problems, the horizontal merger of oligopolistic
firms with closed-loop supply chain networks is so important and attracting to both
businessman and researchers. Mergers and acquisitions have become an inseparable part of
international business and a major means for companies to grow in size, go international,
or obtain knowhow [12]. Companies seek profit improvement by the rapid expansion of
sales via mergers. In addition, a merger motive can be to build a conglomerate [13]. Every
company pursues continuously profit growth and expects to take away more market share
from its competitors. Thus, the pursuit of those merger advantages might explain recent
horizontal mergers such as those of Kmart and Sears in the retail industry, the merger of
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Interbrew and Ambev and that of SAB-Miller and Molson Coors as well as the merger of
InBev and Anheuser-Busch in the beer industry, the merger of Gome and Yongle in retail
industry in China.

Many researchers have focused their attention on the study of horizontal merger.
Chakravarty [14] used the Debreu-Farrell-Färe measure of efficiency of merger to compare
economic efficiencies of alternative merged entities in a homogeneous good industry.
Nilssen and Sørgard [15] analyzed the interdependence of merger decisions over time. The
Fudenberg-Tirole taxonomy of business strategies was used to discussmerger decisionsmade
in sequence by disjoint groups of firms and a simple oligopoly model proposed to these
strategies. Ivaldi and Verboven [16] used the parameter estimates to compute the postmerger
equilibrium and the implied price and welfare changes under various alternative scenarios.
Davidson and Mukherjee [17] analyzed horizontal mergers in a simple model in which free
entry and exit and provided a general analysis of the impact of mergers on the long-run
industry structure. In contrast to the aforementioned models, Nagurney [18] presented a
new theoretical framework for the quantification of strategic advantages associated with
horizontal mergers through the integration of supply chain networks.

In this paper, within the context of closed-loop supply chain network, the firms
in the network include manufacturing/remanufacturing plants and distribution/recovery
centers and serve the demand markets. Manufacturers/remanufacturers are involved in
the production of a kind of homogeneous products from the raw materials and recovered
EOL products. We consider that each firm as a network of business activities represented
by forward links, and reverse links. The forward links consist of manufacturing links,
remanufacturing links, forward transportation links and forward storage links, while reverse
links include treatment links for EOL products, reverse transportation links, and reverse
storage links. Three networks including prior to horizontal merger, post partial merger and
complete merger are studied. Simultaneously, we propose three economical models for these
networks on different conditions of mergers. Theory of variational inequalities is used to
derive the variational inequality formulations of those models. Finally, several examples are
studied to describe the effects of parameters on equilibrium results and analyze what impact
the costs of horizontal merger will have on profits of the firms apter partial merger and
complete merger.

This paper is organized as follows. In Section 2, we analyze the interaction of the
competitive firms prior to horizontal merger and propose an equilibrium model for the
network. In Section 3, the partial firms are merged into one. We develop an economical model
for the network after partial merger. In Section 4, a nonlinear optimization model for the
closed-loop supply chain network after all firms merged is given. In Section 5, we provide
numerical examples to present the effects of parameters on the equilibrium results in the case
of different merger scenarios and analyze what impact the costs of horizontal merger will
have on profits of the firms after partial merger and complete merger. At last, the paper ends
with conclusions in Section 6.

2. Prehorizontal Merger Economical Model

We present a closed-loop supply chain network prior to horizontal merger associated with a
number of firms in the same industry, denoted by Firm 1, 2, . . . , I. Each Firm i has mi manu-
facturing/remanufacturing plants, ni distribution/recovery centers, and serves J demand
markets. The plants produce the same homogeneous manufactured and remanufactured
products. The distribution centers are responsible for transporting the manufactured and
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remanufactured products from manufacturing/remanufacturing plants, and storing these
products, then transporting these products to the demand markets. The recovery centers are
responsible for recovering and storing the EOL products and transporting these products to
remanufacturing plants to be treated and to be ready for remanufacturing.

Let G1 = [N1, L1] denote the network, where N1 denotes the set of nodes and
L1 denotes the set of operation links including forward and reverse links. The forward
links are the links which are located on the forward supply chains, and the reverse links
are the links which are located on the reverse supply chains. We assume that each firm
is represented as a network of many operation links which represent business activities
including manufacturing/remanufacturing activities, treatment activities for EOL products,
transportation activities, and storage activities performed by the firms, as depicted in
Figure 1.

Product flows on the forward links are classified into two types: the products
remanufactured from recovered EOL products and the products manufactured from new
materials. The product flows on the reverse links are the recovered EOL products.
The forward links between the first layer nodes with the second layer nodes are the
manufacturing/remanufacturing links representing manufacturing and remanufacturing
operations, and the reverse links between them are the treatment links representing treatment
operations for the EOL products. The links between second layer nodeswith third layer nodes
are transportation links representing transportation operations between the manufacturing
plants with distribution centers. The next layer links are storage links representing storage
operations for the manufactured/remanufactured products and EOL products. Moreover,
there are transportation links connecting distribution center nodes with all demand market
nodes. The majority of the required notation is given in Table 1.

Suppose that qNj denotes the demand for the products at demand market j. The
quantity of products transacted for Firm i is equal to that of manufactured products and
remanufactured products. Therefore, we have the following conservation of product flows:

qNj =
∑

p∈P 1N
j

(
x1
p + y1

p

)
. (2.1)

Let qRj denote the quantity of EOL products recovered from the demand market j.
Then, we have the following conservation of product flow:

qRj =
∑

p∈P 1R
j

z1p. (2.2)

Let μ denote the fraction of the product that can be remanufactured from one unit of
recovered EOL product. Therefore, we have:

∑

p∈P 1N
i

x1
p ≤ μ

∑

p∈P 1R
i

z1p. (2.3)

Let ρNj denote the sale price of products at demand market j, and the sale price
function is associated with the quantity of products at each demand market, and we assume
that ρNj = ρNj (qNj ). In the reverse supply chains, demand markets act as a source of EOL
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Figure 1: The closed-loop supply chain network prior to horizontal merger.

products. Increasing the recovery price, more consumers are persuaded to return products.
Let ρRj denote the recovery price of EOL products at demand market j, and the price function
is associated with the supply quantity of EOL products, that is, ρRj = ρRj (q

R
j ). Let σ denote the

ratio of EOL products recovered to total quantity sold at the demand market; we have

qRj ≤ σqNj . (2.4)

For any forward link a ∈ L1, we denote by h1
a, the remanufactured product flow on

link a. Let δap if the link a participates in forward path p, and δap = 0, otherwise. Hence, the
following conservation equation should be satisfied for the remanufactured product flow on
forward paths and on operation links:

h1
a =

∑

p∈P 1N

δapx
1
p. (2.5)

For any forward link b ∈ L1, we denote by h1
b the manufactured product flow on link

b. Let δbp = 1 if the link b participates in forward path p, and δbp = 0, otherwise. Hence, the
following conservation equation should be satisfied for the manufactured product flow on
forward paths and on operation links:

h1
b =

∑

p∈P 1N

δbpy
1
p. (2.6)
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Table 1: Notation for the closed-loop supply chain network prior to horizontal merger.

Notation Definition

L1N
i The set of all forward links for the Firm i, where i = 1,. . .,I

L1R
i The set of all reverse links for the Firm i, where i = 1,. . .,I
p A path of the network

P 1N
ij

The set of all forward paths connecting the first layer node i with demand market j, where i =
1,. . .,I, j = 1,. . .,J

P 1R
ij

The set of all reverse paths connecting the node iwith demand market j, where i = 1,. . .,I, j =
1,. . .,J

P 1N
j The set of all forward paths between all I nodes with demand market j, where j = 1,. . .,J

P 1R
j The set of all reverse paths between all I nodes with demand market j, where j = 1,. . .,J

P 1N
i The set of all forward paths between the node i with all demand markets, where i = 1,. . .,I

P 1R
i The set of all reverse paths between the node iwith all demand markets, where i = 1,. . .,I

P 1N The set of all forward paths
M1N The number of all forward paths
P 1R The set of all reverse paths
M1R The number of all reverse paths
x1
p The nonnegative remanufactured product flow on the path p (p ∈ P 1N)

x1 M1N-dimensional vector of all remanufactured product flows on the paths in p ∈ P 1N

y1
p The nonnegative manufactured product flow on the path p (p ∈ P 1N)

y1 M1N-dimensional vector of all manufactured product flows on the paths in p ∈ P 1N

z1p The nonnegative recovered EOL product flow on the path p (p ∈ P 1R)

z1 M1R-dimensional vector of all EOL product flows on the paths in p ∈ P 1R

X1 The set of all product flows, X1 ≡ (
x1, y1, z1

)

For any reverse link c ∈ L1, we denote by h1
c the product flow on link c. Let δcp = 1 if

the link c participates in forward path p, and δcp = 0, otherwise. Similarly, we have

h1
c =

∑

p∈P 1R

δcpz
1
p. (2.7)

We define the cost on each link in performing the corresponding task, and the cost
function is a generic cost function of its product flow, that is, ea = ea(h1

a), eb = eb(h1
b
), and

ec = ec(h1
c).

Therefore, the profit of Firm i is

TPi =
∑

j

⎛
⎜⎝ρNj

(
qNj

) ∑

p∈P 1N
ij

(
x1
p + y1

p

)
⎞
⎟⎠ −

∑

j

⎛
⎜⎝ρRj

(
qRj

) ∑

p∈P 1R
ij

z1p

⎞
⎟⎠

−
∑

a∈L1N
i

ea
(
h1
a

)
−

∑

b∈L1N
i

eb
(
h1
b

)
−

∑

c∈L1R
i

ec
(
h1
c

)
.

(2.8)

We assume that the above profit function is continuously differentiable and convex, all
firms compete in a noncooperativemanner, and each one is a profitmaximizer. The optimality
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conditions for all firms simultaneously, under the above assumptions, coincide with the
solution of the following variational inequality [19]: determine X1∗ = (x1∗, y1∗, z1∗) ∈ K1

satisfying

−
∑

i

⎛

⎝
∑

p∈P 1N
i

∂TPi

∂x1
p

×
(
x1
p − x1∗

p

)
+

∑

p∈P 1N
i

∂TPi

∂y1
p

×
(
y1
p − y1∗

p

)
+

∑

p∈P 1R
i

∂TPi

∂z1p
×
(
z1p − z1∗p

)
⎞

⎠ ≥ 0,

∀X1 ∈ K1 ≡
{(

x1, y1, z1
)
|
(
x1, y1, z1

)
∈ RN1

+ and (2.1) − (2.7) hold
}
,

(2.9)

where N1 = 2M1N + M1R. Upon using (2.1)−(2.7), variational inequality (2.9) may be re-
expressed as [20]: determine X1∗ = (x1∗, y1∗, z1∗, λ1∗1 , λ1∗2 ) ∈ R

N1+I+J
+ , such that

∑

i

∑

j

∑

p∈P 1N
ij

⎡
⎢⎣

∑

a∈L1N
i

∂ea
(∑

p∈P 1N δapx
1∗
p

)

∂h1
a

δap − ρNj

⎛
⎜⎝

∑

p∈P 1N
j

(
x1∗
p + y1∗

p

)
⎞
⎟⎠

−
∂ρNj

(∑
p∈P 1N

j

(
x1∗
p + y1∗

p

))

∂qNj

∑

p∈P 1N
ij

(
x1∗
p + y1∗

p

)
+ λ1∗1i − σλ1∗2j

⎤
⎥⎦ ×

[
x1
p − x1∗

p

]

+
∑

i

∑

j

∑

p∈P 1N
ij

⎡
⎢⎣

∑

b∈L1N
i

∂eb
(∑

p∈P 1N δbpy
1∗
p

)

∂h1
b

δbp − ρNj

⎛
⎜⎝

∑

p∈P 1N
j

(
x1∗
p + y1∗

p

)
⎞
⎟⎠

−
∂ρNj

(∑
p∈P 1N

j

(
x1∗
p + y1∗

p

))

∂qNj

∑

p∈P 1N
ij

(
x1∗
p + y1∗

p

)
− σλ1∗2j

⎤
⎥⎦ ×

[
y1
p − y1∗

p

]

+
∑

i

∑

j

∑

p∈P 1R
ij

⎡
⎢⎣

∑

c∈L1R
i

∂ec
(∑

p∈P 1N δcpz
1∗
p

)

∂h1
c

δcp + ρRj

⎛
⎜⎝

∑

p∈P 1R
j

z1∗p

⎞
⎟⎠

+
∂ρRj

(∑
p∈P 1R

j
z1∗p

)

∂qRj

∑

p∈P 1R
ij

z1∗p − μλ1∗1i + λ1∗2j

⎤
⎥⎦ ×

[
z1p − z1∗p

]

+
∑

i

⎡

⎣μ
∑

p∈P 1R
i

z1∗p −
∑

p∈P 1N
i

x1∗
p

⎤

⎦ ×
[
λ11i − λ1∗1i

]

+
∑

j

⎡
⎢⎣σ

∑

p∈P 1N
j

(
x1∗
p + y1∗

p

)
−

∑

p∈P 1R
j

z1∗p

⎤
⎥⎦ ×

[
λ12j − λ1∗2j

]
≥ 0,

∀X1 =
(
x1, y1, z1, λ11, λ

1
2

)
∈ R

N1+I+J
+ ,

(2.10)
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Figure 2: The closed-loop supply chain network after horizontal merger of partial firms.

where λ11 = (λ111 λ112 · · · λ11I)
T and λ12 = (λ121 λ122 · · · λ12J)

T are the vectors of Lagrange mul-
tipliers associated with constraints (2.3) and (2.4).

3. Postpartial Horizontal Merger Model

In this section, we consider the partial horizontal merger case, that is, K firms in I firms are
horizontal merged into a new Firm 1 andK + S − 1 = I, as depicted in Figure 2. The new firm
shares manufacturing/remanufacturing plants and distribution/recovery centers of original
K firms, that is, the manufactured/remanufactured products at any of these plants can be
distributed by any of these distribution centers, and the recovered EOL products at any of
these recovery centers can be transported to any of these plants. We denote the new network
by G2 = [N2, L2], whereN2 denotes the set of nodes and L2 denotes the set of operation links
in this network. The majority of the required notation for the network post horizontal merger
of partial firms is given in Table 2.

For any forward link a ∈ L2, we denote by h2
a the remanufactured product flow on link

a. For any forward link b ∈ L2, we denote by h2
b
the manufactured product flow on link b. For

any reverse link c ∈ L2, we denote by h2
c the EOL product flow on link c. The cost functions

are ea = ea(h2
a), eb = eb(h2

b
), and ec = ec(h2

c). Since we have assumed that each firm is a profit
maximizer, similarly, the optimization problem of Firm i can be expressed as follows.

Maximize

TPi =
∑

j

⎛
⎜⎝ρNj

(
qNj

) ∑

p∈P 2N
ij

(
x2
p + y2

p

)
⎞
⎟⎠ −

∑

j

⎛
⎜⎝ρRj

(
qRj

) ∑

p∈P 2R
ij

z2p

⎞
⎟⎠

−
∑

a∈L2N
i

ea
(
h2
a

)
−

∑

b∈L2N
i

eb
(
h2
b

)
−

∑

c∈L2R
i

ec
(
h2
c

)
.

(3.1)
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Table 2: Notation for the closed-loop supply chain network after horizontal merger of partial firms.

Notation Definition

L2N
i The set of all forward links for the Firm i, where i = 1, 2, . . . , S

L2R
i The set of all reverse links for the Firm i, where i = 1, 2, . . . , S

P 2N
ij

The set of all forward paths connecting the first layer node i (i = 1, 2, . . . , S) with demand
market j, where j = 1, 2, . . . , J

P 2R
ij

The set of all reverse paths connecting the demand market j with the first layer node i
(i = 1, 2, . . . , S)

P 2N
j The set of all forward paths between all S nodes with demand market j

P 2R
j The set of all reverse paths between all S nodes with demand market j

P 2N
i The set of all forward paths between the node i (i = 1, 2, . . . , S) with all demand markets

P 2R
i The set of all reverse paths between the node i (i = 1, 2, . . . , S) with all demand markets

P 2N The set of all forward paths
M2N The number of all forward paths
P 2R The set of all reverse paths
M2R The number of all reverse paths
x2
p The nonnegative remanufactured product flow on the path p (p ∈ P 2N)

x2 M2N-dimensional vector of all remanufactured product flows on the paths in p ∈ P 2N

y2
p The nonnegative manufactured product flow on the path p (p ∈ P 2N)

y2 M2N-dimensional vector of all manufactured product flows on the paths in p ∈ P 2N

z2p The nonnegative recovered EOL product flow on the path p (p ∈ P 2R)

z2 M2R-dimensional vector of all EOL product flows on the paths in p ∈ P 2R

X2 The set of all product flows, X2 ≡ (
x2, y2, z2

)

Subject to:

qNj =
∑

p∈P 2N
j

(
x2
p + y2

p

)
, ∀j, (3.2)

qRj =
∑

p∈P 2R
j

z2p, ∀j,
(3.3)

∑

p∈P 2N
i

x2
p ≤ μ

∑

p∈P 2R
i

z2p, (3.4)

qRj ≤ σqNj , ∀j, (3.5)

h2
a =

∑

p∈P 2N

δapx
2
p, a ∈ L2N

i , (3.6)

h2
b =

∑

p∈P 2N

δbpy
2
p, b ∈ L2N

i , (3.7)

h2
c =

∑

p∈P 2R

δcpz
2
p, c ∈ L2R

i , (3.8)

x2
p ≥ 0, y2

p ≥ 0, ∀p ∈ P 2N
i ; z2p ≥ 0, ∀p ∈ P 2R

i . (3.9)
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We assume that the above profit function is continuously differentiable and convex, S
firms compete in a noncooperativemanner, and each one is a profitmaximizer. The optimality
conditions for all firms simultaneously, under the above assumptions, coincide with the
solution of the following variational inequality: determine X2∗ = (x2∗, y2∗, z2∗, λ2∗1 , λ2∗2 ) ∈
R

N2+S+J
+ , such that

∑

i

∑

j

∑

p∈P 2N
ij

⎡
⎢⎣

∑

a∈L2N
i

∂ea
(∑

p∈P 2N δapx
2∗
p

)

∂h2
a

δap − ρNj

⎛
⎜⎝

∑

p∈P 2N
j

(
x2∗
p + y2∗

p

)
⎞
⎟⎠

−
∂ρNj

(∑
p∈P 2N

j

(
x2∗
p + y2∗

p

))

∂qNj

∑

p∈P 2N
ij

(
x2∗
p + y2∗

p

)
+ λ2∗1i − σλ2∗2j

⎤
⎥⎦ ×

[
x2
p − x2∗

p

]

+
∑

i

∑

j

∑

p∈P 2N
ij

⎡
⎢⎣

∑

b∈L2N
i

∂eb
(∑

p∈P 2N δbpy
2∗
p

)

∂h2
b

δbp − ρNj

⎛
⎜⎝

∑

p∈P 2N
j

(
x2∗
p + y2∗

p

)
⎞
⎟⎠

−
∂ρNj

(∑
p∈P 2N

j

(
x2∗
p + y2∗

p

))

∂qNj

∑

p∈P 2N
ij

(
x2∗
p + y2∗

p

)
− σλ2∗2j

⎤
⎥⎦ ×

[
y2
p − y2∗

p

]

+
∑

i

∑

j

∑

p∈P 2R
ij

⎡
⎢⎣

∑

c∈L2R
i

∂ec
(∑

p∈P 2N δcpz
2∗
p

)

∂h2
c

δcp + ρRj

⎛
⎜⎝

∑

p∈P 2R
j

z2∗p

⎞
⎟⎠

+
∂ρRj

(∑
p∈P 2R

j
z2∗p

)

∂qRj

∑

p∈P 2R
ij

z2∗p − μλ2∗1i + λ2∗2j

⎤
⎥⎦ ×

[
z2p − z2∗p

]

+
∑

i

⎡

⎣μ
∑

p∈P 2R
i

z2∗p −
∑

p∈P 2N
i

x2∗
p

⎤

⎦ ×
[
λ21i − λ2∗1i

]

+
∑

j

⎡
⎢⎣σ

∑

p∈P 2N
j

(
x2∗
p + y2∗

p

)
−

∑

p∈P 2R
j

z2∗p

⎤
⎥⎦ ×

[
λ22j − λ2∗2j

]
≥ 0,

∀X2 =
(
x2, y2, z2, λ21, λ

2
2

)
∈ R

N2+S+J
+ ,

(3.10)

where N2 = 2M2N +M2R, λ21 = (λ211 λ212 · · · λ21S)
T and λ12 = (λ121λ

1
22 · · ·λ12J)

T , are the vectors
of Lagrange multipliers associated with constraints (3.4) and (3.5).
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Figure 3: The integrated closed-loop supply chain network after complete horizontal merger of all the
firms.

4. Postcomplete Horizontal Merger Integration Model

In this section, we develop a postcomplete merger model in the closed-loop supply
chain network. I firms merge into a new firm, and the new one shares manufacturing/
remanufacturing plants and distribution/recovery centers of original I firms. The closed-
loop supply chain network prior to horizontal merger is integrated, as depicted in Figure 3.
There is the first layer Node 1 which represents the integration of all firms in terms of their
closed-loop supply chain network with additional operation links connecting Node 1 to the
nodes of original firms. Moreover, we add the additional operation links connecting the
manufacturing/remanufacturing plants of each firm with the distribution/recovery centers
of the other firms. We denote the new network by G3 = [N3, L3], where N3 ≡ N1 ∪ Node 1
and L3 ≡ L1 ∪ the additional operation links. The majority of the required notation for the
network after complete horizontal merger is given in Table 3.

For any forward link a ∈ L3, we denote by h3
a the remanufactured product flow on link

a. For any forward link b ∈ L3, we denote by h3
b the manufactured product flow on link b. For

any reverse link c ∈ L3, we denote by h3
c the product flow on link c. We define that the cost

functions are ea = ea(h3
a), eb = eb(h3

b), and ec = ec(h3
c).

Since all firms are merged into a firm, there is no longer competition. Hence, the profit
of the new firm can be expressed as follows.
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Table 3: Notation for the closed-loop supply chain network after complete horizontal merger.

Notation Definition
L3N The set of all forward links
L3R The set of all reverse links

P 3N
j

The set of forward paths between the first layer node 1 with the demand market j, where
j = 1, . . . , J

P 3R
j The set of reverse paths between the demand market jwith the first layer node 1

P 3N The set of all forward paths
M3N The number of all forward paths
P 3R The set of all reverse paths
M3R The number of all revere paths
x3
p The nonnegative remanufactured product flow on the path p (p ∈ P 3N)

x3 M3N-dimensional vector of all remanufactured product flows on the paths in p ∈ P 3N

y3
p The manufactured product flow on the path p (p ∈ P 3N)

y3 M3N-dimensional vector of all manufactured product flows on the paths in p ∈ P 3N

z3p The EOL product flow on the path p (p ∈ P 3R)
z3 M3R-dimensional vector of all EOL product flows on the paths in p ∈ P 3R

X3 The set of all product flows, X3 =
(
x3, y3, z3

)

Maximize

TP =
∑

j

⎛
⎜⎝ρNj

(
qNj

) ∑

p∈P 3N
j

(
x3
p + y3

p

)
⎞
⎟⎠ −

∑

j

⎛
⎜⎝ρRj

(
qRj

) ∑

p∈P 3R
j

z3p

⎞
⎟⎠

−
∑

a∈L3N

ea
(
h3
a

)
−

∑

b∈L3N

eb
(
h3
b

)
−

∑

c∈L3R

ec
(
h3
c

)
.

(4.1)

Subject to:

qNj =
∑

p∈P 3N
j

(
x3
p + y3

p

)
, ∀j, (4.2)

qRj =
∑

p∈P 3R
j

z3p, ∀j,
(4.3)

∑

p∈P 3N

x3
p ≤ μ

∑

p∈P 3R

z3p, (4.4)

qRj ≤ σqNj , ∀j, (4.5)

h3
a =

∑

p∈P 3N

δapx
3
p, a ∈ L3N, (4.6)

h3
b =

∑

p∈P 3N

δbpy
3
p, b ∈ L3N, (4.7)

h3
c =

∑

p∈P 3R

δcpz
3
p, c ∈ L3R, (4.8)

x3
p ≥ 0, y3

p ≥ 0, ∀p ∈ P 3N ; z3p ≥ 0, ∀p ∈ P 3R. (4.9)
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The objective of the model shown in (4.1) is to maximize the total profit of the firm
after complete merger. Constraint (4.2) represents that the quantity of manufactured and
remanufactured products shipped to demand market j is equal to the demand of the market.
Constraint (4.3) represents that the quantity of recovered EOL products from demandmarket
j is equal to the supply of them. Constraint (4.4) restricts that the quantity of remanufactured
products come from the EOL products. Constraint (4.5) represents that the quantity of
EOL products recovered must not exceed their supply at the demand market j. Constraint
(4.6) represents that conservation equation for the remanufactured product flow on forward
paths and on operation links. Constraint (4.7) represents that conservation equation for
the manufactured product flow on forward paths and on operation links. Constraint (4.8)
represents conservation equation for the EOL product flow on reverse paths and on operation
links. Constraint (4.9) represents the nonnegative restriction on product flows.

Similarly, we assume that the above profit function is continuously differentiable and
convex with respect to variable X3. The optimality conditions for the firm, under the above
assumptions, coincide with the solution of the following variational inequality: determine
X3∗ = (x3∗, y3∗, z3∗, λ3∗1 , λ3∗2 ) ∈ R

N3+J+1
+ satisfying

∑

j

∑

p∈P 3N
j

⎡
⎢⎣

∑

a∈L3N

∂ea
(∑

p∈P 3N δapx
3∗
p

)

∂h3
a

δap − ρNj

⎛
⎜⎝

∑

p∈P 3N
j

(
x3∗
p + y3∗

p

)
⎞
⎟⎠

−
∂ρNj

(∑
p∈P 3N

j

(
x3∗
p + y3∗

p

))

∂qNj

∑

p∈P 3N
j

(
x3∗
p + y3∗

p

)
+ λ3∗1 − σλ3∗2j

⎤
⎥⎦ ×

[
x3
p − x3∗

p

]

+
∑

j

∑

p∈P 3N
j

⎡
⎢⎣

∑

b∈L3N

∂eb
(∑

p∈P 3N δbpy
3∗
p

)

∂h3
b

δbp − ρNj

⎛
⎜⎝

∑

p∈P 3N
j

(
x3∗
p + y3∗

p

)
⎞
⎟⎠

−
∂ρNj

(∑
p∈P 3N

j

(
x3∗
p + y3∗

p

))

∂qNj

∑

p∈P 3N
j

(
x3∗
p + y3∗

p

)
− σλ3∗2j

⎤
⎥⎦ ×

[
y3
p − y3∗

p

]

+
∑

j

∑

p∈P 3R
j

⎡
⎢⎣

∑

c∈L3R

∂ec
(∑

p∈P 3R δcpz
3∗
p

)

∂h3
c

δcp + ρRj

⎛
⎜⎝

∑

p∈P 3R
j

z3∗p

⎞
⎟⎠

+
∂ρRj

(∑
p∈P 3R

j
z3∗p

)

∂qRj

∑

p∈P 3R
j

z3∗p − μλ3∗1 + λ3∗2j

⎤
⎥⎦ ×

[
z3p − z3∗p

]

+

⎡

⎣μ
∑

p∈P 3R

z3∗p −
∑

p∈P 3N

x3∗
p

⎤

⎦ ×
[
λ31 − λ3∗1

]

+
∑

j

⎡
⎢⎣σ

∑

p∈P 3N
j

(
x3∗
p + y3∗

p

)
−

∑

p∈P 3R
j

z3∗p

⎤
⎥⎦ ×

[
λ32j − λ3∗2j

]
≥ 0,

∀X3 =
(
x3, y3, z3, λ31, λ

3
2

)
∈ R

N3+J+1
+ ,

(4.10)
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whereN3 = 2M3N +M3R, λ21 and λ22 = (λ221λ
2
22 · · ·λ22J)

T are the vectors of Lagrange multipliers
associated with constraints (4.4) and (4.5).

5. Discussion and Numerical Analysis

In this section, four sets of numerical examples are tested and discussed on the proposed
models. The models are computed by using modified projection method [21] and
implemented in MATLAB. The convergence criterion used is that the absolute value of the
product flows between two successive iterations differed by no more than 10−5. The constant
step length within the modified projection method is set to 0.01. All solutions obtained satisfy
the optimality conditions with good accuracy.

Example Set 1. We consider that a closed-loop supply chain network prior to horizontal
merger consists of three firms, each with its manufacturing/remanufacturing plants, distri-
bution/recovery centers, and a demand market. Then, Firm 1 and Firm 2 merge into a new
firm. Finally, the three firms merge completely. The networks prior to merger, postpartial
merger and complete merger, are depicted in Figure 4.

The cost function on the links for the closed-loop supply chain network prior to
merger is as follow. The cost functions on the first layer links are ea(h1

a) = 1.5(h1
a)

2 + h1
a,

eb(h1
b) = 2(h1

b)
2 + 1.5h1

b, and ec(h1
c) = 0.2(h1

c)
2. The cost functions on the second layer links are

ea(h1
a) = 0.5(h1

a)
2 +h1

a, eb(h1
b
) = 0.5(h1

b
)2 +h1

b
, and ec(h1

c) = 0.3(h1
c)

2 + 0.5h1
c . The cost functions

on the third layer links are ea(h1
a) = 0.5(h1

a)
2, eb(h1

b
) = 0.5(h1

b
)2, and ec(h1

c) = 0.3(h1
c)

2. The

cost functions on the fourth layer links are ea(h1
a) = 0.1(h1

a)
2, eb(h1

b
) = 0.1(h1

b
), and ec(h1

c) =

0.1(h1
c)

2. The sale price function is ρN1 (qN1 ) = 160 − qN1 . The recovery price of EOL products at
demand market is ρR1 = 0.5qR1 .

When the first two firms merge, we set the cost on the new links connecting the first
layer Node 1 with the second layer Nodes 1 and 2, equal to zero, and the cost functions on
the new links connectingmanufacturing/remanufacturing plants with distribution/recovery
centers are identical to the cost functions on the links of the network prior to merger. When
all firms merge, we assume that the cost on the new links connecting the first layer Node 1
with the second layer Nodes 1, 2, and 3, equal to zero, the cost functions of other new links
are identical to the original functions.

Firstly, we set μ = 0.6 and σ = 0. There are three forward paths and three reverse paths
in the network prior to merger. The equilibrium results prior to merger can be obtained by
variational inequality (2.10), and x1

p = 0 for all p ∈ P 1N , y1
p = 15.44 for all p ∈ P 1N , z1p = 0

for all p ∈ P 1R. The revenue for each firm is 1755.30. The cost for each firm is 777.70, and
the profit for each firm is 977.64. There are five forward paths and five reverse paths in the
network after partial merger. The equilibrium results after partial merger can be obtained by
variational inequality (3.10), and x2

p = 0 for all p ∈ P 2N , z2p = 0 for all p ∈ P 2R. However,
y2
p for all p ∈ P 2N has changed, the manufactured product flow on each path p connecting

Firm 2 with the demand market is 15.64, and the product flows on the other paths are 7.31.
The revenue of the new Firm 1 is 3366.00, and the revenue of the new Firm 2 is 1800.40. The
cost of the new Firm 1 is 1292.20, and the cost of the new Firm 2 is 797.40. The profit of the
new Firm 1 is 2074.60, and the profit of the new Firm 2 is 1003.00. There are nine forward
paths and nine reverse paths in the network after complete merger. The equilibrium results
post complete merger can be obtained by variational inequality (4.10), and x3

p = 0.00 for all
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Figure 4: The networks prior to merger, postpartial merger, and complete merger.

p ∈ P 3N , y3
p = 4.55 for all p ∈ P 3N , z3p = 0.00 for all p ∈ P 3R. The total revenue is 4876.60. The

total cost is 1650.20. The total profit is 3226.30.
Secondly, we set μ = 0.6, σ = 0.2. The equilibrium results for the network prior to

merger are x1
p = 2.09 for all p ∈ P 1N , y1

p = 15.35 for all p ∈ P 1N , z1p = 3.49 for all p ∈ P 1R.
The revenue for each firm is 1878.00. The cost for each firm is 815.10. The profit for each
firm is 1062.90. The equilibrium results for the network post partial merger are obtained.
The remanufactured product flow on each forward path p connecting the new Firm 2 with
the demand market is 2.80, and the product flows on the other paths are 0.81, respectively.
The manufactured product flow on each forward path p connecting the new Firm 2 with the
demand market is 15.42, and the product flows on the other path are 7.18. The EOL product
flow on each reverse path p connecting the new Firm 2 with the demand market is 4.67, and
the product flows on the other paths are 1.34. The revenue of the new Firm 1 is 3509.30, and
the revenue of the new Firm 2 is 2001.60. The cost of the new Firm 1 is 1307.50, and the cost
of the new Firm 2 is 847.40. The profit of the new Firm 1 is 2201.80, and the profit of the new
Firm 2 is 1154.20. The equilibrium results for the network after complete merger are x3

p = 0.60
for all p ∈ P 3N , y3

p = 4.36 for all p ∈ P 3N and z3p = 0.99 for all p ∈ P 3R. The total revenue is
5149.20. The total cost is 1616.10. The total profit is 3533.10.

Finally, we set μ = 0.6, σ = 0.7. The equilibrium results for the network prior to
merger are x1

p = 5.25 for all p ∈ P 1N , y1
p = 13.38 for all p ∈ P 1N , z1p = 8.74 for all p ∈ P 1R.

The revenue for each firm is 1939.60. The cost for each firm is 858.59. The profit for each
firm is 1081.00. The equilibrium results for the network post partial merger are obtained. The
remanufactured product flow on each forward path p connecting the new Firm 2 with the
demand market is 5.61, and the product flows on the other paths are 2.18. The manufactured
product flow on each forward path p connecting the new Firm 2 with the demand market
is 13.74, and the product flows on the other paths are 6.22. The EOL product flow on each
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reverse path p connecting the new Firm 2 with the demand market is 9.34, and the product
flows on the other paths are 3.63. The revenue of the new Firm 1 is 3597.20, and the revenue
of the new Firm 2 is 2071.20. The cost of the new Firm 1 is 1311.40, and the cost of the new
Firm 2 is 907.40. The profit of the new Firm 1 is 2285.90, and the profit of the new Firm 2 is
1163.80. The equilibrium results for the network after complete merger are x3

p = 1.34 for all
p ∈ P 3N , y3

p = 3.85 for all p ∈ P 3N , and z3p = 2.24 for all p ∈ P 3R. The total revenue is 5296.00.
The total cost is 1638.60. The total profit is 3657.50.

The other equilibrium results including the demand quantity, the quantity of
recovered EOL products, the prices, the total revenues, the total costs, and the total profits for
the networks prior to merger, postpartial merger, and complete merger from three different
initial parameter setting are presented in Table 4.

It is important to note that, in each of parameter setting, all firms gained from the
partial merger. The merged Firm 1 has higher total profit than the sum of those two original
firms’ profits, and the unmerged Firm 2 (original Firm 3) obtains also more profit. It is also
worth noting that the total revenues and the total costs are lower in these partial merger
examples. Moreover, the new firm after complete merger obtains more profit than the sum
of those three original firms’ profits, also more than the sum of the two firms’ profits in
partial merger case. In addition, in every example for each parameter setting, the demand for
remanufactured and manufactured products, the quantity of recovered EOL products, and
the recovery price decrease slightly; however, the demand price at demand market increases.

Example Set 2. The second set of examples uses the same network and cost functions as in
Example Set 1 but assumes that different μ and σ are faced. We assume that μ increases from
0.1 to 0.5 and increases to 0.8. The ratio σ is set to 0.6.

When μ = 0.1, the revenue for each firm prior to merger is 1764.90, the cost for each
firm is 783.74, and the profit for each firm is 981.17. The revenue of the new Firm 1 after partial
merger is 3377.30, and the revenue of the new Firm 2 is 1814.70. The cost of the new Firm 1
after partial merger is 1295.60, and the cost of the new Firm 2 is 805.00. The profit of the new
Firm 1 after partial merger is 2081.80, and the profit of the new Firm 2 is 1009.70. The revenue
for the firm after complete merger is 4894.30, its cost is 1651.10, and its profit is 3243.30.

When μ = 0.5, the revenue for each firm prior to merger is 1906.80, the cost for each
firm is 850.09, and the profit for each firm is 1056.70. The revenue of the new Firm 1 after
partial merger is 3551.70, and the revenue of the new Firm 2 is 2023.20. The cost of the new
Firm 1 after partial merger is 1315.50, and the cost of the new Firm 2 is 893.50. The profit of
the new Firm 1 after partial merger is 2236.20, and the profit of the new Firm 2 is 1129.70.
The revenue for the firm after complete merger is 5195.10, its cost is 1630.90, and its profit is
3564.20.

When μ = 0.8, the revenue for each firm prior to merger is 1988.80, the cost for each
firm is 863.70, and the profit for each firm is 1125.00. The revenue of the new Firm 1 after
partial merger is 3670.40, and the revenue of the new Firm 2 is 2143.90. The cost of the new
Firm 1 post partial merger is 1294.40, and the cost of the new Firm 2 is 921.20. The profit of
the new Firm 1 postpartial merger is 2376.00, and the profit of the new Firm 2 is 1222.60.
The revenue for the firm after complete merger is 5412.00, its cost is 1588.30, and its profit is
3823.80.

The other equilibrium results including the demand quantity, the quantity of recov-
ered EOL products, the equilibrium prices, the total revenues, the total costs, and the total
profits for the networks prior to merger, postpartial merger, and complete merger from three
different initial parameter settings are presented in Table 5.
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Due to the increased μ, all firms choose to recover more products. As a result, market
share increases, and the total profits for the networks prior to merger, postpartial merger, and
postcomplete merger are increased.

Example Set 3. The example uses the same network and cost functions as in Example Set 1,
μ = 0.5, σ = 0.6, but assumes that the cost functions of the new links connecting the first layer
Node 1 with the second layer Nodes 1 and 2 are ea(h2

a) = gh2
a, eb(h

2
b
) = gh2

b
, ec(h2

c) = gh2
c ,

which can be regarded as the cost of horizontal merger including direct costs and indirect
costs associated with merger. In order to analyze what impact the costs of horizontal merger
will have on profits of the new Firm 1 and Firm 2 after partial merger, it is feasible to vary
the parameter g from 0 to 10, then to 20, and so on, which means different from the cost of
horizontal merger. The results from different parameter settings are presented in Figure 5.
We find that the parameter is set to 140 then the profit of the new Firm 1 after partial merger
is zero and it makes no economic sense for such a merger, but the profit of the new Firm 2
reach the maximum 1905.20. With further experimentation, note that the parameter is equal
to 2, then the profit of the new Firm 1 after partial merger is 2138.90 that is greater than the
sum of the profits for the Firm 1 and Firm 2 prior to merger (cf. Example Set 2). Thus, the
parameter is equal to or smaller than 2 then, the merged firms can obtain gain from such a
merger. However, after the parameter is set to 3, the profit of the new Firm 1 after partial
merger is 2091.70, which is smaller than the sum of the profits for the Firm 1 and Firm 2 prior
to merger (cf. Example Set 2). Therefore, the parameter is equal to or greater than 3, then the
merged firms cannot obtain profit growth from such a merger.

Example Set 4. The example uses the same network and cost functions as in Example Set 1,
μ = 0.8, σ = 0.6, but assumes that the cost functions of the new links connecting the first layer
Node 0 with the second lager Nodes 1, 2, and 3 are ea(h2

a) = gh2
a, eb(h

2
b) = gh2

b, ec(h
2
c) = gh2

c .
Further, we analyze what impact the costs of horizontal merger will have on profits of the
new firm after complete merger. Similarly, we vary the parameter g from 0 to 10, then to 20,
and so on. The results from different parameter settings are presented in Figure 6. We find
that the parameter is set to 160 then the profit of the new firm after complete merger is zero
and the merger has no economic sense. Further, after the parameter is set to 6, the profit of the
new firm after complete merger is 3429.10, which is still greater than the sum of the profits for
all firms prior to merger (cf. Example Set 2). Thus, the parameter is equal to or smaller than
6, then, the merged firms can obtain gain from such a complete merger. However, after the
parameter is set to 7, the profit of the new firm is 3366.60, which is smaller than the sum of
the profits for all firms prior to merger (cf. Example Set 2). Therefore, the parameter is equal
to or greater than 7, then the merged firms cannot obtain profit growth from this complete
merger.

6. Conclusion

This paper has studied the closed-loop supply chain network including a number of
firms in the same industry. The network is represented by forward and reverse operation
links including manufacturing/remanufacturing links, treatment links for EOL products,
transportation links, and storage links. The economical models for the networks prior to
merger, postpartial merger, and complete merger are developed. The research work has
presented the variational inequality formulations of these models, whose solutions yield
the production quantity of new products and remanufactured products, the product flows
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Figure 6: The profit of the Firm 1 after complete merger from different parameter settings.

for new products, remanufactured products and EOL products at every path, the demand
quantity, the quantity of recovered EOL products, and the equilibrium prices. The modified
projection method is applied for all numerical examples tested.

In addition, this paper can be extended in several directions, such as more merger
forms and the models for multiproduct closed-loop supply chain network.
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