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The shallow water model is one of the important models in dynamical systems. This paper
investigates the adaptive chaos control and synchronization of the shallow water model. First,
adaptive control laws are designed to stabilize the shallow water model. Then adaptive control
laws are derived to chaos synchronization of the shallow water model. The sufficient conditions
for the adaptive control and synchronization have been analyzed theoretically, and the results are
proved using a Barbalat’s Lemma.

1. Introduction

A dynamical system is a system that changes over time. Chaotic systems are dynamical
systems that are highly sensitive to initial conditions. Chaos phenomena in weather models
were first observed by Lorenz equation; a large number of chaos phenomena and chaos
behavior have been discovered in physical, social, economical, biological, and electrical
systems.

Atmosphere is a dynamical system. An atmospheric model is a set of equations that
describes behavior of the atmosphere. The shallow water model is simple model for the
atmosphere. Shallow water model is the set of the equations of motion that describes the
evolution of a horizontal structure, hydrostatic homogeneous, and incompressible flow on
the sphere [1].

The control of chaotic systems is to design state feedback control laws that stabilize
the chaotic systems. Control theory is an interdisciplinary branch of engineering and
mathematics that deals with the behavior of dynamical systems. The usual objective of control
theory is to calculate solutions for the proper corrective action from the controller that result
in system stability.



2 Mathematical Problems in Engineering

Synchronization of chaotic systems is phenomena that may occur when two or more
chaotic oscillators are coupled or when a chaotic oscillator drives another chaotic oscillator,
because of the butterfly effect, which causes the exponential divergence of the trajectories of
two identical chaotic systems started with nearby the same initial conditions. Synchronizing
two chaotic systems is seemingly a very challenging problem in chaos literature [2-6].

In 1990, Pecora and Caroll [7] introduced a method to synchronize two identical
chaotic systems and showed that it was possible for some chaotic systems to be completely
synchronized. From then on, chaos synchronization has been widely explored in variety of
fields including physical system [8], chemical systems [9], ecological systems [10], secure
communications [11, 12], and so forth.

In most of the chaos synchronization approaches, the drive-response formalism has
been used. If a particular chaotic system is called the drive system and another chaotic system
is called the response system, then the idea of synchronization is to use the output of the
drive system to control the response system so that the output of the response system tracks
the output of drive system asymptotically stable.

This paper is organized as follows. Section 2 gives notations and definitions of the
stability in the chaotic system. Section 3 presents the adaptive control chaos of the shallow
water model. Section 4 presents adaptive synchronization of the shallow water model. The
conclusion discussion is in Section 5.

2. Notations and Definitions

X denotes an infinite dimensional Banach Space with the corresponding norm || |, R denotes
the real line.

Consider a nonlinear nonautonomous differential equation of the general form

X(t) = f(t,x(t)), txtoeR,
2.1)
x(to) = xo,

where the state x(t) take values in X, f(t,x) : Rx X — X is a given nonlinear function and
f(t,0) =0, for all t € R. The stability conditions were proposed and presented in [13].

Definition 2.1. The zero solution of (2.1) is said to be stable if for every ¢ > 0,fy € R, there
exists a number 6 > 0 (depending upon ¢ and ty) such that for any solution x(t) of (2.1) with
[xo| < & implies |x(t)| < €, for all ¢ > to.

Definition 2.2. The zero solution of (2.1) is said to be asymptotically stable if it is stable and
there is a number 6 > 0 such that any solution x(t) with ||xo| < 6 satisfies lim;_, o |x(¢)| = 0.

Consider the control system

x(t) = f(t, x(t),u(t)), t>0, (2.2)

where u(t) is the external control input. The adaptive control is the control method to design
state feedback control laws that stabilize the chaotic systems.
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Definition 2.3. The control system (2.2) is stabilizable if there exists feedback control u(t) =
k(x(t)) such that the system

x(t) = f(tx(), k(x(t))), >0, (2.3)

is asymptotically stable.
Consider two nonlinear systems

x = f(tx(t)), (2.4)
y=g(t,y(t)) +ult,x(t),y(t)), (25)

where x,y € R, f,g € C'[RxR, R], ue C'[RxR xR, R], r >1, Ris the set of nonnegative
real number. Assume that (2.4) is the drive system, (2.5) is the response system, and
u(t,x(t),y(t)) is the control vector.

Definition 2.4. Response system and drive system are said to be synchronic if for any initial
conditions x(tp), y(to) € R, lim;_, o |x(t) —y(t)| =0.

Lemma 2.5 (Barbalat’s lemma as used in stability). For nonautonomous system,
x(t) = f(£,x(t)) (2.6)

If there exists a scalar function V (x,t) such that

(1) V has a lower bound,
(2) V<o,
(3) V(x,t) is uniformly continuous in time,

then limy , oV (x,t) = 0 by applying the Barbalat's Lemma to stabilize the chaotic systems.

3. Adaptive Control Chaos of the Shallow Water Model

A chaotic system has complex dynamical behaviors; those posses some special features, such
as being extremely sensitive to tiny variations of initial conditions. In this section, adaptive
control method is applied to control chaos shallow water model.

Shallow water model is the set of the equations of motion that describes the evolution
of a horizontal structure, hydrostatic homogeneous, and incompressible flow on the sphere.
Euler’s equations of motion of an ideal fluid are as follows:

Du 10p

Dt~ pax T

Dv 1op

E = —f—)@ - Tu, (31)
Dw 10p
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where p is the density of the fluid, p is the pressure, g is the gravity, and f is coliolis parameter.
Using the hydrostatic approximation,

op
= —pg. 3.2
0z P (32)

This implies Dw/Dt = 0. Assume the pressure p of fluid is constant, this implies that 9p/0t = 0
and consider the continuity equation (or the incompressibility condition),

ou O0v Ow _

a+@+¥—0. (33)

By solving for 0w/0z and integrating with respect to z, then w can be expressed as

2z~ \ox T3y

h (ou ov ou ov
w—\/o —(a‘i‘@)dz——h(a‘f'@).

The surface (of the fluid) boundary condition on w is that the fluid particles follow the
surface (i.e., Dh/Dt = w| ). Thus

ow __(E)u E)U)

(3.4)

surface

Dh h(au av)' (3.5)

Dt~ \ox oy

To get an expression for the pressure in the fluid, integrate the hydrostatic equation (3.2) from
p = 0 at the top downward,

p(x,y,z) = fh "—gpdz = (h-2)pg. (3.6)

Take the partial derivatives of p (at the surface) with respect to x and v,

o _ 0 O 1ap_ on
6x_8x((h_z)pg)_pgax:> pox Sox’

(3.7)
op 0 oh 10p  oh
- =5 ((h-2)pg) =pg-— — ——=—=-8=—.
oy oy P8I =P8y poy Sy
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Taking (3.2)-(3.7) into (3.1), so the shallow water model in Cartesian coordinates is as
follows:

Dt = $ox ’
Dv  Oh
Di - S5y - fu, (3.8)

Dw [au o0v

or - e oy

In the vector form, the shallow water model is as follows:

V=—fkxV-vd,

(3.9)
& =-0vV,
where V=11 + U? is the horizontal velocity, @ = gh is the geopotential height.
Consider the controlled system of (3.9) which has the form
V= —kaV—VCD+u1,
(3.10)

o= -OVV +uy,

where 11,1, is external control input which will drag the chaotic trajectory (V,®) of the
shallow water model to equilibrium point E = (V, ®) which is one of two steady states E, E;.
In this case the control law is

u=-g(V-V), up=-k(®-0), (3.11)

*

where k,g (estimate of k*, ¢*, resp.) are updated according to the following adaptive

algorithm:
. —\2
§=n(V-V),
(3.12)
k=p(®-®),
where y, p is adaption gains. Then the controlled systems have the following form:
Ve fkxV-vD-g(V-V), (3.13)
O = -OVV - k(®-D). (3.14)

Theorem 3.1. For g < ¢*, k < k*, the equilibrium point E = (V, ®) of the system (3.13), (3.14) is
asymptotically stable.
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Proof. Let us consider the Lyapunov function
1 —\2 —2 1 2 1 en2
V(i ¢ 8) =5 (V-V) +(o-0) +;(3—3 ) +;(k—k )| (3.15)
The time derivative of V is
: — .1 1 e
V:(V—V)V+(CD—CD)CD+;(g—g )g+f—)(k—k )k. (3.16)

By substituting (3.13)-(3.14) in (3.16),

V=(V-V)[-fkxV-vD-g(V-V)]+ (®-D)[-OVV - k(D - D)]
1 1 ., (3.17)
# (g =gV =V) (k=K )p(@- D)

Let ;1 = (V-V), m» = (® - @). Since (V, @) is an equilibrium point of the uncontrolled
system (3.9), V becomes

V=m[-fkxV-vO-g(V-V)]+n[-OVV -k(®-D)] + (g-¢)+ (k—k")np

= (~fkx V) - V1 — gni - ®VVi -k + (g - )t + (k= kK*)1p5.
(3.18)

It is clear that if we choose g < ¢* and k < k*, then V is negative semidefinite. Since V is
positive definite and V is negative semidefinite, 71,72, ¢, k € Loo. From V(t) <0, we can easily
show that the square of 71, 75 is integrable with respect to ¢, namely, 71, 72 € L. From (3.13)-
(3.14), for any initial conditions, we have #j, #j» € L. By the well-known Barbalat’s Lemma,
we conclude that 71, 7o - (0, 0) as t - oo. Therefore, the equilibrium point E = (V,@) of the
system (3.13)-(3.14) is asymptotically stable. O

4. Adaptive Synchronization of the Shallow Water Model

In this section, the adaptive synchronization is introduced to make two of the shallow water
model. The sufficient condition for the synchronization has been analyzed theoretically, and
the result is proved using a Barbalat’s Lemma. Assume that there are two shallow water
models such that the drive system is to control the response system. The drive and response
system are given as

V= —f1k1 x Vi - vy,

@ = -®d,;vV;,

' (4.1)
V= —fzkz x Vo = VD, —uy,

D=-D,VVo -
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where u = [uy, uz]T is the controller. We choose

u = k{ev,
(4.2)
Up = kéeq,,
where ki, k} >0 and ey, e are the error states which are defined as follows
ey =V, -V,
(4.3)
ep = CDZ - CDl.

Theorem 4.1. Let ki, f1, ki, kj >0 be property chosen so that the following matrix inequalities holds:

kifi+k; 0
po(ffitR ) (4.4)
0 Kk

then the two shallow water models (4.1) can be synchronized under the adaptive control (4.2).

Proof. It is easy to see from (4.1) that the error system is

ev = —foky x Vo = VD, + frky x Vi + VD — 1y,

(4.5)
ep = - DovVo + O1VVy — 1.
Let exr = ko f2 — k1 f1. Choose the Lyapunov function as follows:
1ry 5
V(t) = E[e‘, +ep)- (4.6)

Then the differentiation of V along trajectories of (4.6) is

V(t) = evey + epeo
=ev[-foko x Vo = VD, + fiki x Vi + VD1 — 11| + ea[-DoVVo + D1VV] — 1]
= —ey[foko x Vo + VD, — f1k1 x V1 = VD1 + 1] — ea[D2VV2 — D1V V] + 1z ]
= —ey|foka x Vo = fik1 x Vi + fiki x Vo = fiki x Vo] — ey [ VD, — VO ]
—evul —ep[DVVy - D1VV + D1V V- D1V V)] - equs
= —ev[ekf x Vo + fiki(Va - Vl)] —eyV(D, - D) —evkiey

— (:'cp[(CDZ —(Dl)VVZ +(D1V(V2 - Vl)] - (:'cpkéecp
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= —ev[ekf xV, +f1klev] —eyVep — e%,k{ —epleaVVa+ D Vey]| - eczpké
=—evers x Vo + fi kie — eyVeo — evk| — e3VV, — ea® Vey — ex k)
< —fikiel - evk) - ebk)
< —(fiki + k})ey - kheg

= —eTPe,

(4.7)

where P is as in (4.4). Since V(t) is positive definite and V(t) is negative semidefinite,
it follows that ey, eo, k1, f1,ki,k} € Lo. From V(t) < -e'Pe, we can easily show that the
square of ey, eq is integrable with respect to ¢, namely, ey, ep € L,. From (4.5), for any initial
conditions, we have éy (), ép(t) € L. By the well-known Barbalat’s Lemma, we conclude that
(ev,ew) — (0,0) ast — oo. Therefore, in the closed-loop system, Vo(t) — Vi(t), ®x(t) —
@;(t) ast — oo. This implies that the two shallow water models have synchronized under
the adaptive controls (4.2). O

5. Conclusions

In this paper, we applied adaptive control theory for the chaos control and synchronization
of the shallow water model. First, we designed adaptive control laws to stabilize the
shallow water model based on the adaptive control theory and stability theory. Then, we
derived adaptive synchronization to the shallow water model. The sufficient conditions for
the adaptive control and synchronization of the shallow water model have been analyzed
theoretically, and the results are proved using a Barbalat’s Lemma.
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