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Some recent advances on the filtering and control problems for nonlinear stochastic complex sys-
tems with incomplete information are surveyed. The incomplete information under consideration
mainly includes missing measurements, randomly varying sensor delays, signal quantization,
sensor saturations, and signal sampling. With such incomplete information, the developments
on various filtering and control issues are reviewed in great detail. In particular, the addressed
nonlinear stochastic complex systems are so comprehensive that they include conventional
nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor
networks. The corresponding filtering and control technologies for such nonlinear stochastic
complex systems are then discussed. Subsequently, some latest results on the filtering and control
problems for the complex systems with incomplete information are given. Finally, conclusions are
drawn and several possible future research directions are pointed out.

1. Introduction

Filtering and control problems have long been a fascinating focus of research attracting
constant attention from a variety of engineering areas. In recent years, with the rapid
development of the network technology, the study of networked control systems (NCSs) has
gradually become an active research area due to the advantages of using networked media in
many aspects such as low cost, reduced weight and power requirements, simple installation
and maintenance, as well as high reliability. It is well known that the devices in networks are
mutually connected via communication cables which are of limited capacity. Therefore, some
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new network-induced phenomena have inevitably emerged in the areas of signal processing
and control engineering. These phenomena include, but are not limited to, network-induced
time delay, data missing (also called packet dropout or missing measurement), quantization,
saturation, and channel fading. Note that these phenomena could drastically deteriorate the
performance of the networked filtering or control systems and, as such, the aim of this
paper is to deal with the filtering and control problems for nonlinear stochastic complex
systems with aforementioned network-induced phenomena. In this paper, the information
with respect to the network-induced phenomena is customarily referred to as the incomplete
information.

Nowadays, practical engineering systems typically exhibit a great deal of complexity
which poses significant challenges for the analysis and synthesis of such systems. Among
others, the nonlinearity and stochasticity serve as two of the main sources in reality that
have resulted in considerable system complexity and have received recurring research
attention. Moreover, due to the unavoidable modeling errors and coupled dynamics, some
new interesting phenomena (such as parameter uncertainties and coupling between control
nodes) should be taken into account to achieve the desired performance. The complexity
sources mentioned above give rise to the urgent necessity for developing new filtering
and control technologies for various kinds of complex systems in order to meet the needs
of practical engineering. It is not surprising that, in the past few years, the control and
filtering problems for complex systems with incomplete information have been extensively
investigated by many researchers.

In this paper, we focus mainly on the filtering and control problem for complex
systems with incomplete information and aim to give a survey on some recent advances in
this area. The incomplete information under consideration includes missing measurements,
randomly varying sensor delays, signal quantization, sensor saturations, and signal sam-
pling. The modeling issues are first discussed to reflect the real complexity of the nonlinear
stochastic systems. Based on the models established, various filtering and control problems
with incomplete information are reviewed in detail. Then, we deal with the complex systems
from three aspects, that is, nonlinear stochastic systems, complex networks, and sensor
networks. Both theories and techniques for dealing with complex systems are reviewed
and, at the same time, some challenging issues for future research are raised. Subsequently,
the filtering problems for the stochastic nonlinear complex networks with incomplete
information are paid particular attention by summarizing the latest results. Finally, some
conclusions are drawn and several possible related research directions are pointed out.

The remainder of this paper is organized as follows. In Section 2, the motivation for
addressing the incomplete information is discussed. Section 3 reviews the developments
of filtering and control issues for three kinds of complex systems. Section 4 gives latest
results on filtering problems for the stochastic nonlinear complex networks with incomplete
information. The conclusions and future work are given in Section 5.

2. Incomplete Information

Recently, the signal transmission via networked systems has become prevalent and, ac-
cordingly, network-induced issues have drawn considerable research interests. These
issues mainly include missing measurements (also called packet dropouts), randomly
varying sensor delays, signal quantization, sensor saturations, and signal sampling whose
mathematical models are listed in Table 1, where vk is the external disturbance while wk

represents both the exogenous random inputs and parameter uncertainty of the system. Let
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Table 1:Mathematical models of incomplete information.

Types Mathematical models

Missing measurements xk+1 = f(xk) + E1vk + g(xk)wk, yk = γkh(xk) + E2vk, where γk is a
stochastic variable taking value on 1 or 0.

Randomly varying sensor
delays

xk+1 = f(xk) + E1vk + g(xk)wk ,
yk = γkh(xk) + (1 − γk)h(xk−1) + E2vk , where γk is a stochastic
variable taking value on 1 or 0.

Signal quantization xk+1 = f(xk) + E1vk + g(xk)wk, yk = q(h(xk)) + E2vk , where q(·)
is a quantization function.

Sensor saturations xk+1 = f(xk) + E1vk + g(xk)wk, yk = Sat(h(xk)) + E2vk , where
Sat(·) is a saturation function.

Signal sampling ẋt = f(xt) + E1vt + g(xt)wt, yt = h(xtk ) + E2vtk , tk ≤ t < tk+1.

us now discuss the network-induced issues one by one as follows in order to motivate the
research problem to be investigated.

2.1. Missing Measurements

It is quite common in practice that the measurement output of a discrete-time stochastic
system is not consecutive but contains missing observations due to a variety of causes such as
sensor temporal failure and network-induced packet loss, see, for example, [1–3]. Therefore,
it is not surprising that the filtering problem for systems with missing measurements has
recently attracted much attention. For example, a binary switching sequence has been used
in [4–6], which can be viewed as a Bernoulli distributed white sequence taking values of 0
and 1, to model the measurement missing phenomena. A Markovian jumping process has
been employed in [7] to reflect the measurement missing problem. In [8, 9], the data missing
(dropout) rate has been converted into the signal transmission delay that has both the upper
and lower bounds. In [10], a model of multiple missing measurements has been presented by
using a diagonal matrix to account for the differentmissing probability for individual sensors.
By introducing a certain set of indicator functions, the packet dropouts and random sensor
delays have been modeled in a unified way in [11]. The optimal H2 filtering problem for
linear systems with multiple packet dropouts has been studied in [12], whereas the optimal
H∞ filtering problem has been dealt with in [13] for the same systems. Moreover, the optimal
filter design problem has been tackled in [14] for systems with multiple packet dropouts by
solving a recursive difference equation (RDE).

2.2. Randomly Varying Sensor Delays

In practical applications such as engineering, biological, and economic systems, themeasured
output may be delayed. Therefore, the problem of filtering with delayed measurements has
been attracting considerable research interests, see [7, 15, 16], for some recent publications,
where the time-delay in the measurement is customarily assumed to be deterministic.
However, it is quite common in practice that the time-delays occur in a random way,
rather than a deterministic way, for a number of engineering applications such as real-time
distributed decision-making and multiplexed data communication networks. Hence, there
is a great need to develop new filtering approaches for the systems with randomly varying
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delayedmeasurements, and some efforts have beenmade in this regard so far. For example, in
[17], a linear unbiased state estimation problem has been examined for discrete-time systems
with random sensor delays over both finite- and infinite-horizons where the full and reduced-
order filters have been designed to achieve specific estimation error covariances. These
results have been extended in [18] to the case where parameter uncertainties are taken into
account. A robust suboptimal filter design problem has been considered for uncertain discrete
time-varying systems with randomly varying sensor delay in [19], where some sufficient
conditions have been developed for the filter design such that the upper-bound of the state
estimation error variance is minimized. Very recently, in [20], a linear matrix inequality (LMI)
approach [21] has been developed to discuss the infinite-horizon H∞ filtering problem for
linear discrete-time systems with randomly varying sensor delays.

2.3. Signal Quantization

The signal quantization is considered as another source that has significant impact on the
achievable performance of the networked systems and, therefore, it is necessary to conduct
analysis on the quantizers and understand how much effect the quantization makes on
the overall networked systems. In fact, the problem of quantized control for nonnetworked
systems has been reported as early as in 1990 [22]. So far, a great number of results have
been available in the literature, see for example, [22–27]. In [23], the feedback stabilization
problems have been considered for linear time-invariant control systems with saturating
quantized measurements. In [27], some general types of quantizers have been developed
to solve the problem of feedback stabilization for general nonlinear systems. Recently, a
new type of quantizer (called logarithmic quantizer) has attracted considerable research
interest. Such a quantizer has proven to be the coarsest one in the problem of quadratic
stabilization for discrete-time single-input-single-output linear time-invariant systems using
quantized feedback under the assumption that the quantizer is static and time-invariant
[25]. Based on that, a number of quantized feedback design problems have been studied
in [26] for linear systems, where the major contribution of [26] lies in that many quantized
feedback design problems have been found to be equivalent to the well-known robust
control problems with sector-bounded uncertainties. Later, the elegant results obtained in
[25] have been generalized to the multiple-input-multiple-output systems and to control
design with performance constraints. Inspiringly, in recent years, there have appeared some
new results on NCSs with the consideration of signal quantization effects. In [28], the
network-based guaranteed cost problem has been dealt with for linear systems with state
and input quantization by using the method of sector bound uncertainties. Moreover, in [29],
the problem of quantized state feedbackH∞ stabilization has been addressed for linear time-
invariant systems over data networks with limited network quality-of-service. Following
that, the problem of output feedback control for NCSs with limited communication capacity
has been investigated in [30], where the packet losses and quantization effects are taken into
account simultaneously.

2.4. Sensor Saturations

In reality, the obstacles in delivering the high performance promises of traditional filter
theories are often due to the physical limitations of system components, of which the most
commonly encountered one stems from the saturation that occurs in any actuators, sensors,
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or certain system components. Saturation brings in nonlinear characteristics that can severely
restrict the amount of deployable filter scheme. Such a characteristic not only limits the
filtering performance that can otherwise be achieved without saturation, it may also lead to
undesirable oscillatory behavior or, even worse, instability. Therefore, the control problems
for systems under actuator/sensor saturations have attracted considerable research interests
(see e.g., [31–37]), and the related filtering problem has also gained some scattered research
attention [38, 39].

It should be pointed out that, in almost all the relevant literature, the saturation is
implicitly assumed to occur already. However, in networked environments such as wireless
sensor networks, the sensor saturation itself may be subject to random abrupt changes, for
example, random sensor failures leading to intermittent saturation, sensor aging resulting in
changeable saturation level, repairs of partial components, changes in the interconnections of
subsystems, sudden environment changes, modification of the operating point of a linearized
model of a nonlinear systems, and so forth. In other words, the sensor saturations may occur
in a probabilistic way and are randomly changeable in terms of their types and/or intensity.
Such a phenomenon of sensor saturation, namely, randomly occurring sensor saturation
(ROSS), has been largely overlooked in the area.

2.5. Signal Sampling

With the rapid development of high-speed computers, modern control systems tend to be
controlled by digital controllers, that is, only the samples of the control input signals at
discrete time instants will be employed. The traditional approach is to use periodic sampling
technique to obtain a discrete-time system for modeling the real plant. However, such a
discrete-time model might not capture the intersample behavior of the real system, especially
for the case when the sampling period is time-varying. On this account, considerable research
efforts have been made on various aspects of sampled-data systems. For example, the H2

optimal and H∞ suboptimal control problems for sampled-data systems have been studied
in [40, 41] and [42, 43], respectively. As for the sampled-data filtering problem, let us
mention some representative work here. In [44], the robust H∞ filtering problem has been
investigated for a class of systems with parametric uncertainties and unknown time delays
under sampledmeasurements. The nonlinearH∞ filtering problem for sampled-data systems
has been considered in [45], where a set of certain continuous and discrete Hamilton-Jacobi
equations has been established for the existence of the desired filter. In [46], the performance
criterion in terms of the estimation error covariance has been proposed and the corresponding
sampled-data filtering problem has been solved. It is worth pointing out that, in [47, 48],
a new approach to dealing with the sampled-data control problems has been proposed
by converting the sampling period into a time-varying but bounded delay, and then the
sampled-data H∞ control problem has been investigated by recurring to the H∞ control
theory for the time-delay systems. Based on this method, the sampled-data H∞ control and
filtering problems have been thoroughly investigated in [49] and [50], respectively, where
the stochastic sampling has been taken into account.

3. Complex Systems

In this section, we take a look at the theories and technologies for handling the filtering and
control problems for the complex systems including nonlinear stochastic systems, complex
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networks, and sensor networks. Afterwards, we point out some challenging issues to be
studied.

3.1. Nonlinear Stochastic Systems

The nonlinearity and stochasticity are arguably two of the main resources in reality that have
resulted in considerable system complexity [40]. In the past few years, nonlinearH∞ filtering
and H∞ control have been an active branch within the general research area of nonlinear
control problems, and a great deal of results have been available in the literature. For theH∞
control problems, we refer the readers to [51–54] and the references therein. With respect to
the H∞ filtering problems, we mention some representative work as follows. In [16], the
H∞ filtering problem has been investigated for a class of uncertain stochastic time-delay
systems with sector-bounded nonlinearities. The H∞ reduced-order approximation of two-
dimensional digital filters has been considered in [55], while [56] has designed a full-order
H∞ filter for 2DMarkovian jump systems. In [45], a nonlinearH∞ filtering problem has been
studied for sampled-data systems. In [57, 58], the H∞ filtering problem has been considered
for systems with constant and time-varying delay, respectively. It should be pointed out that,
in all the papers mentioned above, the nonlinearities have been assumed to be bounded by a
linearity-like form (e.g., Lipschitz and sector conditions), and the filters have been designed
by solving a set of LMIs.With respect to general stochastic systems, the nonlinearH∞ filtering
problem has been considered for discrete-time systems in [59], and a great effort has been
paid in [60] to investigate the H∞ filtering problem for continuous stochastic systems with a
very general form.

3.2. Complex Networks

Complex networks are made up of interconnected nodes and are used to describe various
systems of real world. Many real world systems can be described by complex networks,
such as the World Wide Web, telephone call graphs, neural networks, scientific citation
web, and so forth. Since the discoveries of the “small-world” and “scale-free” properties of
complex networks [61, 62], complex networks become a focus point of research which has
attracted increasing attention from various fields of science and engineering. In particular,
special attention has been paid to the synchronization problem for dynamical complex
networks, in which each node is regarded as a dynamical element [63–65]. It has been shown
that the synchronization is ubiquitous in many system models of the natural world, for
example, the large-scale and complex networks of chaotic oscillators [66–73], the coupled
systems exhibiting spatiotemporal chaos and autowaves [74], and the array of coupled neural
networks [75–84].

Recently, the synchronization problem for discrete-time stochastic complex networks
has drawnmuch research attention since it is rather challenging to understand the interaction
topology of complex networks because of the discrete and random nature of network
topology [85]. On one hand, discrete-time networks could be more suitable to model digitally
transmitted signals in many application areas such as image processing, time series analysis,
quadratic optimization problems, and system identification. On the other hand, the stochastic
disturbances over a real complex network may result from the release of probabilistic causes
such as neurotransmitters [86], random phase-coupled oscillators [87], and packet dropouts
[88]. A great number of results have been available in the recent literature on the general topic
of stochastic synchronization problem for discrete-time complex networks. For example,
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in [89], the synchronization stability problem has been studied for a class of complex dy-
namical networks with Markovian jumping parameters and mixed time delays.

Although the synchronization problem for discrete-time stochastic complex networks
is now attracting an increasing research attention, there are still several open problems
deserving further investigation. In a real world, virtually all complex networks are time-
varying, that is, all the network parameters are explicitly dependent on time. For example,
a major challenge in biological networks is to understand and model, quantitatively,
the dynamic topological and functional properties of biological networks. Such time, or
condition specific biological circuitries are referred to as time-varying networks or structural
nonstationary networks, which are common in biological systems. The synchronization
problem for time-varying complex networks has received some scattered research interest,
where most literature has focused on time-varying coupling or time-varying delay terms. For
example, in [90], a time-varying complex dynamical network model has been introduced and
it has been revealed that the synchronization of such amodel is completely determined by the
innercoupling matrix, the eigenvalues, and the corresponding eigenvectors of the coupling
configuration matrix of the network. Very recently, in [91], a class of controlled time-varying
complex dynamical networks with similarity has been investigated and a decentralized
holographic-structure controller has been designed to stabilize the network asymptotically
at its equilibrium states. It should be pointed out that, up to now, the general synchronization
results for complex networks with time-varying network parameters have been very few,
especially when the networks exhibit both discrete-time and stochastic natures.

Closely associated with the synchronization problem is the so-called state estimation
problem for complex networks. For large-scale complex networks, it is quite common that
only partial information about the network nodes (states) is accessible from the network
outputs. Therefore, in order to make use of key network nodes in practice, it becomes
necessary to estimate the network nodes through available measurements. Note that the
state estimation problem for neural networks (a special class of complex networks) was first
addressed in [92] and has then drawn particular research interests, see, for example, [93, 94],
where the networks are deterministic and continuous-time. Recently, the state estimation
problem for complex networks has also gained much attention, see [95].

3.3. Sensor Networks

Sensor networks have recently received increasing interests due to their extensive application
in areas such as information collection, environmental monitoring, industrial automation,
and intelligent buildings [96, 97]. In particular, the distributed filtering or estimation for
sensor networks has been an ongoing research issue that attracts increasing attention from
researchers in the area. Compared to the single sensor, filter i in a sensor network estimates
the system state based not only on the sensor i’s measurement but also on its neighboring
sensors’ measurements according to the topology of the given sensor network. Such a
problem is usually referred to as the distributed filtering or estimation problem. The main
difficulty in designing distributed filters lies in how to deal with the complicated coupling
between one sensor and its neighboring sensors.

Recently, considerable research efforts have been made with respect to distributed
filtering, and some novel distributed filters have been proposed. For example, a distributed
estimation algorithm for sensor networks has been proposed in [98], where each node
computes its estimate as a weighted sum of its own and its neighbors’ measurements and
estimates, and the weights are adaptively updated to minimize the variance of the estimation
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error. In [99], diffusion strategies have been suggested and then successfully applied to
the distributed Kalman filtering, where nodes communicate with their direct neighbors
only and the information is diffused across the network. By using the same diffusion
strategies, the distributed Kalman smoother has been designed in [100]. In [101], the notion
of distributed bounded consensus filters has been proposed and the convergence analysis has
been conducted for the corresponding distributed filters. It has been shown in [101] that, in
view of the pinning control approach, only a small fraction of sensors are needed to measure
the target information while the whole network can be controlled.

In the past few years, the consensus problems of multiagent networks have stirred a
great deal of research interests, and a rich body of research results has been reported in the
literature, see, for example, [102–110]. Representatively, in [102], a systematical framework
of consensus problem has been proposed, and three kinds of networks including directed
networks with fixed topology, directed networks with switching topology, and undirected
networks with communication delay and fixed topology have been discussed by using
the Lyapunov approach and the frequency domain theory. In [105], the H∞ performance
constraint has been introduced to the consensus context, and a distributed robust H∞
consensus controller has been designed for the directed networks of agents with time-delay.
The consensus protocol has been extended in [107], where the measurement noises have
also been taken into account in constructing the consensus protocol. Comparing to the work
mentioned above, in [110], the average consensus problems have been studied for agents
with integrator dynamics in presence of communication delays. Recently, the consensus
problem has also been studied for designing distributed Kalman filters (DKFs). For example,
a distributed filter has been introduced in [111] that allows the nodes of a sensor network to
track the average of n sensor measurements using an average consensus-based distributed
filter called consensus filter. The DKF algorithm presented in [111] has been modified in
[112], where another two novel DKF algorithms have been proposed and the communication
complexity as well as packet-loss issues have been discussed. The DKF problem considered
in [113] is also based on the average consensus, where the node hierarchy has been used
with nodes performing different types of processing and communications. Very recently, the
consensus-based overlapping decentralized estimation problem has been dealt with in [114]
for systems with missing observations and communication faults.

It is worth mentioning that, in almost all the literature concerning the distributed
filtering problems, the filter design algorithm has been mainly based on the traditional
Kalman filtering theory. Unfortunately, it is now well known that the robust performance
of Kalman filters cannot always be guaranteed since Kalman filters tend to be sensitive to
model structure drift [7, 45, 57, 60, 115–118]. As such, a variety of robust and/orH∞ filtering
approaches have been proposed in the literature to improve the robustness of the filters
against parameter uncertainties and exogenous disturbances. In this sense, it seems natural
to include the robust and/or H∞ performance requirements for the distributed consensus
filtering problems, and this deserves deep investigation.

4. Latest Progress

Very recently, the filtering problem for the stochastic nonlinear complex systems with in-
complete information has been intensively studied and some elegant results have been
reported. In this section, we highlight some of the newest work with respect to this topic.

(i) In [119], the H∞ filtering problem has been studied for a general class of nonlinear
discrete-time stochastic systems with missing measurements and a filter of very general form
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has been designed such that the filtering process is stochastically stable and the filtering error
satisfies H∞ performance constraint for all admissible missing observations and nonzero
exogenous disturbances under the zero-initial condition. The existence conditions of the
desired filter have been derived in terms of the Hamilton-Jacobi-Isaacs inequalities (HJIs).
Then, by using similar analysis techniques, theH∞ filtering problem with randomly varying
sensor delays has been considered in [120], and a set of parallel results has been derived.

(ii) In order to describe the phenomena of a nonlinear disturbance appearing in a ran-
dom way, a notion of the randomly occurring nonlinearity has been introduced in [121, 122].
In [121], a new robust H∞ filtering technique has been developed for the Itô-type discrete
time-varying stochastic systems with polytopic uncertainties, quantization effects, and ran-
domly occurring nonlinearities. Then, the robustH∞ finite-horizon filtering problem has been
studied in [122] for a class of discrete time-varying stochastic systems with norm-bounded
uncertainties, multiple randomly occurred nonlinearities, and successive packet dropouts.

(iii) The H∞ filtering problem has been studied in [123] for a class of nonlinear
systems with randomly occurring incomplete information, where the considered incomplete
information includes both the sensor saturations and the missing measurements. A new
phenomenon of sensor saturation, namely, randomly occurring sensor saturation, has first
been put forward in order to better reflect the reality in a networked environment. Then,
a novel sensor model has been established to account for both the randomly occurring
sensor saturation and missing measurement in a unified representation. Based on this sensor
model, a regional H∞ filter with a certain ellipsoid constraint has been designed such that
the filtering error dynamics is locally mean-square asymptotically stable and the H∞-norm
requirement is satisfied.

(iv) In [124], a new distributed H∞-consensus filtering problem over a finite-horizon
has been addressed for sensor networks with multiple missing measurements. The so-called
H∞-consensus performance requirement is defined to quantify bounded consensus regarding
the filtering errors (agreements) over a finite-horizon. A sufficient condition has first been
established in terms of a set of difference linear matrix inequalities (DLMIs) under which the
expected H∞-consensus performance constraint is guaranteed. Then, the filter parameters
have been explicitly parameterized by means of the solutions to a certain set of DLMIs that
can be computed recursively. Subsequently, two kinds of robust distributed H∞-consensus
filters have been designed for the systems with norm-bounded uncertainties and polytopic
uncertainties.

(v) In [125], the distributedH∞ filtering problem is dealt with for a class of polynomial
nonlinear stochastic systems in sensor networks. A Lyapunov function candidate whose
entries are polynomials has been adopted and then, a sufficient condition for the existence
of a feasible solution to the addressed distributed H∞ filtering problem has been derived
in terms of parameter-dependent linear matrix inequalities (PDLMIs). For computational
convenience, these PDLMIs have further been converted into a set of sums of squares (SOSs)
that can be solved effectively by using the semidefinite programming technique.

(vi) In [126], the problem of distributed H∞ filtering in sensor networks using
a stochastic sampled-data approach has been investigated. The signal received by each
sensor is sampled by a sampler separately with stochastic sampling periods before it is
employed by the corresponding filter. By using the method of converting the sampling
periods into bounded time-delays, the design problem of the stochastic sampled-data-
based distributed H∞ filters amounts to solving the H∞ filtering problem for a class of
stochastic nonlinear systems with multiple bounded time-delays. Then, by constructing a
new Lyapunov functional and employing both the Gronwall’s inequality and the Jenson
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integral inequality, a sufficient condition has been derived to guarantee theH∞ performance
as well as the exponential mean-square stability of the resulting filtering error dynamics.

Subsequently, the desired sampled-data-based distributed H∞ filters have been
designed in terms of the solution to certain matrix inequalities.

(vii) In [127], new synchronization and state estimation problems have been con-
sidered for an array of coupled discrete time-varying stochastic complex networks over
a finite-horizon. A novel concept of bounded H∞ synchronization has been proposed to
handle the time-varying nature of the complex networks. By utilizing a time-varying real-
valued function and the Kronecker product, criteria have been established that ensure the
boundedH∞ synchronization in terms of a set of recursive linearmatrix inequalities (RLMIs).
The bounded H∞ state estimation problem has then been studied for the same complex
network, where the purpose is to design a state estimator to estimate the network states
through available output measurements such that, over a finite-horizon, the dynamics of the
estimation error is guaranteed to be bounded with a given disturbance attenuation level.
Again, an RLMI approach has been developed for the state estimation problem.

5. Conclusions and Future Work

In this paper, we have surveyed some recent advances on the filtering and control for complex
systems with incomplete information. The developments of the incomplete information
models have been reviewed and various filtering and control problems based on these
incomplete information have been discussed. Then, we have introduced basic theories and
methods for dealing with filtering and control problems of complex systems and raised a few
challenging issues. Subsequently, we have paid particular attention to the filtering problems
of the stochastic nonlinear complex systems with incomplete information and given the latest
results. Related topics for the future research work are listed below.

(i) In practical engineering, there still exist many more complex yet important
network-induced issues which, however, have not been studied. Therefore, these
new phenomena of incomplete information should be paid great attention to, and
a unified measurement model accounting for these issues simultaneously also
remains to be established.

(ii) The polynomial nonlinear system is one of the most important classes of nonlinear
systems. The control and filtering problems for polynomial nonlinear systems with
kinds of incomplete information are interesting and deserve further investigation.
The analysis and synthesis of polynomial nonlinear controllers and filters for the
polynomial nonlinear systems would be a challenging research topic.

(iii) The problems of fault detection and fault tolerant control in the presence of
incomplete information are of engineering significance, especially when the system
is time varying. Hence, the problems of fault detection and fault tolerant control
for time-varying systems with incomplete information over a finite time-horizon
would be another interesting topic.

(iv) Note that the incomplete information usually occurs in a random way which
makes the considered system stochastic. In this case, the performance objection is
only required to be achieved in the desired probability. Therefore, the control and
filtering problems for nonlinear stochastic systems with probabilistic performance
are of significant engineering importance.
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(v) Applications of the existing theories and methodologies to some practical engi-
neering problems such as the mobile robot navigation would be another one of
the future work.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under
Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan
Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China,
the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant
GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation
of Germany.

References

[1] M. Basin, E. Sanchez, and R. Martinez-Zuniga, “Optimal linear filtering for systems with multiple
state and observation delays,” International Journal of Innovative Computing, Information and Control,
vol. 3, no. 5, pp. 1309–1320, 2007.

[2] M. Basin, J. Perez, and D. Calderon-Alvarez, “Optimal filtering for linear systems over polynomial
observations,” International Journal of Innovative Computing, Information and Control, vol. 4, no. 2, pp.
313–320, 2008.

[3] M. S. Mahmoud, Y. Shi, and H. N. Nounou, “Resilient observer-based control of uncertain time-
delay systems,” International Journal of Innovative Computing, Information and Control, vol. 3, no. 2, pp.
407–418, 2007.

[4] Z. Wang, D. W. C. Ho, and X. Liu, “Variance-constrained filtering for uncertain stochastic systems
with missing measurements,” IEEE Transactions on Automatic Control, vol. 48, no. 7, pp. 1254–1258,
2003.

[5] Z. Wang, F. Yang, D. W. C. Ho, and X. Liu, “Robust H∞ filtering for stochastic time-delay systems
with missing measurements,” IEEE Transactions on Signal Processing, vol. 54, no. 7, pp. 2579–2587,
2006.

[6] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry, “Kalman filtering
with intermittent observations,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1453–1464,
2004.

[7] P. Shi, M. Mahmoud, S. K. Nguang, and A. Ismail, “Robust filtering for jumping systems with mode-
dependent delays,” Signal Processing, vol. 86, no. 1, pp. 140–152, 2006.

[8] H. Gao and T. Chen, “H∞ estimation for uncertain systems with limited communication capacity,”
IEEE Transactions on Automatic Control, vol. 52, no. 11, pp. 2070–2084, 2007.

[9] H. Gao, T. Chen, and T. Chai, “Passivity and passification for networked control systems,” SIAM
Journal on Control and Optimization, vol. 46, no. 4, pp. 1299–1322, 2007.

[10] G. Wei, Z. Wang, and H. Shu, “Robust filtering with stochastic nonlinearities and multiple missing
measurements,” Automatica, vol. 45, no. 3, pp. 836–841, 2009.

[11] X. He, Z. Wang, and D. Zhou, “Robust H∞ filtering for networked systems with multiple state
delays,” International Journal of Control, vol. 80, no. 8, pp. 1217–1232, 2007.

[12] M. Sahebsara, T. Chen, and S. L. Shah, “Optimal H2 filtering in networked control systems with
multiple packet dropout,” IEEE Transactions on Automatic Control, vol. 52, no. 8, pp. 1508–1513, 2007.

[13] M. Sahebsara, T. Chen, and S. L. Shah, “Optimal H∞ filtering in networked control systems with
multiple packet dropouts,” Systems & Control Letters, vol. 57, no. 9, pp. 696–702, 2008.

[14] S. Sun, L. Xie, and W. Xiao, “Optimal full-order and reduced-order estimators for discrete-time
systems with multiple packet dropouts,” IEEE Transactions on Signal Processing, vol. 56, no. 8, pp.
4031–4038, 2008.

[15] X. Lu, L. Xie, H. Zhang, and W. Wang, “Robust Kalman filtering for discrete-time systems with
measurement delay,” IEEE Transactions on Circuits and Systems II, vol. 54, no. 6, pp. 522–526, 2007.

[16] Z. Wang, Y. Liu, and X. Liu, “H∞ filtering for uncertain stochastic time-delay systems with sector-
bounded nonlinearities,” Automatica, vol. 44, no. 5, pp. 1268–1277, 2008.



12 Mathematical Problems in Engineering

[17] E. Yaz and A. Ray, “Linear unbiased state estimation for random models with sensor delay,” in
Proceedings of the 35th IEEE Conference on Decision and Control, pp. 47–52, Kobe, Japan, December
1996.

[18] Z. Wang, D. W. C. Ho, and X. Liu, “Robust filtering under randomly varying sensor delay with
variance constraints,” IEEE Transactions on Circuits and Systems II, vol. 51, no. 6, pp. 320–326, 2004.

[19] F. Yang, Z. Wang, G. Feng, and X. Liu, “Robust filtering with randomly varying sensor delay: the
finite-horizon case,” IEEE Transactions on Circuits and Systems I, vol. 56, no. 3, pp. 1310–1314, 2009.

[20] S. Zhou and G. Feng, “H∞ filtering for discrete-time systems with randomly varying sensor delays,”
Automatica, vol. 44, no. 7, pp. 1918–1922, 2008.

[21] S. Xu and J. Lam, “A survey of linear matrix inequality techniques in stability analysis of delay
systems,” International Journal of Systems Science, vol. 39, no. 12, pp. 1095–1113, 2008.

[22] D. F. Delchamps, “Stabilizing a linear system with quantized state feedback,” IEEE Transactions on
Automatic Control, vol. 35, no. 8, pp. 916–924, 1990.

[23] R. W. Brockett and D. Liberzon, “Quantized feedback stabilization of linear systems,” IEEE
Transactions on Automatic Control, vol. 45, no. 7, pp. 1279–1289, 2000.

[24] J.-C. Delvenne, “An optimal quantized feedback strategy for scalar linear systems,” IEEE Transactions
on Automatic Control, vol. 51, no. 2, pp. 298–303, 2006.

[25] N. Elia and S. K. Mitter, “Stabilization of linear systems with limited information,” IEEE Transactions
on Automatic Control, vol. 46, no. 9, pp. 1384–1400, 2001.

[26] M. Fu and L. Xie, “The sector bound approach to quantized feedback control,” IEEE Transactions on
Automatic Control, vol. 50, no. 11, pp. 1698–1711, 2005.

[27] D. Liberzon, “Hybrid feedback stabilization of systems with quantized signals,” Automatica, vol. 39,
no. 9, pp. 1543–1554, 2003.

[28] D. Yue, C. Peng, and G. Y. Tang, “Guaranteed cost control of linear systems over networks with state
and input quantisations,” IEE Proceedings Control Theory and Applications, vol. 153, no. 6, pp. 658–664,
2006.

[29] C. Peng and Y.-C. Tian, “Networked H∞ control of linear systems with state quantization,”
Information Sciences, vol. 177, no. 24, pp. 5763–5774, 2007.

[30] E. Tian, D. Yue, and C. Peng, “Quantized output feedback control for networked control systems,”
Information Sciences, vol. 178, no. 12, pp. 2734–2749, 2008.

[31] Y. Cao, Z. Lin, and B. M. Chen, “An output feedbackH∞ controller design for linear systems subject
to sensor nonlinearities,” IEEE Transactions on Circuits and Systems I, vol. 50, no. 7, pp. 914–921, 2003.

[32] Y. Cao, Z. Lin, and D. G. Ward, “An antiwindup approach to enlarging domain of attraction for
linear systems subject to actuator saturation,” IEEE Transactions on Automatic Control, vol. 47, no. 1,
pp. 140–145, 2002.

[33] Y. Y. Cao, Z. Lin, and D. G. Ward, “H∞ antiwindup design for linear systems subject to input
saturation,” Journal of Guidance, Control, and Dynamics, vol. 25, no. 3, pp. 455–463, 2002.

[34] T. Hu, Z. Lin, and B. M. Chen, “Analysis and design for discrete-time linear systems subject to
actuator saturation,” Systems & Control Letters, vol. 45, no. 2, pp. 97–112, 2002.

[35] Z. Zuo, D. W. C. Ho, and Y. Wang, “Fault tolerant control for singular systems with actuator
saturation and nonlinear perturbation,” Automatica, vol. 46, no. 3, pp. 569–576, 2010.

[36] Z. Zuo, J. Wang, and L. Huang, “Output feedback H∞ controller design for linear discrete-time
systems with sensor nonlinearities,” IEE Proceedings Control Theory and Applications, vol. 152, no. 1,
pp. 19–26, 2005.

[37] E. Fridman and M. Dambrine, “Control under quantization, saturation and delay: an LMI
approach,” Automatica, vol. 45, no. 10, pp. 2258–2264, 2009.

[38] Y. Xiao, Y.-Y. Cao, and Z. Lin, “Robust filtering for discrete-time systems with saturation and its
application to transmultiplexers,” IEEE Transactions on Signal Processing, vol. 52, no. 5, pp. 1266–1277,
2004.

[39] F. Yang and Y. Li, “Set-membership filtering for systems with sensor saturation,” Automatica, vol. 45,
no. 8, pp. 1896–1902, 2009.

[40] T. Chen and B. A. Francis, “Linear time-varying H2-optimal control of sampled-data systems,”
Automatica, vol. 27, no. 6, pp. 963–974, 1991.

[41] L. Qiu and T. Chen, “H2-optimal design of multirate sampled-data systems,” IEEE Transactions on
Automatic Control, vol. 39, no. 12, pp. 2506–2511, 1994.

[42] T. Chen and L. Qiu, “H∞ design of general multirate sampled-data control systems,” Automatica,
vol. 30, no. 7, pp. 1139–1152, 1994.



Mathematical Problems in Engineering 13

[43] L. Qiu and T. Chen, “Multirate sampled-data systems: all H∞ suboptimal controllers and the
minimum entropy controller,” IEEE Transactions on Automatic Control, vol. 44, no. 3, pp. 537–550,
1999.

[44] P. Shi, “Filtering on sampled-data systems with parametric uncertainty,” IEEE Transactions on
Automatic Control, vol. 43, no. 7, pp. 1022–1027, 1998.

[45] S. K. Nguang and P. Shi, “Nonlinear H∞ filtering of sampled-data systems,” Automatica, vol. 36, no.
2, pp. 303–310, 2000.

[46] Z. Wang, B. Huang, and P. Huo, “Sampled-data filtering with error covariance assignment,” IEEE
Transactions on Signal Processing, vol. 49, no. 3, pp. 666–670, 2001.

[47] E. Fridman, A. Seuret, and J.-P. Richard, “Robust sampled-data stabilization of linear systems: an
input delay approach,” Automatica, vol. 40, no. 8, pp. 1441–1446, 2004.

[48] E. Fridman, U. Shaked, and V. Suplin, “Input/output delay approach to robust sampled-data H∞
control,” Systems & Control Letters, vol. 54, no. 3, pp. 271–282, 2005.

[49] H. Gao, J. Wu, and P. Shi, “Robust sampled-data H∞ control with stochastic sampling,” Automatica,
vol. 45, no. 7, pp. 1729–1736, 2009.

[50] J. Wu, X. Chen, and H. Gao, “H∞ filtering with stochastic sampling,” Signal Processing, vol. 90, no. 4,
pp. 1131–1145, 2010.

[51] J. A. Ball, J. W. Helton, and M. L. Walker, “H∞ control for nonlinear systems with output feedback,”
IEEE Transactions on Automatic Control, vol. 38, no. 4, pp. 546–559, 1993.

[52] N. Berman and U. Shaked, “H∞ control for discrete-time nonlinear stochastic systems,” IEEE
Transactions on Automatic Control, vol. 51, no. 6, pp. 1041–1046, 2006.

[53] N. Berman and U. Shaked, “H∞-like control for nonlinear stochastic systems,” Systems & Control
Letters, vol. 55, no. 3, pp. 247–257, 2006.

[54] A. J. van der Schaft, “L2-gain analysis of nonlinear systems and nonlinear state feedback H∞
control,” IEEE Transactions on Automatic Control, vol. 37, no. 6, pp. 770–784, 1992.

[55] C. Du, L. Xie, and Y. C. Soh, “H∞ reduced-order approximation of 2-D digital filters,” IEEE
Transactions on Circuits and Systems I, vol. 48, no. 6, pp. 688–698, 2001.

[56] L. Wu, P. Shi, H. Gao, and C. Wang, “H∞ filtering for 2DMarkovian jump systems,” Automatica, vol.
44, no. 7, pp. 1849–1858, 2008.

[57] G. Wei and H. Shu, “H∞ filtering on nonlinear stochastic systems with delay,” Chaos, Solitons and
Fractals, vol. 33, no. 2, pp. 663–670, 2007.

[58] S. Xu, J. Lam, and X. Mao, “Delay-dependent H∞ control and filtering for uncertain Markovian
jump systems with time-varying delays,” IEEE Transactions on Circuits and Systems I, vol. 54, no. 9,
pp. 2070–2077, 2007.

[59] U. Shaked and N. Berman, “H∞ nonlinear filtering of discrete-time processes,” IEEE Transactions on
Signal Processing, vol. 43, no. 9, pp. 2205–2209, 1995.

[60] W. Zhang, B.-S. Chen, and C.-S. Tseng, “RobustH∞ filtering for nonlinear stochastic systems,” IEEE
Transactions on Signal Processing, vol. 53, no. 2, pp. 589–598, 2005.

[61] D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-world” networks,” Nature, vol. 393,
no. 6684, pp. 440–442, 1998.

[62] A.-L. Barabasi and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439,
pp. 509–512, 1999.

[63] Z. Duan, G. Chen, and L. Huang, “Disconnected synchronized regions of complex dynamical
networks,” IEEE Transactions on Automatic Control, vol. 54, no. 4, pp. 845–849, 2009.

[64] Z. Li, Z. Duan, G. Chen, and L. Huang, “Consensus of multiagent systems and synchronization of
complex networks: a unified viewpoint,” IEEE Transactions on Circuits and Systems I, vol. 57, no. 1,
pp. 213–224, 2010.

[65] Z. Zuo, C. Yang, and Y. Wang, “A unified framework of exponential synchronization for complex
networks with time-varying delays,” Physics Letters A, vol. 374, no. 19-20, pp. 1989–1999, 2010.

[66] X. F. Wang and G. Chen, “Synchronization in small-world dynamical networks,” International Journal
of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 12, no. 1, pp. 187–192, 2002.

[67] J. Jost and M. P. Joy, “Spectral properties and synchronization in coupled map lattices,” Physical
Review E, vol. 65, no. 1, p. 016201, 2002.

[68] J. Liang, Z. Wang, Y. Liu, and X. Liu, “Robust synchronization of an array of coupled stochastic
discrete-time delayed neural networks,” IEEE Transactions on Neural Networks, vol. 19, no. 11, pp.
1910–1921, 2008.

[69] R. Palm, “Synchronization of decentralizedmultiple-model systems bymarket-based optimization,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, no. 1, pp. 665–672, 2004.



14 Mathematical Problems in Engineering

[70] W. He and J. Cao, “Exponential synchronization of hybrid coupled networks with delayed
coupling,” IEEE Transactions on Neural Networks, vol. 21, no. 4, pp. 571–583, 2010.

[71] F. O. Souza and R. M. Palhares, “Synchronisation of chaotic delayed artificial neural networks: an
H∞ control approach,” International Journal of Systems Science, vol. 40, no. 9, pp. 937–944, 2009.

[72] W. Lu and T. Chen, “Synchronization of coupled connected neural networks with delays,” IEEE
Transactions on Circuits and Systems I, vol. 51, no. 12, pp. 2491–2503, 2004.

[73] W. Lu and T. Chen, “Global synchronization of discrete-time dynamical network with a directed
graph,” IEEE Transactions on Circuits and Systems II, vol. 54, no. 2, pp. 136–140, 2007.

[74] V. Perez-Munuzuri, V. Perez-Villar, and L. O. Chua, “Autowaves for image processing on a
two-dimensional CNN array of excitable nonlinear circuits: flat and wrinkled labyrinths,” IEEE
Transactions on Circuits and Systems I, vol. 40, no. 3, pp. 174–181, 1993.

[75] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64,
no. 8, pp. 821–824, 1990.

[76] Z. Li and G. Chen, “Global synchronization and asymptotic stability of complex dynamical
networks,” IEEE Transactions on Circuits and Systems II, vol. 53, no. 1, pp. 28–33, 2006.

[77] J. Cao and J. Lu, “Adaptive synchronization of neural networks with or without time-varying delay,”
Chaos. An Interdisciplinary Journal of Nonlinear Science, vol. 16, no. 1, p. article 013133, 2006.

[78] X. Hu and J. Wang, “Design of general projection neural networks for solving monotone linear
variational inequalities and linear and quadratic optimization problems,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B, vol. 37, no. 5, pp. 1414–1421, 2007.

[79] H. R. Karimi and H. Gao, “New delay-dependent exponential H∞ synchronization for uncertain
neural networks with mixed time delays,” IEEE Transactions on Systems, Man, and Cybernetics, Part B,
vol. 40, no. 1, pp. 173–185, 2010.

[80] Z. Fei, H. Gao, and W. X. Zheng, “New synchronization stability of complex networks with an
interval time-varying coupling delay,” IEEE Transactions on Circuits and Systems II, vol. 56, no. 6,
pp. 499–503, 2009.

[81] H. Gao, J. Lam, and G. Chen, “New criteria for synchronization stability of general complex
dynamical networks with coupling delays,” Physics Letters A, vol. 360, no. 2, pp. 263–273, 2006.

[82] S. Mou, H. Gao, J. Lam, and W. Qiang, “A new criterion of delay-dependent asymptotic stability for
Hopfield neural networks with time delay,” IEEE Transactions on Neural Networks, vol. 19, no. 3, pp.
532–535, 2008.

[83] P. Li, J. Lam, and Z. Shu, “On the transient and steady-state estimates of interval genetic regulatory
networks,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 40, no. 2, pp. 336–349, 2010.

[84] Z. Shu and J. Lam, “Global exponential estimates of stochastic interval neural networks with discrete
and distributed delays,” Neurocomputing, vol. 71, no. 13–15, pp. 2950–2963, 2008.

[85] Z. Toroczkai, “Complex networks: the challenge of interaction topology,” Los Alamos Science, no. 29,
pp. 94–109, 2005.

[86] J. Buhmann and K. Schulten, “Influence of noise on the function of a “physiological” neural
network,” Biological Cybernetics, vol. 56, no. 5-6, pp. 313–327, 1987.

[87] K. Wood, C. Van den Broeck, R. Kawai, and K. Lindenberg, “Continuous and discontinuous phase
transitions and partial synchronization in stochastic three-state oscillators,” Physical Review E, vol.
76, no. 4, p. 041132, 2007.

[88] Z. Wang, D. W. C. Ho, Y. Liu, and X. Liu, “Robust H∞ control for a class of nonlinear discrete time-
delay stochastic systems with missing measurements,” Automatica, vol. 45, no. 3, pp. 684–691, 2009.

[89] H. Li and D. Yue, “Synchronization of Markovian jumping stochastic complex networks with
distributed time delays and probabilistic interval discrete time-varying delays,” Journal of Physics
A, vol. 43, no. 10, p. article 105101, 2010.
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