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There is strong evidence indicating that the existing measures which are designed to detect a
single high leverage collinearity-reducing observation are not effective in the presence of multiple
high leverage collinearity-reducing observations. In this paper, we propose a cutoff point for a
newly developed high leverage collinearity-influential measure δ

(D)
i and two existing measures

(δi and li) to identify high leverage collinearity-reducing observations, the high leverage points
which hide multicollinearity in a data set. It is important to detect these observations as they are
responsible for the misleading inferences about the fitting of the regressionmodel. Themerit of our
proposed measure and cutoff point in detecting high leverage collinearity-reducing observations
is investigated by using engineering data and Monte Carlo simulations.

1. Introduction

High leverage points are the observations that fall far from the majority of explanatory
variables in the data set (see [1–4]). It is now evident that high leverage point is another
prime source of multicollinearity; a near-linear dependency of two or more explanatory
variables [2]. Hadi [5] pointed out that this source of multicollinearity is a special case
of collinearity-influential observations; the observations which might induce or disrupt
the multicollinearity pattern of a data. High leverage points that induce multicollinearity
are referred as high leverage collinearity-enhancing observations while those that reduce
multicollinearity in their presence are called high leverage collinearity-reducing observations
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[6–10]. Collinearity-influential observations are usually points with high leverages, though
all high leverage points are not necessarily collinearity-influential observations [5].

It is very important to detect collinearity-influential observations because they are
responsible for misleading conclusion about the fitting of a regression model, which gives
wrong sign problem of regression coefficients and produces large variances to the regression
estimates. Not many studies have been conducted in the literature on collinearity-influential
measures and we will discuss these methods in Section 2. Nonetheless most of the existing
methods are not successful in the detection of multiple high leverage collinearity-influential
observations although their performances are considered good for the detection of a single
observation. Moreover these measures do not have specific cutoff points to indicate the
existence of collinearity-influential observations [10]. These shortcomings motivated us to
propose a new detection measure in such situation. Notably, the proposed measure is based
on the Diagnostic Robust Generalized Potential (DRGP)method developed byHabshah et al.
[11] and will be presented in Section 3. Section 4 exhibits the development of the collinearity-
influential observations that can be classified as high leverage collinearity-enhancing or
collinearity-reducing observations. Bagheri et al. [10] presented numerical examples and
a simulation study to propose a novel high leverage collinearity-influential measure and
a cutoff point for the detection of high leverage collinearity-enhancing observations. The
authors also recommended cutoff points for collinearity-influential measures introduced
by Hadi [5] and Sengupta and Bhimasankaram [12]. It is also important to identify high
leverage collinearity-reducing observations. However, these observations are more difficult
to diagnose because they hide the effect of multicollinearity in the classical analysis.
Following Hadi [13], Imon [14], and Habshah et al. [11], in Section 5, we propose a cutoff
point for Bagheri‘s et al. [10], Hadi [5], and Sengupta and Bhimasankaram [12]’s measures
to identify high leverage collinearity-reducing observations. A numerical example and
simulation study are performed in Sections 6 and 7, respectively, to evaluate the performance
of our proposed measure (δ(D)

i ) and compare its performance with Hadi [5] and Sengupta
and Bhimasankaram [12]’s measures (δi and li). Conclusion of the study will be presented in
Section 8.

2. Collinearity-Influential Measures

Let consider a multiple linear regression model as follows:

Y = Xβ + ε, (2.1)

where Y is an (n × 1) vector of response or dependent variable, X is an (n × p) matrix of
predictors (n > p), β is a (p × 1) vector of unknown finite parameters to be estimated and
ε is an (n × 1) vector of random errors. We let Xj denote the jth column of the X matrix;
therefore,X = [X1, X2, . . . , Xp]. Furthermore, multicollinearity is defined in terms of the linear
dependence of the columns of X.

Belsley et al. [15] proposed the singular-value decomposition of (n × p) X matrix for
diagnosing multicollinearity as follows:

X = UDVT, (2.2)
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where U is the (n × p) matrix in which the columns that are associated with the p nonzero
eigenvalue of (XTX) is (n × p), V (the matrix of eigenvectors of XTX) is (p × p), UTU = I,
V TV = I, and D is a (p × p) diagonal matrix with nonnegative diagonal elements, kj , j =
1, 2, . . . , p, which is called singular-values of X. Condition number of X matrix denoted as
CN is another multicollinearity diagnostic measures which is obtained by first computing
the Condition Index (CI) of the X matrix and is defined as

kj =
λmax

λj
, j = 1, 2, . . . , p, (2.3)

where λ1, λ2, . . . , λp are the singular values of the X matrix. The CN corresponds to the
largest values of kj . To make the condition indices comparable from one data set to another,
the independent variables should first be scaled to have the same length. Scaling the
independent variables prevents the eigen analysis to be dependent on the variables’ units of
measurements. Belsley [16] stated that CN of X matrix between 10 to 30 indicates moderate
to strong multicollinearity, while a value of more than 30 reflects severe multicollinearity.

Hadi [5] noted that most collinearity-influential observations are points with high
leverages, but not all high leverage points are collinearity-influential observations. He
defined a measure for the influence of the ith row ofX matrix on the condition index denoted
as δi,

δi =
k(i) − k

k
, i = 1, 2, . . . , n, (2.4)

where k(i) is computed by the eigenvalue of X(i) and when the ith row of X matrix has been
deleted. Due to the lack of symmetry of Hadi’s measure, Sengupta and Bhimasankaram [12]
proposed a collinearity-influential measure for each row of observations, defined as

li = log
(
k(i)

k

)
, i = 1, 2, . . . , n. (2.5)

Unfortunately, they did not propose practical cutoff points for δi and li and only mentioned
the conditions for collinearity-enhancing and collinearity-reducing observations. To fill the
gap, Bagheri et al. [10] suggested a cutoff point for δi and li for detecting collinearity-
enhancing observations as

cut(CEO) = Median(θi) − 3MAD(θi), i = 1, 2, . . . , n, (2.6)

where cut(CEO) is the Collinearity-Influential Measure cutoff point for the identification of
collinearity-enhancing observations whereby θi can be δi or li. |θi| ≥ |cut(CEO)| for θi < 0 is
an indicator that the ith observation is a collinearity-enhancing observation.



4 Mathematical Problems in Engineering

3. Diagnostics Robust Generalised Potential for Identification
of High Leverage Points

The ith diagonal elements of the hat matrix, W = X(XTX)−1XT , is a traditionally used
measure for detecting high leverage points and is defined as

wii = xT
i

(
XTX

)−1
xi, i = 1, 2, . . . , n. (3.1)

Hoaglin and Welsch [17] suggested twice-the-mean-rule (2(p + 1)/n) cutoff points for
the hat matrix. Hadi [13] pointed out that the leverage diagnostics may not be successful
to identify high leverage points and introduced a single-case-deleted measure, known as
potential, and is defined as

pii = xT
i

(
XT

(i)X(i)

)−1
xi, i = 1, 2, . . . , n (3.2)

or

pii =
wii

1 −wii
, i = 1, 2, . . . , n, (3.3)

where X(i) is the data matrix X with the ith row deleted. Imon [14] pointed that potentials
may be very successful in the identification of a single high leverage point, but they fail to
identify multiple high leverage points. To rectify this problem, Imon [14] proposed a group
deletion version of potentials (GP), known as generalized potentials. Prior to defining the GP,
Imon [14] partitioned the data into a set of “good” cases “remaining” in the analysis and a
set of “bad” cases “deleted” from the analysis which were denoted as R and D. Nonetheless,
Imon’s measure has drawbacks which are due to the inefficient procedure that he used for
the determination of the initial deletion set D. To overcome this shortcoming, Habshah et al.
[11] proposed the diagnostic robust generalized potential (DRGP)where the suspected cases
(bad cases)were identified by Robust Mahalanobis Distance (RMD), based on the Minimum
Volume Ellipsoid (MVE). Rousseeuw [18] defined RMD based on MVE as follows:

RMDi =
√
(X − TR(X))TCR(X)−1(X − TR(X)) for i = 1, 2, . . . , n, (3.4)

where TR(X) and CR(X) are robust locations and shape estimates of the MVE, respectively. In
the second step of DRGP (MVE), the GPs are computed based on the set ofD and R obtained
from RMD (MVE). The low leverage points (if any) are put back into the estimation data set
after inspecting the GP proposed by Imon [14] which are defined as follows:

p∗ii =

⎧⎪⎪⎨
⎪⎪⎩

w
(−D)
ii for i ∈ D,

w
(−D)
ii

1 −w
(−D)
ii

for i ∈ R,
(3.5)
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where w(−D)
ii = XT

i (X
T
RXR)

−1
Xi. He suggested the cutoff point of p∗ii as

p∗ii > Median
(
p∗ii

)
+ cMAD

(
p∗ii

)
, (3.6)

where c can be taken as a constant value of 2 or 3.
The DRGP (MVE) have been proven to be very effective in the identification of

multiple high leverage points.

4. The New Proposed High Leverage Collinearity-Influential
Observations Measures

As alreadymentioned in the preceding section, the main reason of developing a newmeasure
of high leverage collinearity-influential measure is due to the fact that the commonly used
measures failed to detect multiple high leverage collinearity-influential observations. In
addition, not many papers related to this measure have been published in the literatures.
It is important mentioning that the collinearity-influential measure which were proposed
by Hadi [5] and Sengupta and Bhimasankaram [12] are related to the Hadi’s single-case-
deleted leverage measure [13]. Since the robust generalized potentials that was developed
by Habshah et al. [11] was very successful in the identification of multiple high leverage
points compared to other widely used methods, Bagheri et al. [10] utilized a similar
approach in developing multiple High Leverage Collinearity-Influential Measure (HLCIM).
The proposed measure is formulated based on Sengupta and Bhimasankaram [12]’s measure
with slight modification whereby almost similar approach of DRGP (MVE) [11]was adapted.
Hence it is referred as HLCIM (DRGP) and denoted as δ(D)

i . This new measure is defined as
follows:

δ
(D)
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log
(

k(D)

k(D−i)

)
if i ∈ D, #{D}/= 1,

log
(
k(i)

k

)
if #{D} = 1, D = i, i = 1, 2, . . . , n,

log
(
k(D+i)

k(D)

)
if i ∈ R,

(4.1)

whereD is the suspected group ofmultiple high leverage collinearity-influential observations
diagnosed by DRGP(MVE), p∗ii, #{D} is the number of elements in D group, and R is
the remaining good observations. As such, following Habshah et al. [11] approach, three
conditions should be considered in defining δ

(D)
i . Bagheri et al. [10] summarized the

algorithm of HLCIM (DRGP) in three steps as follows.

Step 1. Calculate DRGP (MVE), p∗ii, for i = 1, 2, . . . , n. Form D as a high leverage collinearity-
influential suspected group whereby its members consist of observations which correspond
to p∗ii that exceed the median(p∗ii) + 3MAD(p∗ii). Obviously the rest of the observations belong
to R, the remaining group.



6 Mathematical Problems in Engineering

Step 2. Compute high leverage collinearity-influential values, δ(D)
i , as follows.

(i) If only a single member in the D group, the size of R is (n − 1), and D = i, calculate
log(k(i)/k) where k(i) indicates the condition number of the X matrix without the
ith high leverage points. In this way, δ(D)

i = li.

(ii) If more than one member in the D group, calculate log(k(D)/k(D−i)) where k(D−i)
indicates the condition number of the X matrix without the entire D group minus
the ith high leverage points, where i belongs to the suspected D group.

(iii) For any observation in the R group, compute log(k(D+i)/k(D))where k(D+i) refers to
the condition number of the X matrix without the entire group of D high leverage
points plus the ith additional observation of the remaining group.

Step 3. If any δ
(D)
i values for i = 1, 2, . . . , n does not exceed the cutoff points in (2.6), put

back the ith observation to the R group. Otherwise,D group is the high leverage collinearity-
enhancing observations.

Bagheri et al. [10] only defined the cutoff point for θi to indicate high leverage
collinearity-enhancing observations and they did not suggest cutoff point for collinearity-
reducing observations. The authors considered θi to be high leverage collinearity-enhancing
observations if θi is less than the cutoff points; that is median(θi)− 3mad(θi) for θi < 0, where
c is a chosen value 3 and θi may be δ(D)

i , δi or li.
Since high leverage collinearity-reducing observations are also responsible for the

misleading inferential statements, it is very crucial to detect their presence. In the following
section, we propose a cutoff point for identifying high leverage collinearity-reducing
observations.

It is important mentioning that not all δ(D)
i which exceed the cutoff point are high

leverage points. This is true for the situation when δ
(D)
i exceeds the cutoff point but belongs

to the remaining group, i ∈ R. In this situation, the observation is considered as collinearity-
influential observations since they are not high leverage points.

5. The New Proposed Cutoff Point for HLCIM (DRGP)

Hadi [5] and Sengupta and Bhimasankaram [12] mentioned that a large positive value of
their collinearity-influential measures, δi and li, respectively, indicates that the ith observation
is a collinearity-reducing observation. However, they did not suggest any cutoff points to
indicate which observations are collinearity-enhancing and which are collinearity-reducing.
Bagheri et al. [10] proposed a nonparametric cutoff point for high leverage collinearity-
enhancing observations. Their work has inspired us to investigate high leverage collinearity-
reducing observations among the observations that correspond to positive values of high
leverage collinearity-influential measures. Figure 1 presents the normal distribution plot of
θi. Based on this figure, any value that exceeds median(θi) + 3MAD(θi) can be utilized as a
cutoff point for θi. Hence, we propose the following cutoff point:

cut(CRO) = Median(θi) + 3MAD(θi), (5.1)
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Collinearity-reducing
observations

Collinearity-enhancing
observations

−3Mad (θi) Median (θi) +3Mad (θi)

Figure 1: Normal distribution plot of high leverage collinearity-influential measure.

where cut(CRO) is the Collinearity-Influential Measure cutoff point for Collinearity-
Reducing Observations. θi can be δ

(D)
i , δi or li. θi ≥ cut(CRO) for θi > 0 is an indicator that

the ith observation is a collinearity-reducing observation.

6. A Numerical Example

A numerical example is presented to compare the performance of the newly proposed
measure (δ(D)

i ) with the existing measures δi and li. An engineering data taken from
Montgomery et al. [19] is used in this study. It represents the relationship between thrust
of a jet-turbine engine (y) and six independent variables. The independent variables are
primary speed of rotation (X1), secondary speed of rotation (X2), fuel flow rate (X3), pressure
(X4), exhaust temperature (X5), and ambient temperature at time of test (X6). It is important
mentioning that, the explanatory variables of this data are scaled before analysis in order
to prevent the condition number to be dominated by large measurement units of some
explanatory variables. Prior to analysis of this data, the explanatory variables have been
scaled following Stewart’s [20] scaling method as

x′
ij =

xij∥∥Xj

∥∥ , i = 1, . . . , p, j = 1, . . . , n. (6.1)

There are other alternative scaling methods which can be found in Montgomery et al. [1],
Stewart [20], and Hadi [5].

The matrix plot in Figure 2 and the collinearity diagnostics presented in Table 1
suggest that this data set has severe multicollinearity problem (CN = 47.78). We would like to
diagnose whether high leverage points are the cause of this problem. As such, it is necessary
to detect the presence of high leverage points in this data set.

The index plot of DRGP (MVE) presented in Figure 3 suggests that observations
6 and 20 are high leverage points. By deleting these two observations from the data set,
CN increases to 52.09. It seems that these two high leverages are collinearity-reducing
observations.

The effect of these two high leverage points on collinearity pattern of the data is further
investigated by applying δ

(D)
i , δi and li with their respective new cutoff point introduced

in (5.1) for detecting high leverage collinearity-reducing observations. Figure 4 illustrates
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Figure 2: Matrix plot of jet turbine engine data set.

Table 1: Collinearity diagnostics of jet turbine engine data set.

Diagnostics 1 2 3 4 5 6

Pearson correlation coefficient
r12 = 0.98 r13 = 0.95 r14 = 0.99 r15 = 0.89 r16 = −0.07 r23 = 0.97
r24 = 0.97 r25 = 0.93 r26 = 0.02 r34 = 0.92 r35 = 0.98 r36 = 0.22
r45 = 0.85 r46 = −0.15 r56 = 0.30

VIF >5 289.11 71.83 168.05 219.97 32.41 8.48
Condition index of X matrix >10 47.78 32.22 18.65 10.17 2.04 1.00

the index plot of these measures. According to this plot, all these three measures have
indicated that observations 6 and 20 as high leverage collinearity-reducing observations.
Nevertheless, besides observations 6 and 20, they detect a few more observations as
collinearity-reducing observations. It is interesting to note that none of the observations
are detected as high leverage collinearity-enhancing observations or collinearity-enhancing
observations.

It is worth mentioning that we do not have any information about the source of the
two existing high leverage collinearity-reducing observations (cases 6 and 20). Therefore,
we cannot control the magnitude and the number of added high leverages points to the
data in order to study the effectiveness of our proposed measures. In this respect, we have
modified this data set in two different patterns following [7]. Habshah et al. [7] indicated
that in the collinear data set, when high leverages exist in just one explanatory variable or in
different positions of two explanatory variables; these leverages will be collinearity-reducing
observations. Thus, the first pattern is when we replaced observations 5, 6, 19, and 20 of X2

with a fixed large value of 50000. The second pattern is created by replacing the large value
of 50000 to X2 for observations 5, 6 and observations 19, 20 of X3.

The DRGP (MVE) index plot for Figure 5 reveals that observations 5, 6, 19, 20 are
detected as high leverage points for modified jet turbine engine data set.
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Figure 3: DRGP(MVE) index plot of jet turbine engine data set.

Figures 6 and 7 present the index plot of δi
(D), δi and li for the first and the second

pattern of the modified jet turbine engine data set. The results of δi
(D) in these figures agree

reasonably well with Bagheri’s et al. [10] findings that when high leverage points exist in just
one explanatory variable (first pattern) or in different positions of two explanatory variables
(second pattern) in collinear data sets, these observations are referred as collinearity-reducing
observations. For both patterns, δi

(D) correctly identified that observations 5, 6, 19, and 20 are
high leverage collinearity-reducing observations. However, for the first pattern, both δi and li
are not successful in detecting all of observations; 5, 6, 19, and 20 as high leverage collinearity-
reducing observations. In the first pattern, they only correctly detected observations 19 and
20 as high leverage collinearity-reducing observations. However, none of the added high
leverage collinearity-reducing observations can be detected by these two measures in the
second pattern. It is important to note that for the first and the second patterns, the values of
δi and li for the observations 5 and 6, and observation 19, respectively are becoming negative.
This indicates that for both patterns, δi and li have wrongly indicated these observations as
suspected high leverage collinearity-enhancing observations.

7. Monte Carlo Simulation Study

In this section, we report a Monte Carlo simulation study that is designed to assess
the performance of our new proposed measure δ

(D)
i in detecting multiple high leverage

collinearity-reducing observations and to compare its performance with two commonly used
measures (δi and li). Following Lawrence and Arthur [21], simulated data sets with three
independent regressors were generated as follows:

xij =
(
1 − ρ2

)
zij + ρzi4, i = 1, . . . , n; j = 1, . . . , 3, (7.1)

where the zij , i = 1, . . . , n; j = 1, . . . , 3 are Uniform (0, 1). The value of ρ2 which represents
the correlation between the two explanatory variables are chosen to be equal to 0.95. This
amount of correlation causes high multicollinearity between explanatory variables. Different
percentage of high leverage points are considered in this study. The level of high leverage
points varied from α = 0.10, 0.20, 0.30. Different sample sizes from n = 20, 40, 60, 100, and
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Figure 4: Index plot of collinearity-influential measures for original jet turbine engine data set.

300 with replication of 10,000 times were considered. Following the idea of Habshah et al.
[7], two different contamination patterns were created. In the first pattern, 100 (α) percent
observations of one of the generated collinear explanatory variables were replaced by high
leverages with unequal weights. In this pattern the explanatory variable and the observation
which needed to be replaced by high leverage point were chosen randomly. The second
pattern is created by replacing the first 100 (α/2) percent of one of the collinear explanatory
variable and the last 100 (α/2) percent of another collinear explanatory variable with high
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Figure 5: Index plot of DRGP (MVE) for modified jet turbine engine data set, (a) pattern1, (b) pattern2.

leverages with unequal weights. The two independent variables are also randomly selected
and the replacement of the high leverage point to the observations in different positions
of explanatory variables was also performed randomly. Following Habshah et al. [11] and
Bagheri et al. [10], the high leverage values with unequal weights in these two patterns
were generated such that the values corresponding to the first high leverage point are kept
fixed at 10 and those of the successive values are created by multiplying the observations
index, i by 10. The three diagnostic measures δi

(D), δi and li with the proposed cutoff point
were introduced to (5.1) and were applied to each simulated data. The results based on the
average values are presented in Table 2. The α and HLCIO in Table 2 indicate, respectively,
the percentage and the number of added high leverage collinearity-reducing observations to
the simulated data sets. Furthermore, the number of high leverage points which is detected
by DRGP (MVE) is denoted as HL. It is interesting to point out that the percentage of
the high leverage point, p∗ii detected by DRGP (MVE) denoted as HL in Table 2 is more
than the percentage of the added high leverage collinearity-reducing observations to the
simulated data sets, α. However, by increasing the sample size and the percentage of added
high leverage points to the simulated data, both percentages became exactly the same.
The CN1 and the CN2 indicate the condition number of X matrix without and with high
leverage collinearity-reducing observations, respectively. Moreover, Cut(θi)1 and Cut(θi)2
represent the number of high leverage collinearity-reducing observations and the number
of collinearity-reducing observations which have been detected by cutoff θi.

Table 2 clearly shows the merit of our new proposed measure for high leverage
collinearity-influential measure exhibited in (4.1). It can be observed that no other measures
that were considered in this experiment performed satisfactorily except for our proposed
measure. The simulated data sets have been created collinearly which produced large
values of CN1, condition number of simulated data sets without high leverage points
(CN1 > 30). The added multiple high leverage collinearity-influential observations reduces
multicollinearity among the simulated explanatory variables; this reduction may result from
the smaller values of CN2 compared to CN1. It is important mentioning that the reduction of
the CN2 values for the second pattern was much more significant compared to CN2 for the
first pattern. We can conclude that the influence of the added high leverage points to different
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Figure 6: Index plot of collinearity-influential measures for the first modified pattern of jet turbine engine
data set.

positions of two explanatory variables for changing themulticollinearity pattern of simulated
data, is more significant compared to the added high leverage points to only one explanatory
variable.

The results of Table 2 for the first pattern of simulated data sets indicate that for small
sample sizes (n = 20) our proposed measure could not indicate the exact amount of high
leverage collinearity-reducing observations. However, by increasing the sample size and the
percentage of added high leverage points to the simulated data sets, the measure is capable
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Table 2: Collinearity-influential measures for simulated data sets.

(a)

Measures n = 20 n = 40
Pattern1 Pattern2 Pattern1 Pattern2

α 10.00 20.00 30.00 10.00 20.00 30.00 10.00 20.00 30.00 10.00 20.00 30.00
HLCIO 2.00 4.00 6.00 2.00 4.00 6.00 4.00 8.00 12.00 4.00 8.00 12.00
HL 2.80 4.00 6.00 2.80 4.00 6.00 4.25 8.00 12.00 4.25 8.00 12.00
CN1 49.53 53.27 51.72 49.53 53.27 51.72 40.91 40.33 40.02 40.91 40.33 40.02
CN2 38.64 42.78 32.90 1.76 1.57 1.61 31.66 32.50 33.50 1.53 1.52 1.64
Cut(δ(D)

i )1 1.80 3.67 5.96 1.60 3.50 5.97 4.00 8.00 11.97 4.00 8.00 11.99
Cut(δ(D)

i )2 0.20 0.67 0.00 0.20 0.17 0.00 0.76 1.00 0.00 0.86 1.99 0.00
Cut(δi)1 0.00 0.17 0.99 1.20 0.00 0.00 0.04 0.00 0.01 0.00 0.00 0.00
Cut(δi)2 1.20 1.00 1.98 0.00 0.00 0.00 1.35 2.00 0.51 0.00 0.00 0.00
Cut(li)1 0.00 0.17 0.99 1.20 0.00 0.00 0.04 0.00 0.01 0.00 0.00 0.00
Cut(li)2 1.00 0.84 1.98 0.00 0.00 0.00 1.28 2.00 0.51 0.00 0.00 0.00

(b)

Measures n = 60 n = 100
Pattern1 Pattern2 Pattern1 Pattern2

α 10.00 20.00 30.00 10.00 20.00 30.00 10.00 20.00 30.00 10.00 20.00 30.00
HLCIO 6.00 12.00 18.00 6.00 12.00 18.00 10.00 20.00 30.00 10.00 20.00 30.00
HL 6.42 12.06 18.11 6.42 12.06 18.11 10.43 20.10 30.00 10.43 20.10 30.00
CN1 38.58 37.62 39.72 38.58 37.62 39.72 36.87 38.08 37.97 36.87 38.08 37.97
CN2 30.76 30.83 32.56 1.45 1.56 1.65 29.28 31.03 31.58 1.38 1.52 1.64
Cut(δ(D)

i )1 6.00 12.00 18.00 6.00 12.00 17.89 10.00 20.00 30.00 10.00 20.00 30.00
Cut(δ(D)

i )2 0.90 0.16 0.05 0.87 0.25 0.05 1.74 0.65 0.08 1.83 0.69 0.00
Cut(δi)1 0.19 0.40 0.58 0.00 0.00 0.00 0.34 0.42 0.99 0.00 0.00 0.00
Cut(δi)2 1.57 1.37 1.26 0.00 0.00 0.00 3.15 2.48 2.16 0.00 0.00 0.00
Cut(li)1 0.19 0.40 0.58 0.00 0.00 0.00 0.26 0.38 0.99 0.00 0.00 0.00
Cut(li)2 1.48 1.28 1.16 0.00 0.00 0.00 3.07 2.35 2.16 0.00 0.00 0.00

(c)

Measures n = 300
Pattern1 Pattern2

α 10.00 20.00 30.00 10.00 20.00 30.00
HLCIO 30.00 60.00 90.00 30.00 60.00 90.00
HL 30.00 60.00 90.00 30.00 60.00 90.00
CN1 37.89 38.31 37.88 37.89 38.31 37.88
CN2 30.92 31.60 32.23 1.34 1.49 1.66
Cut(δ(D)

i )1 30.00 60.00 90.00 30.00 60.00 90.00
Cut(δ(D)

i )2 3.61 0.80 0.00 4.09 0.73 0.00
Cut(δi)1 0.99 1.69 2.79 0.00 0.00 0.00
Cut(δi)2 6.63 6.58 7.13 0.00 0.00 0.00
Cut(li)1 0.99 1.61 2.66 0.00 0.00 0.00
Cut(li)2 6.63 6.58 7.13 0.00 0.00 0.00
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Figure 7: Index plot of collinearity-influential measures for the second modified pattern of jet turbine
engine data set.

of detecting the exact amount of added high leverage collinearity-reducing observations.
It is evident by looking at the value of Cut(δi

(D))1 is exactly the same as HLCIO. On the
other hand, the other two collinearity-influential measures, δi and li, failed to indicate the
exact amount of high leverage collinearity-reducing observations. It is worth noting that all
of these three measures also detect some points as collinearity-reducing observations (see
the Cut(θi)2 in Table 2, where θi is δi

(D), δi or li). Similar results will be obtained if pattern
1 can be drawn for the second pattern of the simulated data sets. Compared to the first
contamination pattern, it is clearly seen that δi and li almost completely failed to detect either



Mathematical Problems in Engineering 15

high leverage collinearity-reducing observations or collinearity-reducing observations. Our
proposed measure did a credible job where it is successfully detect high leverage collinearity-
reducing observations for both contaminated patterns.

8. Conclusion

The presence of high leverage points and multicollinearity are inevitable in real data sets
and they have an unduly effects on the parameter estimation of multiple linear regression
models. These leverage points may be high leverage collinearity-enhancing or high leverage
collinearity-reducing observations. It is crucial to detect these observations in order to reduce
the destructive effects of multicollinearity on regression estimates which lead to misleading
conclusion. It is easier to diagnose the presence of high leverage points which increase the
collinearity among the explanatory variables compared to those which reduce collinearity. In
this respect, it is very important to explore a sufficient measure with an accurate cutoff point
for detecting high leverage collinearity-reducing observations. In this paper, we proposed
a precise cutoff point for a novel existing measure to detect high leverage collinearity-
reducing observations. By using an engineering data and a simulation study, we confirmed
that the widely used measures failed to detect multiple high leverage collinearity-reducing
observations. Furthermore, our proposed cutoff point successfully detects multiple high
leverage collinearity-reducing observations.
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