
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 534743, 17 pages
doi:10.1155/2012/534743

Research Article
Cluster Synchronization for Linearly Coupled
Complex Networks with Identical and
Nonidentical Nodes

Yi Zhao, Jianwen Feng, and Jingyi Wang

College of Mathematics and Computational Science, Shenzhen University,
Guangdong Shenzhen 518060, China

Correspondence should be addressed to Jianwen Feng, fengjw@szu.edu.cn

Received 11 April 2012; Accepted 7 July 2012

Academic Editor: Hai L. Liu

Copyright q 2012 Yi Zhao et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The cluster synchronization of linearly coupled complex networks with identical and nonidentical
nodes is studied. Without assuming symmetry, we proved that these linearly coupled complex
networks could achieve cluster synchronization under certain pinning control schemes. Sufficient
conditions guaranteeing cluster synchronization for any initial values are derived by using
Lyapunov function methods. Moreover, the adaptive feedback algorithms are proposed to adjust
the control strength. Several numerical examples are given to illustrate our theoretical results.

1. Introduction

Recently, an increasing interest has been devoted to the study of complex networks. Among
them, synchronization is the most interesting. In fact, synchronization of complex networks
has been found to be a universal phenomenon in nature and has important potential
applications in real-world dynamical systems. Great interests and attentions have been
received for the synchronization of complex networks inmany research and application fields
including secure communication, seismology, parallel image processing, chemical reaction,
and others [1–7].

There are many widely studied synchronization patterns, such as complete synchro-
nization [8], lag synchronization [9], cluster synchronization [10], phase synchronization
[11], and partial synchronization [12] Among them, the studies on cluster synchronization
have received more and more attentions. The cluster synchronization requires that the
coupled oscillators split into subgroups called clusters, such that the oscillators synchronize
with one another in the same cluster, but there is no synchronization among different clusters,
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which could describe the behaviors of the complex network in the real world. For instance,
the metabolic, neural, or software networks containing some different function communities.
Thus, it is a natural idea to consider the cluster synchronization of such community networks.

The complex network we considered in this paper is the linearly coupled ordinary
differential equations (LCODEs). In fact, LCODEs are a large class of dynamical systems
with continuous time and state, as well as discrete space, which are widely used to describe
coupling oscillators. Nowadays, cluster synchronization of different kinds of LCODEs has
been widely studied, and many results have already exist on the various properties of such
problem. For instance, Ma et al. [13] constructed a novel coupling scheme with cooperative
and competitive weight couplings that guarantees the cluster synchronization of any
connected networks with identical nodes. The authors also derived a sufficient condition for
the global stability of cluster synchronization. In [14], Wu et al. have discussed the problem of
driving linearly coupled networks to an arbitrarily selected cluster synchronization pattern
via pinning control. They introduced a single negative feedback controller for each cluster to
pin the coupled system to the assigned cluster synchronization pattern for any initial values.
However, in most cases, couplings between nodes are not the same even if the diffusive
condition is still satisfied. Nodes usually receive instantaneous information as well as delayed
information from their neighbors. Thus, it is a nature idea to study the synchronization of the
networks with both delayed and nondelayed coupling. In this paper, we would investigate
cluster synchronization of LCODEs with both delayed and nondelayed coupling under
pinning control scheme. First, we assume all the node in LCODEs are identical. By utilizing
the Lyapunov stability method, the global stability of cluster synchronization in networks is
investigated, and several sufficient conditions for the global stability are given. Furthermore,
we propose an adaptive feedback algorithms to adjust the control strength for LCODEs.

Since in the real world, many networks contain some different function communities
and the local dynamics between two function communities are different. For instances, in
metabolic, neural, or software community networks, the individual nodes in each community
can be viewed as the identical functional units, whereas the nodes in different communities
are different since they have different functions [15]. One method to solve such problem is to
consider the cluster synchronization of community networks with nonidentical nodes.There
have been already some papers focused on sufficient conditions for the global stability of
cluster synchronization of some related networks. A number of sufficient conditions were
similarly obtained by Lu et al. [16] for the cluster synchronization of dynamical networks
with community structure and nonidentical nodes in the presence of time delays by using
a certain feedback control scheme. Lu et al. [17] studied the cluster synchronization of
general bi-directed networks with nonidentical clusters and derived sufficient conditions
for achieving local cluster synchronization of networks. The authors also discovered a
relationship between the cluster synchronizability of a network and its intra-to-intercluster
link ratio with the help of numerical examples. Recently, Wang et al. [18] considered the
cluster synchronization of dynamical networks with community structure and nonidentical
nodes and with identical local dynamics for all individual nodes in each community by
using pinning control schemes. In this paper, we also investigate cluster synchronization of
LCODEs with nonidentical nodes under pinning control scheme. By utilizing the Lyapunov-
Krasovskii stability method, the global stability of cluster synchronization in networks is
investigated, and several sufficient conditions for the global stability are given. Compared
with [16–18], the complex network model we considered in this paper is more general. And
moreover, the coupling matrices with and without time delay are asymmetric.
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The paper is organized as follows. In Section 2, some necessary and useful definitions
and lemmas are given. In Section 3, we study the global cluster synchronization of LCODEs
with identical nodes and give a sufficient condition for it. Then, the adaptive feedback
algorithms on control strength are proposed to achieve cluster synchronization in the
complex network. In Section 4 cluster synchronization of LCODEs with nonidentical nodes is
investigated and sufficient conditions are derived to achieve cluster synchronization. And the
adaptive feedback algorithms on control strength are also proposed. In Section 5, numerical
simulation are presented. We conclude the paper in Section 6.

2. Preliminaries

First, we introduce the mathematical definition of cluster synchronization.

Definition 2.1 (see [14]). Let {U1, . . . , Um} be a partition of the set {1, 2, . . . ,N} into d
nonempty subsets, that is,Ul /=φ and

⋃m
l=1 = {1, 2, . . . ,N}. For i ∈ {1, 2, . . . ,N}, let î denote the

subscript of the subset in which the number i is, that is, i ∈ Uî. A network with N identical
oscillators is said to realize m-cluster synchronization with the partition {U1, . . . , Um} if, for
any initial values, the state variables of the oscillators satisfy limt→∞||xi(t) − xj(t)|| = 0 for
î = ĵ and limt→∞||xi(t) − xj(t)||/= 0 for î /= ĵ.

For convenience of the statement to our main results, we now make some definitions
for a class of functions and a class of matrices.

Definition 2.2 (see [19–21]). Suppose that f(x, t) is a class of continuous functions f : Rn ×
[0,∞) → Rn. Let P = diag{p1, p2, . . . , pn} be a positive definite diagonal matrix and Δ =
diag{δ1, δ2, . . . , δn} be a diagonal matrix. f(x, t) ∈ QUAD(P,Δ, η) if and only if

(
x − y

)T
P
((
f(x, t) − f

(
y, t
)) −Δ

(
x − y

)) ≤ −η(x − y
)T(

x − y
)
, (2.1)

holds for some η > 0, where x, y ∈ Rn and t > 0.

Definition 2.3 (see [14]). For N ×N matrix

A =

⎡

⎢
⎢
⎢
⎣

A11 A11 . . . A1d

A21 A22 . . . A2d
...

...
. . .

...
Ad1 Ad2 . . . Add

⎤

⎥
⎥
⎥
⎦
, (2.2)

whereAuv ∈ Rku×kv , u, v = 1, 2, . . . , d. If each blockAuv is a zero-row-sum matrix, then we say
that A ∈ M1(k).

For an asymmetric matrix with zero-row-sums, we have the following.

Lemma 2.4 (see [19]). LetQ andR be two symmetric matrices, and matrix S has suitable dimension.
Then

[
Q S
ST R

]

< 0, (2.3)

if and only if both R < 0 and Q − SR−1ST < 0.
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3. Cluster Synchronization of LCODEs with Identical Nodes

The complex network we considered in this section can be described as

ẋi(t) = f(xi(t), t) + c
N∑

j=1

aijxj(t) + c
N∑

j=1

bijxj(t − τ), i = 1, 2, . . . ,N, (3.1)

where N is the networks size, xi = (x1i, x2i, . . . , xni)
T ∈ Rn is the state vector of the ith

oscillator, f : Rn × [0,∞) → Rn is a continues map, and c > 0 is the coupling strength. τ
is the time delay. A = (aij) ∈ Rn×n and B = (bij) ∈ Rn×n are the coupling configuration matrix
with zero-sum rows. It represents the topological structure of the network, in which aij > 0
if there is a connection from node j to node i (i /= j) and is zero otherwise. B has the same
properties. Here,A and B need not be symmetric since asymmetric topological structures are
most common in the real world.

Without loss of generality, we set the partition of nodes U1 = {1, 2, . . . , k1}, U2 =
{k1 + 1, . . . , k1 + k2}, . . ., Um = {k1 + · · · + km−1 + 1, . . . , k1 + · · · + km−1 + km}, where 1 <
m < N, 1 < kl < N and

∑m
l=1 kl = N. Let s1(t), . . . , sm(t) be the m special solutions of

the homogenous system ṡ(t) = f(s(t), t), which satisfy limt→∞||si(t) − sj(t)||/= 0 for i /= j.
By using similar pinning control method in [14], we let the controlled oscillator set J be
J = {k1, k1 + k2, . . . , k1 + k2 + · · · + km}, which means we only put the control on the last
node of each partition Ul. We use linear negative feedback controllers and the LCODEs (3.1)
become

ẋi(t) = f(xi(t), t) + c
m∑

j=1

aijxj(t) + c
N∑

j=1

bijxj(t − τ) − ξi(xi(t) − si(t)), i ∈ J,

ẋi(t) = f(xi(t), t) + c
m∑

j=1

aijxj(t) + c
N∑

j=1

bijxj(t − τ), i /∈ J,

(3.2)

where ξu > 0 with u ∈ J are the control strengths.
In this section, sufficient conditions are derived for the attainment of cluster

synchronization for any initial value by control pinning, that is, by making

lim
t→∞
∣
∣
∣
∣xi(t) − sî(t)

∣
∣
∣
∣ = 0 for i = 1, 2, . . . ,N. (3.3)

Theorem 3.1. Suppose that the coupling matrices A and B in (3.2) satisfy A ∈ M1(k) and
B ∈ M1(k). Let P = diag{p1, p2, . . . , pn} be a positive definite diagonal matrix and Δ =
diag{δ1, δ2, . . . , δn} be a diagonal matrix such that f(x, t) ∈ QUAD(P,Δ, η). Define AS = (A +
AT )/2. For k = 1, 2, . . . , n, if

(
Λ + pkδk

)
I + cpkA

S − pkΞ +
c2

4Λ
p2kBB

T < 0, (3.4)
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where Ξ = diag{ξ̃1, ξ̃2, . . . , ξ̃N} satisfies

ξ̃i =

{
ξi, i ∈ J

0, i /∈ J.
(3.5)

Then, for any initial values, the solution x1(t), x2(t), . . ., xN(t) of the system (3.1) under the control
(3.2) can achieve cluster synchronization and satisfies (3.3).

Proof. We define ei(t) = xi(t) − sî(t), where i = 1, 2, . . . ,N. Denote ek(t) =
(ek1(t), ek2(t), . . . , ekN(t))T for k = 1, 2, . . . n. Since A ∈ M1(k), which means that

∑
i∈Ul

aij = 0
hold for all i = 1, 2, . . . ,N and l = 1, 2, . . . , m. It is readily seen that

N∑

j=1

aijxj =
m∑

l=1

∑

j∈Ul

aijxj =
m∑

l=1

∑

j∈Ul

aij

(
xj − sl + sl

)

=
m∑

l=1

∑

j∈Ul

aijej +
m∑

l=1

∑

j∈Ul

aijsl =
N∑

j=1

aijej .

(3.6)

And similarly,
∑N

j=1 bijxj =
∑N

j=1 bijej . Thus, ei(t) for i = 1, . . .N satisfies the following
differential equation:

ėi(t) = f(xi(t), t) − f
(
sî(t), t

)
+ c

m∑

j=1

aijej(t) + c
N∑

j=1

bijej(t − τ) − ξiei(t), i ∈ J,

ėi(t) = f(xi(t), t) − f
(
sî(t), t

)
+ c

m∑

j=1

aijej(t) + c
N∑

j=1

bijej(t − τ), i /∈ J,

(3.7)

Choose a Lyapunov function as

V (t) =
1
2

N∑

i=1

(

ei(t)TPei(t) + 2Λ
∫ t

t−τ
ei(θ)

Tei(θ)dθ

)

. (3.8)
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Note that f(x, t) ∈ QUAD(P,Δ, η). We differentiate (3.8) along (3.7) and have

dV

dt
=

N∑

i=1

ei(t)TP ėi(t) + Λ
N∑

i=1

ei(t)Tei(t) −Λ
N∑

i=1

eTi (t − τ)ei(t − τ)

=
N∑

i=1

ei(t)TP

⎡

⎣f(xi(t), t) − f
(
sî(t), t

)
+ c

N∑

j=1

aijej(t) + c
N∑

j=1

bijej(t − τ)

⎤

⎦

−
∑

i∈J
ei(t)TPξiei(t) + Λ

N∑

i=1

ei(t)Tei(t) −Λ
N∑

i=1

eTi (t − τ)ei(t − τ)

≤ −η
N∑

i=1

ei(t)Tei(t) +
N∑

i=1

ei(t)TPΔei(t) + c
N∑

i=1

ei(t)TP
N∑

j=1

aijej(t)

+ c
N∑

i=1

ei(t)TP
N∑

j=1

bijej(t − τ) −
∑

i∈J
ξiei(t)TPei(t)

+ Λ
N∑

i=1

ei(t)Tei(t) −Λ
N∑

i=1

eTi (t − τ)ei(t − τ)

= −η
N∑

i=1

ei(t)Tei(t) +
n∑

k=1

pkδke
k(t)Tek(t) + c

n∑

k=1

pke
k(t)TASek(t)

−
n∑

k=1

pke
k(t)TΞek(t) + c

n∑

k=1

pke
k(t)TBek(t − τ)

+ Λ
n∑

k=1

ek(t)Tek(t) −Λ
n∑

i=1

ek(t − τ)Tek(t − τ)

= −η
N∑

i=1

ei(t)Tei(t) +
n∑

k=1

(
ek(t)T , ek(t − τ)T

)

×
⎡

⎣

(
Λ + pkδk

)
I + cpkA

S − pkΞ
c

2
pkB

c

2
pkB

T −ΛI

⎤

⎦
(
ek(t), ek(t − τ)

)
,

(3.9)

where Ξ is defined in (3.5).
If (3.4) is satisfied, from Lemma 2.4, it can be easily seen that dV/dt < 0, and thus (3.2)

could achieve cluster synchronization.

By using adaptive adjustments, we can find relatively small control strength to realize
cluster synchronization.We regard the control strength of the network functions varying with
time. Then, we could design the adaptive control strength. Then, we have the following result.
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Theorem 3.2. Suppose that the coupling matrixA and B in (3.2) satisfyA ∈ M1(k) and B ∈ M1(k).
The control strength ξi in (3.2) is defined as

ξ̇i(t) = γie
T
i (t)Pei(t) for i ∈ J, (3.10)

where γi is a positive constant. Let P = diag{p1, p2, . . . , pn} be a positive definite diagonal matrix
and Δ = diag{δ1, δ2, . . . , δn} be a diagonal matrix such that f(x, t) ∈ QUAD(P,Δ, η). For k =
1, 2, . . . , n, if

(
Λ + pkδk

)
I + cpkA

S − pkΞ∗ +
c2

4Λ
p2kBB

T < 0, (3.11)

where Ξ∗ = diag{ξ∗1, ξ∗2, . . . , ξ∗N}. ξ∗i is a constant and satisfies ξ∗i = 0 if i /∈ J . Then, for any initial
values, the solution x1(t), x2(t), . . ., xN(t) of the system (3.1) under the control (3.2) can achieve
cluster synchronization and satisfies (3.3).

Proof. Choose a Lyapunov function as

V (t) =
1
2

N∑

i=1

(

ei(t)TPei(t) + 2Λ
∫ t

t−τ
ei(θ)

Tei(θ)dθ

)

+
∑

i∈J

(
ξi − ξ∗i

)2

2γi
. (3.12)

Note that f(x, t) ∈ QUAD(P,Δ, η). We differentiate (3.12) along (3.7) and have

dV

dt
=

N∑

i=1

ei(t)TP ėi(t) + Λ
N∑

i=1

ei(t)Tei(t) −Λ
N∑

i=1

eTi (t − τ)ei(t − τ)

+
∑

i∈J

(
ξi − ξ∗i

)
eTi (t)Pei(t)

=
N∑

i=1

ei(t)TP

⎡

⎣f(xi(t), t) − f
(
sî(t), t

)
+ c

N∑

j=1

aijej(t) + c
N∑

j=1

bijej(t − τ)

⎤

⎦

−
∑

i∈J
ei(t)TPξ∗i ei(t) + Λ

N∑

i=1

ei(t)Tei(t) −Λ
N∑

i=1

eTi (t − τ)ei(t − τ).

(3.13)

By using similar calculations in (3.9), we have

dV

dt
≤ −η

N∑

i=1

ei(t)Tei(t) +
n∑

k=1

(
ek(t)T , ek(t − τ)T

)

×
⎡

⎣

(
Λ + pkδk

)
I + cpkA

S − pkΞ∗ c

2
pkB

c

2
pkB

T −ΛI

⎤

⎦
(
ek(t), ek(t − τ)

)
.

(3.14)

Noticing the inequalities in (3.11), we could obtain dV (t)/dt < 0. Thus, we get xi(t) → sî(t),
and ξ̇i(t) → 0. By Cauchy convergence principle, ξi(t) converges.
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4. Cluster Synchronization of LCODEs with Nonidentical Nodes

The complex network considered in this section is

ẋi(t) = fμi(xi(t), t) + c
N∑

j=1

aijxj(t) + c
N∑

j=1

bijxj(t − τ), i = 1, 2, . . . ,N, (4.1)

where xi = (x1i, x2i, . . . , xni)
T ∈ Rn are the state variables of node i. The complex network (4.1)

has N nodes and m communities with N > m ≥ 2. If node i belongs to the jth community,
thenwe let μi = j. We denote byUi the set of all nodes in the ith community and let ŨA

i , which
is the subset ofUi, be the index set of all nodes in the ith community having direct connections
to other communities in A. And by the similar way, we can define ŨB

i . The function fμi(·)
describes the local dynamics of nodes in the μith community, which is differentiable and
capable of performing abundant dynamical behaviors. For any pair of indices i and j, if
μi /=μj , which means that node i and node j belong to different communities, then fμi /= fμj .
The constant c > 0 denotes the coupling strength. τ is the time delay in couplings. For
A = (aij) ∈ Rn×n and B = (bij) ∈ Rn×n are the coupling configuration matrices with zero-
sum rows, which represent the topological structure of the network. Take A for an example
and B has the same properties. aij > 0 if there is a connection and is zero otherwise. Also, A
and B need not be symmetric.

Let ui(t) ∈ Rn, i = 1, . . . ,N, be the control inputs, then the controlled dynamical
network with respect to (4.1) can be described by

ẋi(t) = fμi(xi(t), t) + c
N∑

j=1

aijxj(t) + c
N∑

j=1

bijxj(t − τ) + ui(t), i = 1, 2, . . . ,N. (4.2)

We define the error variables by ei(t) = xi(t) − sμi(t) for i = 1, 2, . . . ,N, where sμi =
(s1μi , s2μi , . . . , snμi)

T ∈ Rn satisfies ṡμi(t) = fμi(sμi(t)), which describes the identical local
dynamics for the nodes in the μith community. The N nodes are said to achieve cluster
synchronization if

lim
t→∞

||ei(t)|| = 0, i = 1, . . . ,N, (4.3)

which means that the nodes within μith community are fully synchronized to dynamic
state sμi , while nodes in separate communities behave independently. Define a set M =
(sμ1 , sμ2 , . . . , sμN ) ∈ Rn×N as the cluster synchronization manifold for network (4.2). In fact,
condition (4.3) implies that the manifold M is stable.

According to the above definition of error variables, we can write the corresponding
error system with respect to (4.2) as

ėi(t) = fμi(xi(t)) − fμi

(
sμi(t)

)
+ c

N∑

j=1

aijej(t) + c
N∑

j=1

aijsμj (t)

+ c
N∑

j=1

bijej(t − τ) + c
N∑

j=1

bijsμj (t − τ) + ui(t), i = 1, . . . ,N.

(4.4)
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Since A and B are zero-row-sum matrices, we have

N∑

j=1

aijsμj (t) = 0, i ∈ Ui \ ŨA
μi
,

N∑

j=1

bijsμj (t) = 0, i ∈ Ui \ ŨB
μi
.

(4.5)

Let di stands for the feedback control strength. We design a local feedback control as

ui(t) =

⎧
⎪⎨

⎪⎩

l − cdA
i ei(t) − c

N∑

j=1
aijsμj (t) − cdB

i ei(t − τ) − c
N∑

j=1
bijsμj (t − τ), i ∈ ŨA

μi

⋃
ŨB

μi

0, otherwise,
(4.6)

where dA
i = di > 0 for i ∈ ŨA

μi
and dB

i = di > 0 for i ∈ ŨB
μi
, which means we put control on

the nodes that have communications with nodes in other different clusters. By intuition, the
terms cdA

i ei(t) and cdB
i ei(t − τ) in (4.6) is used to synchronize all nodes in the same cluster,

while the remainder terms c
∑N

j=1 aijsμj (t) and c
∑N

j=1 bijsμj (t−τ) in the controller is to weaken
the mutual influences among clusters at the intersection nodes. It is easy to verify that the
manifold M is an invariant manifold for the network (4.2).

Theorem 4.1. Let P = diag{p1, p2, . . . , pn} be a positive definite diagonal matrix and Δ =
diag{δ1, δ2, . . . , δn} be a diagonal matrix such that fμi(x, t) ∈ QUAD(P,Δ, η) for 1 ≤ i ≤ N.
For k = 1, 2, . . . , n, if

(
Λ + pkδk

)
I + cpk

(
AS −DA

)
+

c2

4Λ
p2k(B −DB)(B −DB)T < 0, (4.7)

where DA = diag{dA
1 , d

A
2 , . . . , d

A
N} and DB = diag{dB

1 , d
B
2 , . . . , d

B
N}. Λ is a given positive constant.

Then, for any initial values, the solution x1(t), x1(t), . . ., xN(t) of the system (4.1) under the control
(4.6) can achieve cluster synchronization and satisfies (4.3).

Proof. Denote ek(t) = (ek1(t), ek2(t), . . . , ekN(t))T , k = 1, 2, . . . , n. Define a Lyapunov-
Krasovskii function as

V (t) =
1
2

N∑

i=1

{

ei(t)TPei(t) + 2Λ
∫ t

t−τ
ei(θ)

Tei(θ)dθ

}

. (4.8)



10 Mathematical Problems in Engineering

Differentiating (4.8) along the solution of error system (4.4) under the control (4.6)
gives

dV (t)
dt

=
N∑

i=1

ei(t)TP ėi(t) + Λ
N∑

i=1

ei(t)Tei(t) −Λ
N∑

i=1

ei(t − τ)Tei(t − τ)

=
N∑

i=1

ei(t)TP

⎛

⎝fμi(xi(t)) − fμi

(
sμi(t)

)
+ c

N∑

j=1

aijej(t)

⎞

⎠

−
N∑

i=1

cdA
i ei(t)

TPei(t) +
N∑

i=1

ei(t)TPc
N∑

j=1

bijej(t − τ) −
N∑

i=1

cdB
i ei(t)

TPej(t − τ)

+ Λ
N∑

i=1

ei(t)Tei(t) −Λ
N∑

i=1

ei(t − τ)Tei(t − τ)

=
N∑

i=1

ei(t)TP
(
fμi(xi(t)) − fμi

(
sμi(t)

) −Δei(t)
)
+

N∑

i=1

ei(t)TPΔei(t)

+
N∑

i=1

ei(t)TPc
N∑

j=1

aijej(t) −
N∑

i=1

cdA
i ei(t)

TPei(t) +
N∑

i=1

ei(t)TPc
N∑

j=1

bijej(t − τ)

−
N∑

i=1

cdB
i ei(t)

TPej(t − τ) + Λ
N∑

i=1

ei(t)Tei(t) −Λ
N∑

i=1

ei(t − τ)Tei(t − τ)

≤ −η
N∑

i=1

ei(t)Tei(t) +
n∑

k=1

pkδke
k(t)Tek(t) + c

n∑

k=1

pke
k(t)TASek(t)

− c
n∑

k=1

pke
k(t)TDAe

k(t) + c
n∑

k=1

pke
k(t)T (B −DB)ek(t − τ)

+ Λ
N∑

i=1

ei(t)Tei(t) −Λ
N∑

i=1

ei(t − τ)Tei(t − τ)

= −η
N∑

i=1

ei(t)Tei(t) +
n∑

k=1

pke
k(t)T
(
δkIN + c

(
AS −DA

))
ek(t)

+ c
n∑

k=1

pke
k(t)T (B −DB)ek(t − τ) + Λ

N∑

i=1

ei(t)Tei(t)

−Λ
N∑

i=1

ei(t − τ)Tei(t − τ)

= −η
N∑

i=1

ei(t)Tei(t) +
n∑

k=1

(
ek(t)T , ek(t − τ)T

)

×
⎡

⎣

(
Λ + pkδk

)
I + cpk

(
AS −DA

) c

2
pk(B −DB)

c

2
pk(B −DB)T −ΛI

⎤

⎦
(
ek(t), ek(t − τ)

)
.

(4.9)
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Figure 1: The controlled complex network (3.2). (a) the topological structure of matrix A; (b) The sketch of
matrix A: the point (i, j) is denoted as “·” if aij > 0 and the point (i, j) is denoted as “×” if aij < 0; (c) the
topological structure of matrix B; (d) the sketch of matrix B: the point (i, j) is denoted as “·” if bij > 0 and
the point (i, j) is denoted as “×” if bij < 0.

Noticing the inequalities of (4.7), from Lemma 2.4, we obtain

dV (t)
dt

≤ −η
N∑

i=1

ei(t)Tei(t) < 0. (4.10)

Thus, we get xi(t) → sμi(t).

5. Numerical Simulation

In this section, we give numerical simulations to verify the theorems obtained in Section 3
and Section 4. Consider the unified system,

f(x, t, α) =

⎧
⎪⎪⎨

⎪⎪⎩

(25α + 10)(x2 − x1),
(28 − 35α)x1 − x1x3 + (29α − 1)x2,

x1x2 − 8 + α

3
x3.

(5.1)
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Figure 2: The controlled complex network (3.2). (a, b, c) The behavior of x(t) in 3 communities. (d) The
error E(t).

The system is chaotic for all α ∈ [0, 1]. If α = 0, the system (5.1) is Lorenz’s attractor. The
ultimate bound and positively invariant set for system (5.1) is given in [22]. For 0 ≤ α < 1/29,
x2
2 + (x3 − 28 + 35α)2 ≤ C2 and x2

1 ≤ C2, where

C =
(28 − 35α)(8 + α)

2
√
3(5 + 88α)(1 − 29α)

. (5.2)

Thus, we have |x1| ≤ C, |x2| ≤ C and |x3| ≤ C + 28 − 35α. Let P = diag{p1, p2, p3} and x − s =
(e1, e2, e3)

T , we obtain

(x − s)TP
(
f(x, t, α) − f(s, t, α)

)

≤ −(25α + 10)p1e21 + (29α − 1)p2e22 −
8 + α

3
p3e

2
3

+
(
(25α + 10)p1 + (28 − 35α)p2 + p2(C + 28 − 35α)

)|e1e2|
+ p3C|e1e3| +

(
p3 − p2

)
x1e2e3 +

(
p2 − p3

)
e1e2e3.

(5.3)
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Figure 3: The controlled complex network (3.2). (a,b,c) The behavior of x(t) in 3 communities. (d) The
error E(t). (e) The adaptive control strength ξ(t).
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Figure 4: The controlled complex network (3.2). (a) The topological structure of matrix A; (b) the sketch of
matrix A: the point (i, j) is denoted as “·” if aij > 0; (c) the topological structure of matrix B; (d) the sketch
of matrix B: the point (i, j) is denoted as “·” if bij > 0.

Let p2 = p3, we have

(x − s)TP
(
f(x, t, α) − f(s, t, α)

)

≤
(

−(25α + 10)p1 +
p3C

2
ϑ +

(25α + 10)p1 + (28 − 35α)p2 + p2(C + 28 − 35α)
2

ν

)

e21

+
(

(29α − 1)p2 +
(25α + 10)p1 + (28 − 35α)p2 + p2(C + 28 − 35α)

2ν

)

e22

+
(

−8 + α

3
p3 +

p3C

2ϑ

)

e23

≤ (p1δ1 − η
)
e21 +
(
p2δ2 − η

)
e22 +
(
p3δ3 − η

)
e23.

(5.4)

Set P = diag{5, 1, 1}, Δ = diag{23, 36, 17},ε = 2 and ϑ = 1. Let α = 0, α = 0.01 and
α = 0.03 respectively in (5.1) since the nodes are nonidentical in different communities.
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Figure 5: The controlled complex network (3.2). (a, b, c) The behavior of x(t) in 3 communities. (d) The
error E(t).

If α = 0, we have η1 = 3.2074 and f(x, 0) ∈ QUAD(P,Δ, η1). If α = 0.01, we have
η2 = 2.0243 and f(x, 0.01) ∈ QUAD(P,Δ, η2). If α = 0.03, we have η3 = 0.1547 and
f(x, 0.02) ∈ QUAD(P,Δ, η3).

5.1. Simulation to Cluster Synchronization with Identical Nodes

In this simulation, we consider a network with 30 nodes and 3 communities. It is too high
and we do not show it out. We show the topology structure in Figure 1.

Let s1(t), s2(t), s3(t) be the solution of the uncoupling system ṡi(t) = f(si(t), t)
with initial values s1(0) = [1, 2, 3]T , s2(0) = [4, 5, 6]T , and s3(0) = [7, 8, 9]T . Define
E(t) = (1/30)

∑30
i=1 ||xi(t) − sĩ(t)||2. If limt→∞E(t) = 0, the complex network achieves cluster

synchronization.
For the controlled dynamic network (4.6). Let τ = 0.1, ξi = 275, i ∈ J =

{7, 8, 9, 10, 11, 12, 13, 28, 29, 30}, c = 5, Λ = 0.0934 in the Theorem 3.1. It can be easily verified
that such parameters fits (4.7).
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Figures 2(a), 2(b), and 2(c) give the behavior of x(t), as well as Figure 2(d) which
shows how E(t) evolve in pinning united chaotic attractor complex network with initial
values chosen randomly in the interval [−10, 10].

For the controlled dynamic network (4.6)with adaptive control strength di(t), let Ξ∗ =
Ξ and keep other parameters the same as selected above, which makes (3.11) correct.

Figure 3 shows the behavior of x(t) and how E(t) evolve in pinning Lorenz chaotic
attractor complex network with adaptive control strength and the initial values are chosen
randomly in the interval [−10, 10].

5.2. Simulation to Cluster Synchronization with Nonidentical Nodes

In this simulation, we consider a network with 30 nodes and 3 communities. It is too high
and we do not show it out. We give the topology structure Figure 4.

Let s1(t), s2(t), s3(t) be the solution of the uncoupling system ṡi(t) = f(si(t), t)
with initial values s1(0) = [1, 2, 3]T , s2(0) = [4, 5, 6]T , and s3(0) = [7, 8, 9]T . Define
E(t) = (1/30)

∑30
i=1 ||xi(t) − sĩ(t)||2. If limt→∞E(t) = 0, the complex network achieves cluster

synchronization.
For the controlled dynamic network (4.6). Let τ = 0.1, DA = 10.2173I, DA = 0.0171I,

c = 6, and Λ = 0.0071 in the Theorem 4.1. It can be easily verified that such parameters fits
(4.7).

Figures 5(a), 5(b), and 5(c) give the behavior of x(t), as well as Figure 5(d) which
shows how E(t) evolve in pinning united chaotic attractor complex network with initial
values chosen randomly in the interval [−10, 10].

6. Conclusion

In the paper, we have investigated the cluster synchronization on pinning control of LCODEs
with identical and nonidentical nodes. We give a sufficient condition to make the complex
network achieve cluster synchronization. Moreover, adaptive feedback control techniques are
used to adjust control strength. Finally, some numerical examples are given, which is essential
to verify our theoretical analysis.
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