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We consider multitarget linear-quadratic control problem on semi-infinite interval. We show that
the problem can be reduced to a simple convex optimization problem on the simplex.

1. Introduction

Let (H, 〈, 〉) be a Hilbert space, Z be its closed vector subspace, h1, . . . , hm, and c be vectors in
H. Consider the following optimization problem:

max
1≤i≤m

‖h − hi‖ −→ min, h ∈ c + Z. (1.1)

Here ‖ · ‖ is the norm in H induced by the scalar product 〈, 〉. In [1], we analyzed
(1.1) using duality theory for infinite-dimensional second-order cone programming. We
obtained a reduction of this problem to a finite-dimensional second-order cone programming
and applied this result to a multitarget linear-quadratic control problem on a finite time
interval. In this paper, we consider a reduction (1.1) to even simpler optimization problem
of minimization of convex quadratic function on the (m − 1) dimensional simplex. We then
apply this result to the analysis of a multitarget linear-quadratic control problem on semi-
infinite time interval. We show that the coefficients of the quadratic function admit a simple
expressions in term of the original data.
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2. Reduction to a Simple Quadratic Programming Problem

Let fi(h) = ‖h − hi‖2, i = 1, 2, . . . , m. It is obvious that (1.1) is equivalent to the following
optimization problem:

z −→ min,

fi(h) ≤ z, i = 1, 2, . . . , m , h ∈ c + Z.
(2.1)

Consider the Lagrange function

L(λ1, . . . , λm, h, z) = z +
m∑

i=1

λi
(
fi(h) − z

)

= z

(
1 −

m∑

i=1

λi

)
+

m∑

i=1

λifi(h).

(2.2)

Notice that despite the fact that our original problem is infinite dimensional, the usual
KKT theorem holds true (see e.g., [2], page 72). It is also clear that Slater conditions are
satisfied. Hence, optimality condition for (2.1) takes the form

λi ≥ 0, λi
(
fi(h) − z

)
= 0, i = 0, 1, 2, . . . , m,

∂L
∂z

= 0,
m∑
i=1
λi∇fi(h) ∈ Z⊥,

(2.3)

where ∇fi(h) = 2(h − hi), i = 1, 2, . . . , m, Z⊥ is the orthogonal complement of Z in H.
Conditions (2.3) lead to

m∑

i=0

λi = 1, λi ≥ 0, i = 1, 2, . . . , m,

πZ(h) =
m∑
i=1
λi(πZhi).

(2.4)

Here πZ : H → Z is the orthogonal projection. Let us form the Lagrange dual of (2.1).
Consider

ϕ(λ1, λ2, . . . , λm) = min{L(λ1, . . . , λm, h, z) : h ∈ c + Z, z ∈ Z}. (2.5)

Using (2.4), we obtain that

ϕ(λ1, λ2, . . . , λm) =
m∑

i=1

λifi(h(λ1, . . . , λm)), (2.6)
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where

h(λ1, . . . , λm) = πZ⊥(c) +
m∑

i=1

λiπZ(hi). (2.7)

Notice that for any h ∈ c + Z, πZ⊥(h) = πZ⊥(c). Here πZ⊥ : H → Z⊥ is the orthogonal
projection ofH onto orthogonal complement Z⊥ of Z. To further simplify (2.6), introduce the
notation

h(λ) =
m∑

i=1

λihi. (2.8)

Then

fj(h(λ1, . . . , λm)) =
∥∥πZ

(
h(λ) − hj

)
+ πZ⊥

(
c − hj

)∥∥2

=
∥∥πZ

(
h(λ) − πZ

(
hj
))∥∥2 +

∥∥πZ⊥
(
c − hj

)∥∥2

= ‖πZ(h(λ))‖2 +
∥∥πZ

(
hj
)∥∥2 − 2

〈
πZ(h(λ)), πZ

(
hj
)〉

+
∥∥πZ⊥

(
c − hj

)∥∥2
.

(2.9)

Hence, according to (2.6), we have the following:

ϕ(λ1, . . . , λm) = ‖πZ(h(λ))‖2 +
m∑

j=1

λj
∥∥πZ

(
hj
)∥∥2

− 2〈πZ(h(λ)), πZ(h(λ))〉 +
m∑

j=1

λj
∥∥πZ⊥

(
c − hj

)∥∥2
.

(2.10)

We, hence, arrive at the following expression of ϕ:

ϕ(λ1, . . . , λm) = −
∥∥∥∥∥πZ

(
m∑

i=1

λihi

)∥∥∥∥∥

2

+
m∑

j=1

λj

(∥∥πZ
(
hj
)∥∥2 + πZ⊥

(
c − hj

)∥∥∥
2
)
. (2.11)

We can simplify (2.11) somewhat. Notice that

∥∥πZ⊥
(
c − hj

)∥∥2 = ‖πZ⊥(c)‖2 + ∥∥πZ⊥
(
hj
)∥∥2 − 2

〈
πZ⊥(c), πZ⊥

(
hj
)〉
. (2.12)
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Consequently,

ϕ(λ1, . . . , λm) = −‖πZ(h(λ))‖2 +
m∑

j=1

λj
∥∥hj

∥∥2

− 2〈πZ⊥(c), πZ⊥(h(λ))〉 + ‖πZ⊥(c)‖2

= −‖h(λ)‖2 + ‖πZ⊥(h(λ) − c)‖2 +
m∑

j=1

λj
∥∥hj

∥∥2
.

(2.13)

Here,

h(λ) =
m∑

i=1

λihi. (2.14)

Hence, the Lagrange dual to (2.1) takes the following form:

ϕ(λ1, . . . , λm) −→ max,

m∑
i=1
λi = 1, λi ≥ 0, i = 1, 2, . . . , m.

(2.15)

If (λ∗1, . . . , λ
∗
m) is an optimal solution to (2.15), we can recover the optimal solution of

the original problem using the relation (2.7), and ϕ(λ∗1, . . . , λ
∗
m) gives the optimal value for the

original problem (1.1).

3. Linear-Quadratic Case

Denoted by Ln2[0,∞), the vector space of square integrable functions f : [0,∞) → Rn. Let
H = Ln2[0,∞) × Lm2 [0,∞), and

Z =
{(
α, β

) ∈ H : α is absolutely continuous on [0,∞), α̇ = Aα + Bβ, α(0) = 0
}
. (3.1)

Here A (respectively B) is an n by n (respectively n bym)matrix. Observe that

〈(
α1, β1

)
,
(
α2, β2

)〉
=
∫∞

0

[
α1(t)Tα2(t) + β1(t)Tβ2(t)

]
dt,

(
αi, βi

) ∈ H, i = 1, 2.

(3.2)

In this setting, the problem (1.1) admits a natural interpretation as a linear-quadratic
multitarget control problem. An interesting solution for this problem for m = 2 is described
in [3]. In our approach, we need an explicit computation of the coefficients of the objective
function (2.13) which in turn requires an explicit description of orthogonal projection πZ.
Such a description has been found in [4]. We briefly describe it here.
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Theorem 3.1. LetC be an antistable n by nmatrix (i.e., real parts of all eigenvalues ofC are positive).
Consider the following system of linear differential equations:

ẋ = Cx + f, (3.3)

where f ∈ Ln2[0,∞). Then there exists a unique solution L(f) of (3.3) belonging to Ln2[0,∞).
Moreover, the map L : Ln2[0,∞) → Ln2[0,∞) is linear and bounded. Explicitly,

L
(
f
)
(t) = −

∫∞

0
e−Cτf(t + τ)dτ. (3.4)

For the proof, see [4].
Consider the algebraic Riccati equation

KBBTK +ATK +KA − I = 0. (3.5)

We assume that (3.5) has a real symmetric solution Kst such that the matrix

F = A + BBTKst (3.6)

is stable (i.e., real parts of all eigenvalues of F are negative). Notice that such a solution exists
if and only if the pair (A,B) is stabilizable. See, for example, [5].

Theorem 3.2. We have the following:

Z⊥ =
{(
ṗ +ATp, BTp

)
; p ∈ Ln2[0,∞), p is absolutely continuous, ṗ ∈ Ln2[0,∞)

}
. (3.7)

Given that (ψ, ϕ) ∈ H, we have

ψ = x −
(
ṗ +ATp

)
, (3.8)

ϕ = u − BTp, (3.9)

where x is the solution of the differential equation

ẋ =
(
A + BBTKst

)
x + BBTρ + Bϕ, x(0) = 0, (3.10)

u = BTKstx + BTρ + ϕ, (3.11)

p = Kstx + ρ, (3.12)

and ρ is a unique solution to the differential equation

ρ̇ = −
(
A + BBTKst

)T
ρ −KstBϕ − ψ (3.13)
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belonging to Ln2[0,∞).
In particular, (x, u) ∈ Z, −(ṗ +ATp, BTp) ∈ Z⊥, and consequently Z is a closed subspace in

H with

πZ
(
ψ, ϕ

)
= (x, u), πZ⊥

(
ψ, ϕ

)
= −

(
ṗ +ATp, BTp

)
. (3.14)

Remark 3.3. The required solution ρ exists and unique by Theorem 3.1, since the matrix −(A+
BBTKst) is antistable.

Sketch of the Proof

Let p ∈ Ln2[0,∞) be absolutely continuous and such that ṗ ∈ Ln2[0,∞). Suppose that (x, u) ∈ Z.
Then

〈
(x, u),

(
ṗ +ATp, BTp

)〉
=
∫∞

0

(
xT ṗ + xTATp + uBTp

)
dt

=
∫∞

0

[
xT ṗ + (Ax + Bu)Tp

]
dt

=
∫∞

0

(
xT ṗ + ẋTp

)
dt

=
∫∞

0

d

dt

(
xTp

)
dt

= lim
τ→∞

xT (τ)p(τ) − x(0)Tp(0).

(3.15)

But x(τ), p(τ) → 0, as τ → ∞ (see e.g., [4] for details) and x(0) = 0. Hence,

〈
(x, u),

(
ṗ +ATp, BTp

)〉
= 0. (3.16)

Let us now show that the decomposition (3.5) and (3.9) takes place for an arbitrary
(ψ, ϕ) ∈ H. Indeed, using (3.12),

ṗ = Kstẋ + ρ̇. (3.17)

Hence by (3.10) and (3.13),

ṗ = Kst

(
A + BBTKst

)
x +KstBB

Tρ +KstBϕ −
(
A + BBTKst

)T
ρ −KstBϕ − ψ. (3.18)
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Combining all terms with x and all terms with ρ in two separate groups, we obtain that

ṗ +ATp = ṗ +ATKstx +ATρ

=
(
KstA +KstBB

TKst +ATKst

)
x

+
(
KstBB

T −AT −KstBB
T +AT

)
ρ − ψ.

(3.19)

Using now the fact that Kst satisfies (3.5), we obtain that

ṗ +ATp = x − ψ (3.20)

which is (3.8). Using (3.11) and (3.12), we obtain that

u − BTp = BTKstx + BTρ + ϕ − BTKstx − BTρ
= ϕ,

(3.21)

which is (3.9). Finally, it is clear that for x and u defined by (3.11) and (3.12), we have

ẋ = Ax + Bu (3.22)

and consequently (x, u) ∈ Z. This completes the proof of Theorem 3.2.
Looking at (2.13), we see that the evaluation of coefficients of the quadratic function

requires the knowledge of expressions of the type ‖πZ⊥(h)‖2, where h ∈ H.

Theorem 3.4. Let h = (ψ, ϕ) ∈ H, and ρ ∈ Ln2[0,∞) is the function entering the decomposition
(3.8) and (3.9) and described in (3.13). Then

‖πZ(h)‖2 =
∥∥∥BTρ + ϕ

∥∥∥
2
, (3.23)

‖πZ⊥(h)‖2 = ‖h‖2 −
∥∥∥BTρ + ϕ

∥∥∥
2
. (3.24)

Proof. Let (y, ν) ∈ Z. Let, further,

Δ
(
y, ν

)
=
(
ν − BTKsty − BTρ − ϕ

)T(
ν − BTKsty − BTρ − ϕ

)
. (3.25)

Here for simplicity of notations, we suppressed the dependence on t. Then

Δ
(
y, ν

)
= Δ1 + Δ2 + Δ3, (3.26)
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where

Δ1 =
(
ν − ϕ)T(ν − ϕ), Δ2 =

(
Ksty + ρ

)T
BBT

(
Ksty + ρ

)
, and Δ3 = −2(ν − ϕ)T

(
BTKsty + ρ

)
.

(3.27)

Since (y, ν) ∈ Z, we have

ẏ = Ay + Bν, y(0) = 0. (3.28)

Hence,

Δ2 = yT
(
KstBB

TKst
)
y + ρTBBTρ + 2ρTBBTKsty,

Δ3 = −2(Bν − Bϕ)T(Ksty + ρ
)

= −2(ẏ −Ay − Bϕ)T(Ksty + ρ
)

= −2ẏKsty + yT
(
ATKst +KstA

)
y + 2

(
Bϕ

)T
Ksty

− 2ẏTρ + 2
(
Ay

)T
ρ + 2

(
Bϕ

)T
ρ.

(3.29)

Notice that ẏTρ + yT ρ̇ = (d/dt)(yTρ). Hence,

Δ
(
y, ν

)
=
(
ν − ϕ)T(ν − ϕ) + yT

(
KstBB

TKst +ATKst +KstA
)
y

+ 2yT
(
ρ̇ +KstBϕ +KstBB

Tρ +ATρ
)
+
(
BTρ

)T(
BTρ

)

+ 2ϕT
(
BTρ

)
− d

dt

(
yTρ

)
− d

dt

(
yTKsty

)
.

(3.30)

Using the fact that Kst is a solution to (3.5) and (3.13), we obtain that

Δ
(
y, ν

)
=
(
ν − ϕ)T(ν − ϕ) + yTy − 2yTψ +

(
BTρ + ϕ

)T(
BTρ + ϕ

)

− ϕTϕ − d

dt

(
yTρ

)
− d

dt

(
yTKsty

)

=
(
ν − ϕ)T(ν − ϕ) + (

y − ψ)T(y − ψ) +
(
BTρ + ϕ

)T(
BTρ + ϕ

)

− ϕTϕ − ψTψ − d

dt

(
yTρ

)
− d

dt

(
yTKsty

)
.

(3.31)

Integrating (3.31) from 0 to +∞ and using the fact that y(0) = 0, y(t), ρ(t) → 0 as t → ∞,
we obtain that

∫∞

0
Δ
(
y, ν

)
dt =

∥∥(y − ψ, ν − ϕ)∥∥2 − ∥∥(ψ, ϕ
)∥∥2 +

∥∥∥BTρ + ϕ
∥∥∥
2
. (3.32)
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Notice that Δ(y, ν) ≥ 0 and Δ(y, ν) = 0 provided (y, ν) = πZ(ψ, ϕ). See (3.11). Consequently,
(3.32) implies that

∥∥(ψ, ϕ
)∥∥2 =

∥∥∥BTρ + ϕ
∥∥∥
2
+ ‖πZ⊥

(
ψ, ϕ

)‖2. (3.33)

Hence,

∥∥πZ
(
ψ, ϕ

)∥∥2 =
∥∥∥BTρ + ϕ

∥∥∥
2
. (3.34)

This completes the proof of Theorem 3.4.

We can now easily compute the coefficients of the objective function (2.11). Assuming
that hi = (ψi, ϕi) ∈ Ln2[0,∞) × Lm2 [0,∞), i = 1, 2, . . . , m, c = (α, β) ∈ Ln2[0,∞) × Lm2 [0,∞) and
noticing that by Theorem 3.4

‖πZ(h(λ) − c)‖2 =
∫∞

0

[
BTρ(λ) + ϕ(λ)

]T[
BTρ(λ) + ϕ(λ)

]
dt, (3.35)

where ρ(λ) is the solution of the differential equation

d

dt
ρ(λ) = −

(
A + BBTKst

)T
ρ(λ) −KstB

(
ϕ(λ) − ψ(λ)), (3.36)

belonging to Ln2[0,∞) and

ϕ(λ) =
m∑

i=1

λi
(
ϕi − β

)
, ψ(λ) =

m∑

i=1

λi
(
ψi − α

)
. (3.37)

Consequently,

ρ(λ) =
m∑

i=1

λi
(
ρi − ρc

)
, (3.38)

where ρi and ρc are Ln2[0,∞) solutions of differential equations

ρ̇i = −
(
A + BBTKst

)
ρi −KstBϕi − ψi, i = 1, 2, . . . , m,

ρ̇c = −
(
A + BBTKst

)
ρc −KstBβ − α,

(3.39)

respectively.
Hence,

‖πZ(h(λ) − c)‖2 =
∫∞

0
Γ(λ)TΓ(λ)dt, (3.40)
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where

Γ(λ) =
m∑

i=1

λi
[
BT

(
ρi − ρc

)
+
(
ϕi − β

)]
, (3.41)

which allows us to easily express the objective function (2.13) in terms of integrals of ρi and
ρc.

4. Concluding Remarks

In this paper, we have shown that multitarget linear-quadratic control problem on semi-
infinite interval can be reduced to solving a simple convex optimization on the simplex.
The reduction involves solving one standard algebraic Riccati equation and m + 1 linear
differential equations, wherem is the number of targets. Notice that our results can be easily
extended to discrete-time systems.
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