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This paper presents a synchronization analysis of networks of a class of power systems using the
contraction theory for nonlinear systems. This analysis is characterized by not being based on
Lyapunov’s stability theory, that is, it is not required to determine a Lyapunov candidate function.
Moreover, from the contraction conditions, robustness of the synchronization can be obtained,
in this sense, the analysis method is robust. The analysis consists in identifying or proposing a
virtual or auxiliary system which is contracting in a region of the state space. It is intended that in
this region the trajectories of the systems on the network converge to those of the virtual system
and then obtain the synchronization of the systems in the network. The contribution consists in
applying this nontraditional analysis to the problem of chaotic synchronization of a network of a
class of power systems.

1. Introduction

A network is defined as the interconnection of objects through a coupling, and they could
be found almost everywhere, from social to genomic networks. For instance, in biological
systems, electronic circuits, social communities, spread of diseases, and neuronal systems,
among others. Its study and analysis have been attractive for researchers in science and
engineering due to the diversity of problems and applications where these structures appear
[1–3]. These networks present many challenges, for example, the problem of dynamic
networks, that is, the network structure is changing over time and the size of the network can
be static or not. The problem of considering nonlinear couplings implies that the coupling
force between nodes is described by a nonlinear relationship of states or it is time varying;
the problem of synchronization of networks with nonidentical nodes means that systems
in the nodes are strictly different [4]. One problem that has attracted a lot of attention is
the synchronization between nodes. In this sense, synchronization has been studied using
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many techniques. The main assumption considered as a starting point is that there is a
reference signal where the trajectories of the systems in the network converge. For example,
in [5], global synchronization and asymptotic stability were demonstrated, where sufficient
conditions were established on the basis of Lyapunov’s stability. In [6], a scheme based on
state observers has been reported, where a network of systems with the same model in the
nodes was considered, and only one scalar signal was used as the output and one as an
input, the synchronization was obtained by the Lyapunov stability theory and the linear
matrix inequalities (LMI) technique. Network synchronization can also be found in modular
structures [7], where connections between communities is poor, these networks are of great
importance in social or biological networks, where synchronization is obtained using the
approach of the master stability function which requires the Lyapunov exponents. The above-
mentioned contributions require two main aspects, the determination of a Lypunov function,
which in many cases is difficult to obtain, and the determination of the transversal Lyapunov
exponent through a numerical process. In this contribution, an alternative technique to
determine synchronization of a class of complex networks of power systems is applied.
Such an alternative technique is the contraction theory, which can be used to ensure syn-
chronization between systems [8], for example, in [9–11], the application of contraction
theory to synchronization of systems in the master-slave form is shown. In this work, the
contraction theory is applied to synchronization of power systems but in a network form.
That is, a control system is not used for achieving synchronization, this is achieved by the
interconnection between systems, whereas in the case of the master-slave synchronization, a
control action is applied to the slave system in order to achieve synchronization. The relevant
part is that the convergence of the system trajectories can be analyzed differentially instead
of using the Lyapunov stability theory. Recently, the contraction theory and the techniques of
themaster stability function were analyzed for the synchronization of complex networks, and
several important observations were established [12], for example, in the use of contraction
theory, it is not required to determine a Lyapunov function or the Lyapunov exponents,
whereas in the case of the master stability function, the Lyapunov exponents are essential.

In this contribution, we apply the contraction theory to study and analyze the
convergence of trajectories instead of analyzing stability of an equilibrium point. Contraction
theory provides a simple way to test the convergence of the trajectories, for this purpose, a
virtual or auxiliary system is required. The convergence is achieved when the trajectories of
all systems are in a region of the state space called contraction region and stay in this region
for all future time; furthermore, the convergence between them is exponential.

We apply this analysis technique to the problem of synchronization of a class of power
systems. It is worth mentioning that the contraction analysis is relatively recent, so there
is few results on its application to power systems and even less about synchronization of
networks of generators. Thus, in this contribution, we analyze the synchronization of a
network of a class of power systems using a simple model for the power generators. This
type of system is particularly interesting since they might present a complex behavior even
chaos; therefore, we are interested in achieving chaotic synchronization of the systems. This
type of power systems are interconnected in a network form, such that, they can represent
an entire network of generation and supply of electric energy. It should be mentioned that,
in this contribution, it is considered that the model is given by a second-order system with
two state variables given by the angular position and angular velocity of the generator which
are the variables to be synchronized. Applying the contraction theory for synchronization of
the generators, a contraction region can be determined, which may depend on the system
parameters, the coupling force, and the connectivity degree; the connectivity degree of
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the node is the number of connections of that node. The importance of the results is that
we can analyze the network synchrony in electrical generators, where the main problem is to
achieve synchrony mainly in power, since the network must be in balance or in synchrony;
moreover, despite the simplicity of the analysis, a robustness of the synchronization can be
claimed. The robustness can be obtained provided the contraction conditions holds; thus, the
synchronization is robust against certain parameter variations.

The paper is organized as follows: in Section 2 basic results about contraction theory
are presented, Section 3 describes the network synchronization of power systems, and, finally,
Section 4 presents some conclusions about network synchronization of power systems.

2. Basics on Contraction Theory

The contraction theory permits to analyze stability of nonlinear systems in terms of conver-
gence of the system trajectories using a differential approximation. This theory is different
from the Lyapunov stability methods, specially because the knowledge of an equilibrium
point is not necessary, therefore, the stability analysis is based on virtual displacements.
The contractive behavior is a property regarding to the convergence of the trajectories of
arbitrary systems; therefore, a nonlinear system is contracting if the effect of initial conditions
is forgotten exponentially. Another important aspect of the contraction theory is that the
differential stability analysis is accurate and it does not depend on a numerical calculation.
Consider nonlinear systems of the form

ẋ = F(x, t), (2.1)

where x ∈ R
n is the state vector, F : R

n → R
n is a nonlinear vector field continuously

differentiable. Let δx be an infinitesimal virtual displacement of the state x at a fixed time;
therefore, the first system variation is given by

δẋ =
∂F(x, t)
∂x

δx, (2.2)

where the square of the distance (δxTδx) between adjacent trajectories is as follows:

d

dt

(
δxTδx

)
= 2δxTδẋ = 2δxT

∂F

∂x
δx

≤ 2λmax(x, t)δxTδx,

(2.3)

and therefore,

‖δx‖ ≤ ‖δx0‖e
∫ t
0 λmax(x,t)dt. (2.4)

Where λmax(x, t) is the largest eigenvalue of the symmetric part of the Jacobian J = (∂F/∂x),
then, any infinitesimal displacement ‖δx‖ converges to zero exponentially, that is, ∃β > 0 for
all x, y for all t ≥ 0, such that, λmax(x, t) ≤ −β < 0. Then, from (2.4) it is ensured that all
solutions of the system in (2.1) converge exponentially to a single trajectory despite the effect
of initial conditions.
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Definition 2.1. Given the system (2.1), a region C of the state space is called contraction region
if the Jacobian matrix J = (∂F/∂x) is uniformly negative definite in that region.

Therefore, the contraction principle can be stated as follows.

Theorem 2.2. Let x(t) and x̃(t) be two generic trajectories of the system (2.1). Let Mt : Bεx(t) be
the tube around x(t), and let C ∈ R

n be a contraction region of phase space defined as

C :=

{
x ∈ R

n :
(
1
2

)((
∂F

∂x

)
+
(
∂F

∂x

)T)
≤ −βI, β > 0, ∀t ∈ R

+

}
. (2.5)

If x̃(t) is such that x̃(x0) ∈ M0 and Mt ⊂ C, for all t ∈ R
+ then x̃(t) ∈ Mt, for all t ∈ R

+, and
δxTδẋ = kδxT0 δx0e

−βt, with k ≥ 1, β ≥ 0, for all t ∈ R
+.

This theorem states that given ẋ = F(x, t), a trajectory that starts in a tube of constant
radius centered on a given trajectory and contained in the region of contraction will remain in
that ball and it converges to the given trajectory for all time. In the case where the entire state
space is a region of contraction, the convergence of the trajectories is global. The fact that the
Jacobian matrix is uniformly negative definite implies that

∃ β > 0, ∀x, y ∀t ≥ 0, (2.6)

such that

1
2

(
∂F

∂x
+
∂FT

∂x

)
≤ −βI < 0. (2.7)

Generalization of the convergence analysis using coordinate transformations δz = Θ(x, t)x
with Θ(x, t) a uniform and invertible matrix can be found in [13–15].

3. Synchronization of a Network of a Class of Power Systems

A network ofN identical systems is described by the following system of equations:

ẋi = F(xi) + k
N∑
j=1

ai,jΓxj , (3.1)

for i = 1, 2, . . . ,N, where xi is the state vector of the ith system or network node, F :
R
n → R

n is a smooth vector field representing the dynamics of the systems at the nodes,
Γ = diag[γ1, γ2, . . . , γn] is the input matrix that determines which states in the nodes are
connected, and the ai,j are the elements of the Amatrix which describes the connectivity and
network topology; it is considered that the connection between nodes is constant and also
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diffusive (the sum of the elements of the rows is zero), k is the coupling strength between
nodes

N∑
j=1

ai,j = 0, ai,i = −
N∑
j=1
j /= i

ai,j . (3.2)

In this contribution, the strongest form of synchronization between systems on a network
is considered, that is, complete and global synchronization. This synchronization is defined
in the invariant manifold M = {x1(t) = x2(t) = · · · = xN(t)}. The dimension of this
synchronization manifold is given by the dimension of only one system.

Definition 3.1. The network (3.1) is fully synchronized if

lim
t→∞
∥∥xi(t) − xj(t)

∥∥ = 0 ∀i, j, (3.3)

Now suppose the following to carry out the idea of synchronization of a power system
network.

Assumption 3.2. The models of the generators in the network are identical and have all the
same parameters but different initial conditions.

Assumption 3.3. The connectivity in the network is bidirectional, there is no isolated systems,
and the network is static.

Assumption 3.2 is common in the study of complex network synchronization and it
facilitates the determination of a virtual system for synchronization analysis; however, some
parameter variations can be considered as we will see later. Assumption 3.3 states that if
a system at certain node is connected to another, the latter also must be connected to the
first one; that is, they are connected bidirectionally or mutually. Now, for the application of
contraction results to the synchronization problem we have the following corollary.

Corollary 3.4. Suppose we have a network of N systems described by (3.1), then a virtual system for
the network is given by

φ(x, xi) = F(x) + kai,iΓx + k
N∑
j=1
j /= i

ai,jΓxj , (3.4)

where the system (3.1) is a particular solution of (3.4) for any i. If the system is contracting respect to
the variable x, then the systems on the network are synchronized.

Remark 3.5. Regarding robustness of the synchronization, it can be considered that system
(3.4) is the nominal plant and all the particular solutions given by the systems in the network
can present some parameter variations and the contraction region is then robust.

Now, consider the classical model of an electrical generator connected to an infinite
bus [16–18] for a power system which is used for energy generation which is perturbed



6 Mathematical Problems in Engineering

∞ E∞ 0

E1 δ1 δ2E2

δ3E3

δ4E4

δ5E5

1 2

3

4

5

Figure 1: Network of power systems as generators connected to an infinite bus.

by a periodic signal. This is the simplest model used to identify and understand instability
problems

M
d2δ

dt2
+D

dδ

dt
+ Pmax sin(δ) = Pm, (3.5)

where M is the moment of inertia, D corresponds to the damping constant, Pmax is the
maximum power of the generator, Pm = l sin(ωt) is the power of the machine, and δ
represents the angular position. From this equation it is possible to rewrite the system as

ẋ1 = x2,

ẋ2 = − cx2 − β sin(x1) + h sin(ωt),
(3.6)

where we define the states x1 = δ, x2 = dδ/dt, and the positive parameters c = D/M,
β = Pmax/M, h = l/M. These systems are considered to be connected in a network of electrical
generation, where the objective is to present a synchronous behavior between them. It should
be mentioned that these models exhibit a chaotic behavior for certain parameter values and
due to the oscillatory input signal. It is considered that we have an interconnected network
of five generators as in Figure 1, where the systems connected to the infinite bus are shown,
Ei and δi are voltage and the angular position in the ith generator, respectively. To establish
synchronization of the network using the contraction theory, a virtual system is proposed
which has as a particular solution each of the systems in the network, this system is chosen
as

ẋ = f(x) + kai,iΓx + k
N∑
j=1
j /= i

ai,jΓxj . (3.7)
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It is important to mention that we chose the value ai,i, since this value satisfies the particular
solution for the ith system; for example, if the network is globally connected, this value
is simply −N + 1; therefore, in general ai,i = −deg{xi}, then, the virtual system with
Γ = diag[1, 0] for the power system, takes the form

ẋ1 = x2 + kai,ix1 + k
N∑
j=1
j /= i

ai,jx1,j ,

ẋ2 = − cx2 − β sin(x1) + h sin(ωt).

(3.8)

From Definition 2.1 the next Jacobian matrix is found as

A =
∂ψ

∂x
=
[

kai,i 1
−β cos(x1) −c

]
. (3.9)

Now, the negative symmetric part is calculated

−Λ = −1
2

(
A +AT

)
=

⎡
⎢⎣

−kai,i −1
2
+
β

2
cos(x1)

−1
2
+
β

2
cos(x1) c

⎤
⎥⎦. (3.10)

Then, to determine the convergence of trajectories and find synchronization it is required that
−Λ be positive definite, to this end, it is considered that ai,i = −deg{xi} = −d; therefore, from
Sylvester’s criterion and for positive definiteness of −Λ

kd > 0

ckd >

(
1
2
− β

2
cos(x1)

)2

.
(3.11)

Therefore, the contraction region for the virtual system can be defined as follows:

C =

{
x ∈ R

2 : k >

(
1/2 − (β/2) cos(x1)

)2
cd

, x2 ∈ R

}
. (3.12)

As can be seen the condition lies in the choice of the coupling constant which is a parameter
that can be arbitrarily chosen provided that satisfies the corresponding condition.

Note that when cos(x1) = −1, we have the maximum value and, therefore, it is
sufficient to choose

k >

(
1/2 + β/2

)2
cd

. (3.13)

Therefore, with this value for the network coupling, the convergence of the trajectories of the
systems is ensured and hence its synchronization. The parameters used for the systems were
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Figure 2: Evolution of the states of network systems, δi represents the angular positions of the generators,
and ωi the angular velocity.

chosen all equal, that in order to find the virtual system directly, the values are hi = 2.45;
βi = 1; ci = 0.5; ωi = 1 and the smallest degree of the network is d = 2; therefore it is sufficient
to choose k > 1. Synchronization between the systems of the network is obtained for a value
of k = 2, that is, this value satisfies the contraction region and, therefore, the trajectories of the
systems converge to those of the virtual system.

Figure 2 shows the synchronization of the systems where the generators are connected
at t = 100 and thereafter are synchronized; it should be mentioned that only angular position
is considered as interconnection variable and even with this feature, position and velocity
synchronization is achieved. Note that synchronization is achieved in a manifold which
is not given by none of the individual systems, this manifold of synchronization is given
by the interaction between systems and the network topology. Figure 3 shows the errors
relative to the system (2.1), and it can be seen that errors converge to zero which implies
the existence of synchronization; even though only the angular position of the generators
are transmitted, also remember that a controller is not designed to achieve synchronization
between systems. Thus, with this technique of analysis, an interval for the coupling parameter
can be determined and with this the trajectories of generators are synchronized with each
other without the use of a Lyapunov function or the calculation of Lyapunov’s exponents
to determine synchrony in the network; moreover, the result provides information about the
robustness of the synchronization, even under the consideration of equal parameter values.
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Figure 3: Position and velocity errors relative to the generator (2.1).

4. Conclusions

In this paper, an alternative way to carry out network synchronization of a class of power
systems was presented. The chosen models consider that interact with an infinite bus. It
is considered that the generators are connected in linear way through the angular position
and then achieve synchronization of all generators of the network in both, position and
velocity, even when the system output is only the angular position. It was also stated that
the contraction theory is a good tool to study the synchronization of networks of systems.
An important point is that the result is robust even when the analysis is for systems with
equal parameters; moreover, the virtual system can be considered as a nominal plant, and
parameter variations can be considered in the systems and the synchronization condition
holds from the contraction region. This result can be extended to a larger network and also to
the case when the generators are interconnected through the generated power, and this can
be considered as the output of each system. Therefore, the contraction analysis can be used as
an alternative technique to the Master Stability Function in the synchronization of networks
of systems whith complex behavior.
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