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Combining adaptive fuzzy sliding mode control with fuzzy or variable universe fuzzy switching
technique, this study develops two novel direct adaptive schemes for a class of MIMO nonlinear
systems with uncertainties and external disturbances. The proposed control schemes consist
of fuzzy equivalent control terms, fuzzy switching control terms (in scheme one) or variable
universe fuzzy switching control terms (in scheme two), and compensation control terms. The
compensation control terms are used to relax the assumption on fuzzy approximation error. Based
on Lyapunov stability theory, the parameters update laws are adaptively tuned online and the
global asymptotic stability of the closed-loop system can be guaranteed. The major contribution
of this study is to develop a novel framework for designing direct adaptive fuzzy sliding mode
control scheme facing model uncertainties and external disturbances. The derived schemes can
effectively solve the chattering problem and the equivalent control calculation in that environment.
Simulation results performed on a two-link robotic manipulator demonstrate the feasibility of the
proposed control schemes.

1. Introduction

Some nonlinear systems, such as robotic manipulator, inverted pendulum, and electrical
machines, not only are often highly coupled and time-varying systems, but also suffer
from structured and unstructured uncertainties [1, 2]. The control of these systems is an
important topic in the field of control. Sliding mode control (SMC) is an effective control
scheme to deal with these problems [3–6]. However, this control scheme suffers mainly from
two disadvantages. One is the chattering due to discontinuous switching term. The other is
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the difficulty involved in the calculation of the equivalent control [7]. A thorough knowledge
of the plant dynamics is required for this purpose. But in the real world, there are many
complex industrial processes whose accurate mathematical models are not available or
difficult to formulate.

In recent decades, fuzzy control methodology has emerged as a promising way to
approach nonlinear control problems since it can incorporate linguistic information from
human experts into control strategy [8–13]. Considerable efforts have been done to combine
fuzzy system with SMC to overcome the disadvantages of general SMC [1, 14–30]. For
example, fuzzy switching technique [15–17] and fuzzy boundary layer technique [18–20]
have been developed to eliminate chattering problem. Both the techniques are built on the
condition that the equivalent control has already existed. There exist some difficulties for
the techniques to obtain a suitable equivalent control if the nominal mathematics model is
unknown. In this case, there are generally two kinds of adaptive fuzzy SMC approaches
to calculate the equivalent control in the existing literatures: direct [1, 21, 22] and indirect
approaches [23–27]. Direct approach is to use fuzzy system directly to approximate the
equivalent control term. Indirect approach is first to utilize fuzzy systems to approximate the
unknown system functions, then to design the equivalent control based on these estimates.
Both the approaches can effectively deal with the calculation of the equivalent control in the
presence of model uncertainties and unknown disturbance. But the chattering problemmight
be encountered no matter what type of adaptive fuzzy SMC.

Several indirect schemes which combined adaptive fuzzy SMC with fuzzy switching
technique have been reported for SISO nonlinear systems in [28–30]. The proposed schemes
can simultaneously overcome the two disadvantages of SMC mentioned above despite of
model uncertainties and unknown disturbances. Unfortunately, convergence of the tracking
error to zero is guaranteed by assuming that the fuzzy approximation error is very small if
not equal to zero and square integrable. This, however, is difficult to show for any given plant
[31]. Besides, direct approach may be of more interest not only because of its simple design
and easy implementation, but also because it does not need to consider any possible controller
singularity problem [32]. However, the constraints on control gain present difficulties for the
design of direct adaptive control. Therefore, it will be a challenge for the direct control of
MIMO nonlinear systems with model uncertainties and unknown disturbances.

Combining adaptive fuzzy SMC with fuzzy or variable universe fuzzy switching
technique, this paper proposes two novel direct adaptive control schemes for a class of MIMO
nonlinear systems with uncertainties and external disturbances. The difference between them
lies in that one scheme employs fuzzy system to estimate the switching control gain and the
other uses the variable universe fuzzy system proposed in [33] to do it. Motivated by paper
[21], this study relaxes the constraint on the gain matrix and only requires it to be positive
definite symmetric besides the inverse of its derivative is bounded by an unknown function.
To relax the assumption on fuzzy approximation error [28–30], we append an adaptive
compensation term to compensate the effect of fuzzy approximation error [34]. The overall
closed-loop systems stability and the online adjustment laws of the updated parameters are
built based on Lyapunov stability theory. Lastly, the proposed schemes are utilized to deal
with the trajectory tracking problem of robotic manipulators. Simulation results demonstrate
that the proposed schemes are effective for a class of MIMO nonlinear systems. The two
control schemes cannot only achieve the asymptotical tracking for ideal input signal, but also
effectively eliminate the chattering of the general SMC.

The rest of this paper is organized as follows. In Sections 2 and 3, brief statements
about the control system and variable universe fuzzy system are provided, respectively.
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Section 4 develops two novel direct adaptive fuzzy SMC schemes. Computer simulation
results are illustrated in Section 5. Section 6 concludes this paper.

2. Problem Statement

Consider the following MIMO nonlinear system [21, 25]:

y
(r1)
1 = f1(x) +

p∑

j=1

g1j(x)uj + d1,

...

y
(rp)
p = fp(x) +

p∑

j=1

gpj(x)uj + dp,

(2.1)

where x = [y1, . . . , y
(r1−1)
1 , y2, . . . , y

(r2−1)
2 , . . . , yp, . . . , y

(rp−1)
p ]T is the state vector which is

available for measurement and r = [r1, r2, . . . , rp]
T , u = [u1, u2, . . . , up]

T is the control input
vector, y = [y1, y2, . . . , yp]

T is the output vector, fi(x) (i = 1, 2, . . . , p) are unknown continuous
nonlinear functions, gij(x) (i, j = 1, 2, . . . , p) are smooth unknown nonlinear functions, and
D(t) = [d1, d2, . . . , dp]

T are unknown external disturbances.

Define y = [y(r1)
1 , y

(r2)
2 , . . . , y

(rp)
p ]T , F(x) = [f1(x), f2(x), . . . , fp(x)]

T , and

G(x) =

⎡
⎢⎣

g11(x), . . . , g1p(x)
... . . . ,

...
gp1(x), . . . , gpp(x)

⎤
⎥⎦. (2.2)

Then the dynamic system equation (2.1) can be rewritten as

y(r) = F(x) +G(x)u +D(t). (2.3)

Define reference trajectory xd = [xd1, xd2, . . . , xdp]
T and the tracking error

e1(t) = xd1(t) − y1(t),

...

ep(t) = xdp(t) − yp(t).

(2.4)
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According to [3, 25], for each subsystem, one can define sliding surface as follows:

s1(t) =
(

d

dt
+ λ1

)(r1−1)
e1(t), λ1 > 0,

...

sp(t) =
(

d

dt
+ λp

)(rp−1)
ep(t), λp > 0.

(2.5)

From (2.5), we can see that e(j)i (t) → 0, j = 0, 1, . . . , ri − 1, i = 1, 2, . . . , p as si(t) → 0. Then, the
control duty can be transferred to design the control law such that si(t) → 0, i = 1, 2, . . . , p.

The time derivatives of the sliding surface of each subsystem are

ṡ1(t) = e
(r1)
1 +

r1−1∑

j=1

C
j

r1−1e
(r1−j)
1 λ

(j)
1 = v1 − f1(x) −

p∑

j=1

g1j(x)uj − d1,

...

ṡp(t) = e
(rp)
p +

rp−1∑

j=1

C
j

rp−1e
(rp−j)
p λ

(j)
p = vp − fp(x) −

p∑

j=1

gpj(x)uj − dp,

(2.6)

where Ck
n = n!/k!(n − k)! in which k ≤ n, and

v1 = x
(r1)
d1 +

r1−1∑

j=1

C
j

r1−1e
(r1−j)
1 λ

(j)
1 ,

...

vp = x
(rp)
dp +

rp−1∑

j=1

C
j

rp−1e
(rp−j)
p λ

(j)
p .

(2.7)

Let S = [s1, s2, . . . , sp]
T and v = [v1, v2, . . . , vp]

T . Equation (2.6) can be rewritten as

Ṡ = v − F(x) −G(x)u −D(t). (2.8)

The objective of this paper is to design a control law u(t) such that the output vector
y(t) follows asymptotically the desired trajectory xd(t), with all involved signals in the
closed-loop system remaining bounded. In the controller design, the following assumptions
are useful for steady analysis and proof.

Assumption 2.1. G(x) is a positive definite and symmetrical matrix.

Assumption 2.2. (1/2)‖(dx/dt)G−1(x)‖ ≤ δ(x), where δ(x) is bounded positive continuous
function without knowing its bound.
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Assumption 2.3. The ideal trajectory xdi(t) (i = 1, 2, . . . , p) are ri-order derivable, and
xdi(t) (i = 1, 2, . . . , p) and their j-order derivatives (j = 1, 2, . . . , ri−1) are continuous functions
of known boundary.

Remark 2.4 (see [21]). Assumption 2.1 is useful to the stability analysis and stability proof.
There are many physical systems, such as robotic systems and electrical machines, which
satisfy the positive definiteness and the symmetry. Assumption 2.2 is not restrictive, since
we only assume the existence of δ(x) and not its knowledge. Moreover, there are several
physical systems in which the control gain matrix G(x) satisfies the inequality, for example,
robotic manipulators, electrical machines, inverted pendulum, and chaotic systems.

3. Variable Universe Fuzzy System

Fuzzy control emerged in decades ago is a promising way to solve nonlinear control
problems. It has several excellent properties. For example, it does not require the plant
model and can effectively incorporate the semantic knowledge of human experts. Since the
universal approximation theorem has been put forward in [10], fuzzy system and fuzzy
control evolve faster than before. Specifically, in the control area, fuzzy systems are mainly
used as a nonlinear function approximation tool.

It should be emphasized that, in this paper, it is assumed that the structure and the
membership function parameters of the fuzzy system are properly specified in advance by
the designer. This means that the designer decision is needed to determine the structure of
the fuzzy system, namely, the pertinent inputs, the number of membership functions for each
input, the membership function parameters, and the number of rules.

3.1. Fuzzy System

For convenience, we will recall briefly the fuzzy system in the following. Let Xi =
[−Ei, Ei] (i = 1, 2, . . . , m) be the universe of input variable zi (i = 1, 2, . . . , m) and Y = [−U,U]
the universe of output variable uo. Ai = {Aij} (j = 1, 2, . . . ,N) is defined as a fuzzy partition
on Xi and B = {Bj} (j = 1, 2, . . . ,N) a fuzzy partition on Y , whereAij ∈ F(Xi) and Bj ∈ F(Y )
are termed as the base, and aij and bj are the peak points of Aij and Bj , respectively. Ai and
B are regarded as linguistic variables so that a group of fuzzy inference rules are formed as
follows:

If z1 is A1j , z2 is A2j , . . . , zm is Amj, then uo is Bj

(
j = 1, 2, . . . ,N

)
, (3.1)

where N represents the number of the rules. Singleton fuzzifier, triangle membership
function (overlap law is 0.5), product inference engine, and center average defuzzifier are
used in this fuzzy system. The derived output of fuzzy system can be written as

ûo(z) = ξ(z)Tθ, (3.2)
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where z = [z1, z2, . . . , zm]
T , θ = [u1, u2, . . . , uN]T is a vector grouping all consequent parame-

ters, and ξ(z) = [ξ1(z), ξ2(z), . . . , ξN(z)]T is fuzzy basis function vector defined as

ξj(z) =
m∏

i=1

Aij(zi), j = 1, 2, . . . ,N. (3.3)

3.2. Variable Universe Fuzzy System

Adaptive fuzzy controller based on fixed universe has limited approximation accuracy
according to the interpolation mechanism of fuzzy system [35]. Aiming at the problem, Li
first presents the variable universe idea [36]. The core idea of variable universe fuzzy control
is that the universes contracts following the decrease of error. Contraction of the universe is
equivalent to the increase of the control rules. Therefore, control accuracy is improved.

The so-called variable universe means that some universes, for example, Xi and Y ,
respectively, can change along with changing of variables zi and uo. In this case, the universes
are denoted by

Xi(zi) = [−αi(zi)Ei, αi(zi)Ei],

Y (uo) =
[−β(uo)U, β(uo)U

]
,

(3.4)

where αi(zi) (i = 1, 2, . . . , m) and β(uo) are, respectively, called contraction-expansion factors
of the universesXi (i = 1, 2, . . . , m) and Y . Being relative to the variable universes, the original
universes Xi and Y are naturally called initial universes. After the above changes, the output
of variable universe fuzzy controller can be written as

ûo

(
β, z

)
= βζ(z)Tϑ, (3.5)

where ϑ = [u2, u2, . . . , uN]T and ζ(z) = [ζ1(z), ζ2(z), . . . , ζN(z)]T represent the parameter
vector of inference consequence and the fuzzy base function vector, respectively, in which
ζj(z) =

∏m
i=1Aij(zi/αi(zi)), j = 1, 2, . . . ,N.

Remark 3.1. Under the framework of variable universe fuzzy control, the parameter which
needs to be online adjusted is a scalar β instead of a parameter vector θ in conventional
adaptive fuzzy control scheme. Therefore, variable universe fuzzy control scheme simplifies
the design procedure of adaptive fuzzy control. In addition, we hardly need smart expert
knowledge in the realm, but need the rough trend of control rules in the design of variable
universe fuzzy controller [37]. From this point, variable universe fuzzy control reduces the
design difficulty.
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4. Adaptive Fuzzy SMC Design

4.1. Sliding Mode Control

In this section, we firstly consider that nonlinear function matrices F(x) andG(x) are known.
From Assumption 2.1, the matrix G(x) is reversible. Both sides of (2.8) are multiplied by
G1(x) = G−1(x), then we obtain that

G1(x)Ṡ = G1(x)v − F1(x) − u −G1(x)D(t), (4.1)

where F1(x) = G1(x)F(x). The control law is designed as

u = G1(x)v − F1(x) −G1(x)D(t) + δ(x)IpS + η sign(S), (4.2)

where sign(S) = [sign(s1), sign(s2), . . . , sign(sp)]
T and η = diag(η1, η2, . . . , ηp) in which ηi >

0 (i = 1, 2, . . . , p), where its aim is to meet the sliding condition. Substituting (4.2) into (4.1),
we can obtain

G1(x)Ṡ = −η sign(S) − δ(x)IpS. (4.3)

We choose a candidate Lyapunov function V = (1/2)STG1(x)S. For the matrix G(x)
being positive definite and symmetrical, G1(x) is also positive definite and symmetrical and
satisfies ṠTG1(x)S = STG1(x)Ṡ. Combining with Assumption 2.2, we have

V̇ = STG1(x)Ṡ +
1
2
STĠ1(x)S = −ST(η sign(S) + δ(x)IpS

)
+
1
2
STĠ1(x)S ≤ −

p∑

i=1

ηi|si|. (4.4)

Therefore, V̇ is negative definite and the control objective can be achieved. However, in
engineering practice, nonlinear system matrix F(x) and control gain matrix G(x) are often
unknown. Accordingly, the derivative function matrices F1(x) and G1(x) as well as δ(x)
are also unknown. Moreover, external disturbance vector D(t) is also unknown. Therefore,
the control law (4.2) cannot be implemented. In the following, we employ fuzzy systems to
design the control law.

4.2. Direct Adaptive Fuzzy SMC with Fuzzy Switching
Term (DAFSMC with FSW)

According to the sliding mode control scheme, the control law u can be decomposed into the
equivalent control and the switching control. In the sliding phase, the role of the equivalent
control is to force the system dynamics to stay on the sliding surface. In the reaching phase,
the switching control is designed to satisfy the sliding mode condition [3, 28, 29].

Let

ueq � G1(x)v − F1(x) −G1(x)D(t) + δ(x)IpS (4.5)
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and usw � η sign(S). Equation (4.2) can rewritten as

u = ueq + usw. (4.6)

It is well known that the fuzzy rules used for reasoning are not easy to extract,
especially for multi-input (m > 2) fuzzy system. Yet, a prominent merit of adaptive fuzzy
system is that it does not need initial fuzzy rules and can generate fuzzy rules online based
on Lyapunov stability theory [38].

So, in what follows, adaptive fuzzy systems as (3.2) are chosen to approximate the
equivalent control term ueq. Therefore, we have the following format:

ueq = ûeq(Θ∗
e, x) +ω = ΞT

e (x)Θ
∗
e +ω, (4.7)

where ω = [ω1, ω2, . . . , ωp]
T and Ξe(x) = [diag(ξTe1(x), ξ

T
e2(x), . . . , ξ

T
ep(x))]

T denotes fuzzy
approximate error vector and fuzzy base function matrix, respectively.

Let Θ∗
e = [θ∗T

e1 , θ
∗T
e2 , . . . , θ

∗T
ep ]

T be the optimal parameter vector, where

θ∗
ei = arg min

‖θei‖≤Mei

{
sup
x∈Dx

∣∣ueqi − ûeqi(θei, x)
∣∣
}
, (4.8)

in which Mei (i = 1, 2, . . . , p) is design constant restraining parameter vector θei (i =
1, 2, . . . , p) and Dx is a compact set containing state x, and

ûeqi(θei, x) = θT
eiξei(x) (4.9)

denotes the estimate of the equivalent control law ueqi. Due to unknown ideal parameter
vector θ∗

ei, we estimate θ∗
ei by virtue of θei.

Remark 4.1. In this paper, we assume that fuzzy approximation errors ωi (i = 1, 2, . . . , p) are
bounded for all x ∈ Dx, that is, |ωi(x)| ≤ ρi, for all x ∈ Dx, where ρi is an unknown constant.
The knowledge of ρ = diag(ρ1, ρ2, . . . , ρp) is only required for analysis purpose.

Given the approximation error ωi between the equivalent control ueqi and the used
fuzzy system ûeqi, the switching control term usw must be modified as (η + ρ) sign(S), that is,
uswi = (ηi+ρi) sign(si) (i = 1, 2, . . . , p). The objective of this modification is to meet the sliding
mode existing condition. In the previous literatures [23, 26], the switching gain matrix (η+ρ)
has to be determined in advance. This is difficult when the bound of the approximation error
is unknown. Improper switching gain easily causes chattering problemwhich is undesired in
practice.

Since the chattering is caused by the switching gain matrix (η + ρ) and the
discontinuous function sign(s), let the switching control usw = (η + ρ) sign(s) be replaced by
a gain vector K = [k1, k2, . . . , kp] [17]. Motivated by papers [28–30], in the controller design,
we employ fuzzy systems in the form of (3.2) to approximate the gain vector K.

According to the switching control uswi in (4.6), we can choose a single-input single-
output fuzzy system k̂i(si) to approximate the gain ki. Here, the fuzzy system k̂i is applied to
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compensate the system uncertainty to reduce the energy of si and causes the sliding surface to
approach zero. It is obvious that the sign of ki is the same as that of si. When |si| is away from
zero, |ki| should be chosen a large value to make the system move quickly to the switching
surface. When |si| is small, |ki| should be chosen a small value to avoid overshoot. When si is
zero, |ki| should be zero. From the above analysis, it is easy to make siṡi ≤ 0 and guarantee
the sliding condition. Briefly, the fuzzy rules can be determined as follows:

If si is Ah, then ki is Bh, h = 1, 2, . . . , iL, (4.10)

where si and ki are the input and the output variables of the fuzzy system, respectively,
and iL represents the number of fuzzy rules. Then the estimated switching gain k̂i of the
ith subsystem can be written as

k̂i = ξsi(si)Tθsi, (4.11)

where ξsi(si) = [A1(si/αi(si)), . . . , AiL(si/αi(si))]
T and θsi = [b1, b2, . . . , biL]

T . Let

θ∗
si = arg min

‖θsi‖≤Msi

{
sup
si∈Dsi

∣∣∣ki − ξsi(si)Tθsi
∣∣∣
}
, (4.12)

be the optimal parameter vector, where Msi is design constant restraining parameter vector
θsi and Dsi is compact set containing the variable si. The optimal parameter vector θ∗

si is
unknown, so θ∗

si is estimated by θsi.
Further, to cancel the approximation error between the equivalent control ueqi and the

used fuzzy system ûeqi, we append a compensation control term uc = [uc1, uc2, . . . , ucp]
T [34].

Therefore, the overall control effort can be modified as

ui = ûeqi + k̂i + uci = ξTei(x)θei + ξTsi(si)θsi + uci (4.13)

or

u = ûeq + K̂ + uc = Ξe(x)TΘe + ΞT
s (S)Θs + uc, (4.14)

where Ξs(S) = [diag(ξTs1(s1), ξ
T
s2(s2), . . . , ξ

T
sp(sp))]

T and Θs = [θT
s1, θ

T
s2, . . . , θ

T
sp]

T .The compen-
sation control term uc will be designed next.

Substituting (4.14) into (4.1), we obtain

G1(x)Ṡ = G1(x)v − F1(x) −
(
ΞT
e (x)Θe + ΞT

s (S)Θs + uc

)
−G1(x)D(t)

= ω − uc −
(
ΞT
e (x)Θe − ΞT

e (x)Θ
∗
e

)
−
(
ΞT
s (S)Θs − ΞT

s (S)Θ
∗
s

)
− ΞT

s (S)Θ
∗
s − δ(x)IpS.

(4.15)
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Let Θ̃e = Θe −Θ∗
e and Θ̃s = Θs −Θ∗

s. Combining the above equation, we have

G1(x)Ṡ = ω − uc − ΞT
e (x)Θ̃e − ΞT

s (S)Θ̃s − ΞT
s (S)Θ

∗
s − δ(x)IpS. (4.16)

To derive the adaptive laws of the parameter vectors, let us consider the Lyapunov
candidate function

V1 =
1
2
STG1(x)S +

1
2γ1

Θ̃T
e Θ̃e +

1
2γ2

Θ̃T
s Θ̃s +

1
2γ

ω̃T ω̃, (4.17)

where γ1, γ2, γ are positive constants, ω̃ = ω − ω̂ in which the vector ω̂ = [ω̂1, ω̂2, . . . , ω̂p]
T

denotes the estimate of the unknown approximation error vector ω.

Theorem 4.2. For system (2.1), nonlinear function matrices F(x), G(x), and vector D(t) are
unknown, and Assumptions 2.1–2.3 hold. The control law is selected as (4.13) or (4.14) in which
uci = ω̂i with adaptation laws (4.18) as follows:

θ̇ei =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ1siξei(x), ‖θei‖ < Mei or ‖θei‖ = Mei, γ1siθ
T
eiξei(x) ≤ 0,

γ1siξei(x) − γ1si
θeiθ

T
ei

‖θei‖2
ξei(x), ‖θei‖ = Mei, γ1siθ

T
eiξei(x) > 0,

θ̇si =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ2siξsi(si), ‖θsi‖ < Msi or ‖θsi‖ = Msi, γ2siθ
T
siξsi(si) ≤ 0,

γ2siξsi(si) − γ2si
θsiθ

T
si

‖θsi‖2
ξsi(si), ‖θsi‖ = Msi, γ2siθ

T
siξsi(si) > 0,

˙̂ωi = γsi,

(4.18)

whereMei and Msi are defined as before. Then one can derive the performance as follows.

(1) The involved signals of the close loop are bounded.

(2) The tracking errors and their derivatives decay to zero asymptotically, in other words, when
t → ∞, e(j)i → 0, j = 0, 1, . . . , ri − 1, i = 1, 2, . . . , p.
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Proof . Differentiating (4.17) with respect to t and using (4.16), we have

V̇1 = STG1(x)Ṡ +
1
2
STĠ1(x)S +

1
γ1
Θ̃T

e
˙̃Θe +

1
γ2
Θ̃T

s
˙̃Θs +

1
γ
ω̃T ˙̃ω

= ST
(
ω − uc − ΞT

e (x)Θ̃e − ΞT
s (S)Θ̃s − ΞT

s (S)Θ
∗
s − δ(x)IpS

)

+
1
2
STĠ1(x)S +

1
γ1
Θ̃T

e
˙̃Θe +

1
γ2
Θ̃T

s
˙̃Θs +

1
γ
ω̃T ˙̃ω

≤
p∑

i=1

siωi −
p∑

i=1

siω̂i −
p∑

i=1

siθ̃
T
eiξei(x) +

1
γ1

p∑

i=1

θ̃T
ei
˙̃θei +

1
2
STĠ1(x)S − δ(x)‖S‖2

−
p∑

i=1

siθ̃
T
siξsi(si) +

1
γ2

p∑

i=1

θ̃T
si
˙̃θsi −

p∑

i=1

ηi|si| − 1
γ

p∑

i=1

ω̃T
i
˙̂ωi

≤ − 1
γ1

p∑

i=1

θ̃T
e

(
γ1siξei(x) − θ̇e

) − 1
γ2

p∑

i=1

θ̃T
si

(
γ2siξsi(si) − ˙̃θsi

)

+
1
γ

p∑

i=1

(
γsi(ωi − ω̂i) − ω̃T

i
˙̃ωi

)
−

p∑

i=1

ηi|si|.

(4.19)

Considering the same sign between si and the fuzzy switching term ki, the first inequality
in the above derivation is easily established by using the inequality ηi|si| ≤ siθ

∗T
si ξsi(si) ≤

(ηi + ρi)|si|. Noticing (4.18), we have

V̇1 ≤ −
p∑

i=1

ηi|si| < 0. (4.20)

Consequently, all signals in the system are bounded. Obviously, if e(0) is bounded, then e(t)
is also bounded for all t. Since the reference trajectory xd is bounded, then the system state
x(t) is bounded as well.

To complete the proof and establish asymptotic convergence of the tracking error, we
need to prove that S → 0 as t → ∞. We rearrange (4.16) as following:

Ṡ = G(x)
(
ω − ω̂ − ΞT

e (x)Θ̃e − ΞT
s (S)Θ̃s − ΞT

s (S)Θ
∗
s − δ(x)IpS

)
. (4.21)

SinceG(x) and δ(x) are continuous functions in a compact setDx, they are bounded. By using
the boundness of S, ˙̂ω ∈ L∞ and in turn ω̂ ∈ L∞. Therefore, Ṡ ∈ L∞ holds. Using Barbalat’s
lemma, S → 0 (t → ∞) holds. This completes the proof.

Remark 4.3. The tracking control using conventional adaptive fuzzy SMC with fuzzy
switching control term [28–30] does not tackle the problem of attenuation of the effect of
the fuzzy approximation error. We usually have V̇ ≤ Sw − ηST sign(S). In this case, it can
be excepted that Sw should be very small if not equal to zero in [28–30] but here we get
V̇ ≤ −∑p

i=1 ηi|si| < 0, which improves the stability proof. In order to overcome this restriction,
we have proposed ω̂ to estimate the fuzzy approximation error ω.



12 Mathematical Problems in Engineering

Remark 4.4. In conventional adaptive fuzzy SMC design [24, 39, 40], there is often an
assumption that the unknown external disturbance D(t) is bounded by a known positive
constant. However, it is often not possible to obtain the bound in complex situations. In order
to overcome this restriction, the variableD(t) is incorporated into the equivalent control term
ueq and a fuzzy system is used to approximate ueq. Therefore, knowledge of the bound of
external disturbance is not necessary in the present paper.

4.3. Direct Adaptive Fuzzy SMC with Variable Universe Fuzzy Switching
Term (DAFSMC with VUFSW)

As stated in Section 3.2, variable universe fuzzy system possesses high static precision by
virtue of contraction-expansion factor. In this subsection, to accelerate response speed and
improve the control accuracy, we consider an adaptive fuzzy SMC with VUFSW.

Similar to the analysis in Section 4.2, the variables si and ki are still taken as the input
and the output variables of the variable universe fuzzy system. Then the variable universe
fuzzy switching control law k̂i of the ith subsystem can be written as

k̂i = βiζsi(si)Tθsi, (4.22)

where ζsi(si) = [A1(si/αi(si)), . . . , AiL(si/αi(si))]
T and θsi = [b1, b2, . . . , biL]

T .
Let β∗ = diag(β∗1, β

∗
2, . . . , β

∗
p) be the optimal parameter vector, where

β∗i = arg min
|βi|≤Mi

{
sup
si∈Dsi

∣∣∣ki − βiζsi(si)Tθsi
∣∣∣
}
, (4.23)

in which Mi is the design constant. Similarly, since the ideal parameter β∗i is unknown, βi is
employed to estimate β∗i . Therefore, the overall control effort can be modified as

ui = ûeqi + k̂i + uci = ξTei(x)θei + βiζ
T
si(si)θsi + ω̂i (4.24)

or

u = ûeq + K̂ + uc = ΞT
e (x)Θe + βΞT

s (S)Θs + ω̂, (4.25)

where Ξs(S) = [diag(ζTs1(s1), ζ
T
s2(s2), . . . , ζ

T
sp(sp))]

T and Θs = [θT
s1, θ

T
s2, . . . , θ

T
sp]

T .
Substituting (4.25) into (4.1), we obtain

G1(x)Ṡ = G1(x)v − F1(x) −
(
ΞT
eΘe + βΞT

s (S)Θs + ω̂
)
−G1(x)D(t)

= (ω − ω̂) −
(
ΞT
eΘe − ΞT

eΘ
∗
e

)
−
(
βΞT

s (S)Θs − β∗ΞT
s (S)Θs

)
− β∗ΞT

s (S)Θs − δ(x)IpS.

(4.26)
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Let Θ̃e = Θe −Θ∗
e and β̃ = β − β∗. Then

G1(x)Ṡ = ω̃ − ΞT
e (x)Θ̃e − β̃ΞT

s (S)Θs − β∗ΞT
s (S)Θs − δ(x)IpS. (4.27)

To derive the adaptive law of the parameter vectors, we consider the Lyapunov
candidate function as

V2 =
1
2
STG1(x)S +

1
2γ1

Θ̃T
e Θ̃e +

1
2γ3

β̃T β̃T +
1
2γ

ω̃T ω̃, (4.28)

where γ3 is a positive constant.

Theorem 4.5. For system (2.1), nonlinear function matrices F(x), G(x), and vector D(t) are
unknown, and Assumptions 2.1–2.3 hold. The control law is selected as (4.24) or (4.25), with
adaptation laws (4.29) as follows:

θ̇ei =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ1siξei(x), ‖θei‖ < Mei or ‖θei‖ = Mei, γ1siθ
T
eiξei(x) ≤ 0,

γ1siξei(x) − γ1si
θeiθ

T
ei

‖θei‖2
ξei(x), ‖θei‖ = Mei, γ1siθ

T
eiξei(x) > 0,

β̇i =

⎧
⎪⎨

⎪⎩

γ3siθ
T
siζsi(si),

∣∣βi
∣∣ < Mi or

∣∣βi
∣∣ = Mi, γ3siθ

T
siζsi(si) ≤ 0,

0,
∣∣βi

∣∣ = Mi, γ3siθ
T
siζsi(si) > 0,

˙̂ω = γsi,

(4.29)

whereMei and Mi are defined as before. Then one can derive the performance as follows.

(1) The involved signals of the close loop are bounded.

(2) The tracking errors and their derivatives decay to zero asymptotically, in other words, when
t → ∞, e(j)i → 0, j = 0, 1, . . . , ri − 1, i = 1, 2, . . . , p.

Proof. Differentiating (4.28) with respect to t and using (4.27), we have

V̇2 = STG1(x)Ṡ +
1
2
STĠ1(x)S +

1
γ1
Θ̃T

e
˙̃Θe +

1
γ3
β̃T ˙̃β +

1
γ
ω̃T ˙̃ω

= ST
(
ω̃ − ΞT

e (x)Θ̃e − β̃ΞT
s (S)Θs − β∗ΞT

s (S)Θs − δ(x)IpS
)

+
1
2
STĠ1(x)S +

1
γ1
Θ̃T

e
˙̃Θe +

1
γ3
β̃T ˙̃β +

1
γ
ω̃T ˙̃ω
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≤
p∑

i=1

siω̃i − 1
γ

p∑

i=1

ω̃T
i
˙̂ωi −

p∑

i=1

siθ̃
T
eiξei(x) +

1
γ1

p∑

i=1

θ̃T
eiθ̇ei +

1
2
STĠ1(x)S − δ(x)‖S‖2

−
p∑

i=1

siβ̃iθ
T
siζsi(si) +

1
γ3

p∑

i=1

β̃iβ̇i −
p∑

i=1

ηi|si|

≤ 1
γ

p∑

i=1

ω̃i

(
γsi − ˙̂ωi

) − 1
γ1

p∑

i=1

θ̃T
ei

(
γ1siξei(x) − θ̇ei

) − 1
γ3

p∑

i=1

β̃i
(
γ3siθ

T
siζsi(si) − β̇i

)
−

p∑

i=1

ηi|si|.

(4.30)

Noticing that (4.29), we have

V̇2 ≤ −
p∑

i=1

ηi|si| < 0. (4.31)

Therefore, all signals in the system are bounded. In order to show the boundedness of Ṡ, we
rearrange (4.27) as follows:

Ṡ = G(x)
(
ω̃ − ΞT

e (x)Θ̃e − β̃ ΞT
s (S)Θs − β∗ΞT

s (S)Θs − δ(x)IpS
)
. (4.32)

Similarly, we can derive Ṡ ∈ L∞.

To summarize the above analysis, the step-by-step procedures for the two direct
adaptive fuzzy SMCs are proposed as follows.

Design Procedure:

Step 1. Select proper positive coefficients λ1, λ2, . . . , λp and learning coefficients γ1, γ2, γ3, and
γ .

Step 2. Specify design constant vectors Me = [Me1,Me2, . . . ,Mep]
T , Ms = [Ms1,Ms2, . . .,

Msp]
T andM = [M1,M2, . . . ,Mp]

T .

Step 3. Define mi fuzzy sets Fi for variable xi to achieve an uniform coverage of the universe
of discourse. Select the initial parameter vector θei(0) = 0mi×1 (i = 1, 2, . . . , p).

Step 4. Construct the fuzzy rule bases for the fuzzy system uswi. Define iL fuzzy sets Ai for
variable si to achieve a uniform coverage of the universe of discourse. Select the initial
parameter vectors θsi(0)iL×1 (i = 1, 2, . . . , p) for DAFSMC with FSW and the initial values
βi(0) (i = 1, 2, . . . , p) for DAFSMC with VUFSW.

Step 5. Construct the fuzzy systems ûeqi in (4.9), and k̂i in (4.11) or (4.22).

Step 6. Construct the control law (4.13) or (4.14)with the adaptive laws in (4.18) or construct
the control law (4.24) or (4.25)with the adaptive laws in (4.29).

Step 7. Use the adaptive laws (4.18) or (4.29) to adjust the parameters θei, θsi or βi, and ω̂i.
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5. Simulation Results and Analysis

In this section, we test the proposed control schemes on the trajectory tracking control of the
two-link rigid robot manipulators moving a horizontal plane. The equations of motion of the
manipulators can be expressed in matrix form as follows [21, 25]:

(
q̈1
q̈2

)
= −

(
M11, M12

M21, M22

)−1(−hq̇2, −h(q̇1 + q̇2
)

hq̇1, 0

)(
q̇1
q̇2

)
+
(
M11, M12

M21, M22

)−1(
u1

u2

)
+
(
d1

d2

)
, (5.1)

where

M11 = a1 + 2a3 cos q2 + 2a4 sin q2,

M22 = a2,

M21 = M12 = a2 + a3 cos q2 + a4 sin q2,

h = a3 sin q2 − a4 cos q2,

(5.2)

in which

a1 = I1 +m1l
2
c1 + Ie +mel

2
ce +mel

2
1,

a2 = Ie +mel
2
ce,

a3 = mel1lce cos δe,

a4 = mel1lce sin δe.

(5.3)

In the simulation, the following parameter values of the plant are used:m1 = 1,me = 2,
l1 = 1, lc1 = 0.5, lce = 0.6, I1 = 0.12, Ie = 0.25, δe = 30o. Let y = [q1, q2]

T , u = [u1, u2]
T ,

x = [q1, q̇1, q2, q̇2]
T ,

F(x) =
(
f1(x)
f2(x)

)
= −

(
M11, M12

M21, M22

)−1(−hq̇2, −h(q̇1 + q̇2
)

hq̇1, 0

)(
q̇1
q̇2

)
,

G(x) =
(
g11, g12
g21, g22

)
=
(
M11, M12

M21, M22

)−1
, D(t) =

(
d1

d2

)
.

(5.4)

Then, the robotic manipulators dynamics given by (5.1) can be expressed as

ÿ = F(x) +G(x)u +D(t). (5.5)

The object is to design control law u to force the system output q1 and q2 to track the
desired trajectories yd1 = sin t and yd2 = sin t, respectively. The initial state is selected as
x0 = [1, 0, 1, 0]T . The fuzzy system k̂i (i = 1, 2) in (4.9) have x = [q1, q̇1, q2, q̇2]

T as inputs. For
each input variable, we define three triangular membership functions uniformly distributed
on the interval [−1, 1]. si and ki are the input and the output of the fuzzy system ûswi (i = 1, 2)
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Table 1: Fuzzy rule list of variable universe fuzzy switching control.

Input si PB PM PS ZE NS NM NB
Output ki PB PM PS ZE NS NM NB
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Figure 1: Angular trajectory tracking curves of robotic manipulators.

in (4.11) and (4.22), respectively. We define seven triangle membership functions uniformly
distributed on the input domain [−2, 2] and the output domain [−1, 1], respectively. The used
fuzzy rules are showed in Table 1, in which the fuzzy labels used in this study are negative big
(NB), negative medium (NM), negative small (NS), zero (ZE), positive small (PS), positive
medium (PM), and positive big (PB).

In this paper, we consider that the nonlinear function matrices F(x) and G(x) are
assumed to be completely unknown, that is, the design of the proposed controller does not
require the knowledge of the system’s model. Moreover, the external disturbanceD(t) is also
unknown. In fact, these functions are only required for simulation purpose. To make a fair
comparison, in the simulation, we consider the direct adaptive fuzzy SMC proposed by A.
Boulkroune et al. in [21] where a classical switching control term is employed to eliminate
the fuzzy approximation error (hereafter referred to as a DAFSMC with CSW).

In the whole simulation, the design parameters used are chosen as follows: λ1 = λ2 = 5,
γ1 = 1, γ2 = 8, γ3 = 8, γ = 1, Me1 = 2, Me2 = 1, Ms1 = 50, Ms2 = 20, M1 = M2 = 2,
η1 = 13, η2 = 6 and the contraction-expansion factors αi = 1 − λ exp(−ks2i ) (i = 1, 2) with
λ = 0.95, k = 1. The initial conditions of the online adjustable parameter vectors are selected
as θei = [0]81×1 (i = 1, 2), θsi = [−3,−2,−1, 0, 1, 2, 3]T (i = 1, 2), and β(0) = diag(5, 1).

To verify the robust stability of the proposed schemes, external disturbances are chosen
as square wave signal d1 = d2 = square(2πt) [21]. The response curves, the tracking error
curves, and sliding mode dynamic evolution curves under the aforementioned three control
schemes are illustrated in Figures 1, 2, and 3, respectively. Their associated control efforts are
illustrated in Figure 4. For evaluating numerically their tracking performance, the integral
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Figure 2: Angular trajectory tracking error curves of robotic manipulators.
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Figure 3: Sliding mode dynamic evolution curves.

of the absolute error (IAE), the integral of the time multiplied by the absolute error (ITAE),
and the integral of square value (ISV) of the control input are also considered because mere
visual observation of response curve is not always enough to make a sound comparison. The
corresponding tracking performance indices in first 20 seconds and in first 100 seconds are
tabulated in Tables 2 and 3, respectively.

As shown in Figures 1–4, the proposed two schemes can effectively achieve the
trajectory tracking of the joint angles despite of the system uncertainties and external
disturbances. Furthermore, they can effectively alleviate the chattering, which is the main
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Figure 4: Control input torques of robotic manipulators.

Table 2: The performance indices in 20 seconds.

Controller rod1 rod2
IAE (rad) ITAE (rad · s) ISV (N2) IAE (rad) ITAE (rad · s) ISV (N2)

DAFSMC with CSW 0.8485 1.5820 3.3838e + 03 0.4191 0.3299 704.3263
DAFSMC with FSW 2.3991 12.8742 1.9102e + 03 1.1504 5.3901 253.8947
DAFSMC with VUFSW 0.3923 0.3867 2.9613e + 03 0.2852 0.3180 437.4319

disadvantage of general SMC. It can also be seen from Figures 1–3, the performance
specifications of DAFSMC with VUFSW are much better than those of DAFSMC with CSW
and DAFSMC with FSW in terms of reaching time, steady precision.

Both IAE and ITAE are used as evaluating error performance, while the criterion
ISV shows energy consumption. It is well known that there is a trade-off between error
performance and energy consumption, that is, when IAE and ITAE are improved, ISV
becomes worse, and vice versa. Conservative control input is often required to guarantee the
stability of the control system in DAFSMCwith CSW scheme. Therefore, DAFSMCwith CSW
expends relatively more energy to achieve the tracking task than DAFSMC with FSW. It also
implies that the indices IAE and ITAE of DAFSMC with FSW become worse. But DAFSMC
with VUFSW simultaneously improves IAE and ITAE as well as ISV as compared to the
others as stated in Tables 2 and 3. It is undeniable that DAFSMC with VUFSW expends more
energy than DAFSMC with FSW in the initial stage due to its fast response speed. However,
thanks to the high precision of the variable universe fuzzy control, its energy consumption
reduces quickly in the steady state.

Remark 5.1. As already stated in Section 1, in the presence of model uncertainties and external
disturbances, the two disadvantages of general SMC cannot be overcome just using fuzzy
switching technique or adaptive fuzzy SMC. Combining adaptive fuzzy SMC with fuzzy
or variable universe fuzzy switching technique, a novel framework for designing direct
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Table 3: The performance indices in 100 seconds.

Controller rod1 rod2
IAE (rad) ITAE (rad · s) ISV (N2) IAE (rad) ITAE (rad · s) ISV (N2)

DAFSMC with CSW 1.4397 33.2521 1.6863e + 04 0.4722 6.6922 3.5550e + 03
DAFSMC with FSW 3.9996 97.6183 9.0121e + 03 2.1688 63.2731 1.2830e + 03
DAFSMC with VUFSW 0.5073 7.2268 8.6772e + 03 0.3844 6.1505 1.2590e + 03

adaptive fuzzy SMC is developed for a class of MIMO nonlinear systems in this study. The
derived schemes can effectively overcome these disadvantages of the general SMC.

Remark 5.2. Comparedwith [22, 24, 28–30, 38, 41], our proposed control schemes have several
advantages as follows. (i) The proposed schemes can simultaneously solve the chattering and
the calculation of the equivalent control in the presence of model uncertainties and unknown
disturbances. (ii) The constraint on the control gain matrix is relaxed. In this study, the gain
matrix is just required to be positive definite symmetric and the inverse of its derivative
is bounded by an unknown function. (iii) An adaptive compensation term is appended to
remove the assumption on fuzzy approximation error in the stability proof. (iv) The derived
DAFSMC with VUFSW achieves better performances than the others in terms of response
speed, steady accuracy, IAE, ITAE, and ISV.

6. Conclusion

A novel framework is developed to design a direct adaptive fuzzy SMC for a class of MIMO
nonlinear systemswithmodel uncertainties and unknown disturbances. Combining adaptive
fuzzy SMC with fuzzy or variable universe fuzzy switching technique, this study proposes
two novel direct adaptive fuzzy SMC schemes. The derived schemes effectively overcome
the two disadvantages of general SMC. Besides, the constraint on the control gain matrix
and the fuzzy approximation error are relaxed. Future works will focus on the extension of
the framework to more general MIMO nonlinear systems such as the continuous-time or the
discrete-time nonaffine nonlinear systems.
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