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We analyze a class of rheonomous affine constraints defined on configuration manifolds from the
viewpoint of integrability/nonintegrability. First, we give the definition of A-rheonomous affine
constraints and introduce, geometric representation their. Some fundamental properties of the A-
rheonomous affine constrains are also derived. We next define the rheonomous bracket and derive
some necessary and sufficient conditions on the respective three cases: complete integrability,
partial integrability, and complete nonintegrability for the A-rheonomous affine constrains. Then,
we apply the integrability/nonintegrability conditions to some physical examples in order to
confirm the effectiveness of our new results.

1. Introduction

In the research fields such as control theory and robotics, nonholonomic systems have been
actively studied by a lot of researchers so far [1–5]. Nonholonomic systems are, in the simplest
terms, defined as ones that are subject to nonintegrable constraints and whose behaviors
must satisfy the constraints. That is to say, the word “nonholonomic” is equivalently used
as “nonintegrable.” We can easily find a lot of examples of nonholonomic systems: mobile
cars [6, 7], trailers [8, 9], space robots [10, 11], acrobat robots [12, 13], a rolling ball or coin on
a plain [1], underactuated manipulators [14–16], and so on. In past work on nonholonomic
systems, linear constraints have been mainly treated. The linear constraints are represented
as B(q)q̇ = 0, q ∈ Rn, B(q) ∈ R(n−m)×n and contain various examples such as mobile cars,
a ball or a coin on a plain, and hopping robots [14, 15]. Integrability and nonintegrability
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of the linear constraints can be determined by using the well-known Frobenius’ theorem
[17, 18], and they are strongly related to accessibility of nonlinear control systems that are
derived from the linear constraints [4, 5, 7, 17–21]. Namely, researches on systems subject to
the linear constraints have been highly developed by various approaches so far. Especially,
researches on nonholonomic control systems can be mainly classified into the two research
fields: kinematic systems and dynamic systems. Kinematic systems are directly derived from
nonholonomic constraints, and in particular the linear constraints can be transformed into
symmetrically affine control systems [7, 22, 23]. On the contrary, dynamic systems are derived
from Euler-Lagrange equations with the constrained forces based on d’Alembert’s principle
[21, 24, 25]. There are two common characteristics for both kinematic and dynamic systems:
(i) their linear approximated systems are uncontrollable and (ii) they are locally controllable,
but not locally asymptotically stabilizable by any nonlinear smooth state feedback laws from
Brockett’s theorem [4, 26]. Therefore, a lot of control methods such as time-variant feedback,
discontinuous feedback, and switching control laws have been proposed to avoid Brockett’s
condition.

On the other hand, in nonholonomic systems, there exists another class of constraints
called affine constraints. The affine constraints are represented as A(q) + B(q)q̇ = 0, q ∈
Rn,A(q) ∈ Rn−m, B(q) ∈ R(n−m)×n and contain some curious examples such as space
robots with initial angular momenta (Figure 1(a)), a boat or a ship on a running river
(Figure 1(b)), and a ball or a coin on a rotating table (Figures 1(c) and 1(d)). Obviously,
the class of the affine constraints is larger than that of the linear constraints and covers a
wide range of nonholonomic systems; however, theoretical analysis on the affine constraints
had been hardly done. So, we focused on and researched the affine constraints from
the viewpoints of both mathematics and control theory and derived various results:
integrability/nonintegrability conditions of the affine constraints and foliation structures
of configuration manifolds [27], integrating algorithms of integrable affine constraints
[28], nonlinear control analysis and control of nonholonomic kinematic systems with
affine constraints [29–32], modeling and theoretical analysis of nonholonomic dynamic
systems with affine constraints [31, 33], modeling and passivity analysis of nonholonomic
Hamiltonian systems with affine constraints [34], generalized canonical transformation and
passivity-based control of nonholonomic Hamiltonian systems with affine constraints [35],
and near-optimal control of a 3D space robot with an initial angular momentum [36]. In
a sequence of researches on the affine constraints, we obtained some important results:
(a) complete nonintegrability (nonholonomicity) of the affine constraints is equivalent to
strong accessibility of systems, (b) linear approximated systems of original systems with
affine constraints are controllable under some conditions, and (c) some systems with affine
constraints satisfy Brockett’s condition and hence there is a possibility of local asymptotic
stabilizability by nonlinear smooth state feedback laws. We can say that these characteristics
are beyond the ones for the linear constraints and indicate a new control problem for
nonholonomic control systems.

All the constraints that are dealt with in the researches above do not contain the
time variable, that is, scleronomous constraints [1]. However, there exist nonholonomic
mechanical systems whose constraints contain the time variable. For example, a boat or a
ship on a running river with a time-varying stream (Figure 1(b)) and a coin or a ball on a
rotating table at a time-varying angular velocity (Figures 1(c) and 1(d)) are physical systems
that are subject to affine constraints, which contain the time variable. These constraints
are called rheonomous [1], especially, the class of A-rheonomous affine constraints that are
represented as A(t, q) + B(q)q̇ = 0, q ∈ Rn, A(t, q) ∈ Rn−m, B(q) ∈ R(n−m)×n, that is, affine
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(a) Space Robot with Initial Angular Momen-
tum

(b) Boat on Running River

(c) Ball on Rotating Table (d) Coin on Rotating Table

Figure 1: Examples of systems subject to affine constraints.

constraints whose term A contains the time variable t is important from an application
standpoint. Moreover, the class of the A-rheonomous affine constraints is larger than that
of the scleronomous affine constraints, and so we can say that the range of possible
application extends more and more as shown in Figure 2. For analysis and control synthesis
of mechanical systems subject to the rheonomous affine constraints, it is essential to consider
them; however, the existing results on scleronomous affine constraints [27, 29] cannot be
utilized. Hence, we need a new fundamental theory on the rheonomous affine constraints
such as integrability/nonintegrability and foliation structures of configuration manifolds
in order to apply control theory to such systems, and it is expected that the existence of
the time variable in the constraints makes it more difficult to analyze them. In [37–41],
rheonomous constraints have been dealt with in terms of Lagrangian mechanics, jet bundles,
and almost-Poisson structures, but fundamental properties of rheonomous constraints such
as integrability/nonintegrability and foliation structures of configuration manifolds have not
been considered in these works.

This is the first paper of a series of papers on theoretical analysis of the A-
rheonomous affine constraints defined on configuration manifolds. In this first paper, we
aim at derivation of fundamental properties and integrability/nonintegrability conditions
for the A-rheonomous affine constraints. specifically, integrability/nonintegrability analysis
of the A-rheonomous affine constraints is one of the most basic and important concepts.
On the other hand, the second paper [42] focuses on analysis of foliation structures of
configuration manifolds with the A-rheonomous affine constraints and development of
integrating algorithms for integrable A-rheonomous affine constraints.

This paper is organized as follows. In Section 2, we first give a definition of the A-
rheonomous affine constraints and explain their geometric representation. we also derive
some fundamental properties of the A-rheonomous affine constraints. Next, Section 3
introduces the rheonomous bracket that is a new operator and plays an important role, and
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A(q) + B(q)q̇ = 0

B(q)q̇ = 0

A(t, q) + B(q)q̇ = 0

Scleronomous linear constraints

Scleronomous affine constraints

A-rheonomous affine constraints

• Ball/coin on rotating table at time-varying angular velocity

• Ball/coin on rotating table

• Space robot with initial angular momentum

• Hopping robot, snake robot

• Boat/ship on lake without stream

• Mobile car, trailer

• Ball/coin on plain

• Space robot without initial angular momentum

• Boat/ship on running river

• Boat/ship on running river with time-varying stream

Figure 2: Classes of constraints and examples.

presents necessary and sufficient conditions for the A-rheonomous affine constraints in the
three cases: complete integrability, partial integrability, and complete nonintegrability. Then,
we apply our new results to some physical examples in order to confirm their effectiveness.
Throughout this paper, manifolds, submanifolds, functions, vector fields, distributions, and
differential forms are all assumed to be smooth.

2. Rheonomous Affine Constraints

2.1. Definition

In this subsection, we give a definition of rheonomous affine constraints. We denote the time
variable by t ∈ R and a time interval by I ⊂ R. Let Q be an n-dimensional configuration
manifold and q = [q1 · · · qn]� ∈ Rn to a local coordinate of Q. Associated with q, we refer
q̇ = [q̇1 · · · q̇n]� ∈ TqQ as a tangent vector field.

A set of n −m(m < n) differential equations:

Ai

(
t, q
)
+ Bi1

(
t, q
)
q̇1 + · · · + Bin

(
t, q
)
q̇n = 0, i = 1, . . . , n −m, (2.1)

is called rheonomous affine constraints because the coefficients Ai, Bij(i = 1, . . . , n − m, j =
1, . . . , n) depend on the time variable t. We now rewrite (2.1) as

A
(
t, q
)
+ B
(
t, q
)
q̇ = 0, (2.2)

where a rheonomous affine term A(t, q) ∈ Rn−m is a vector-valued function whose ith entry is
Ai(t, q) and B(t, q) is a matrix-valued function whose ijth entry is Bij(t, q).
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In this paper, we consider a subclass of the rheonomous affine constraints (2.2) in the
form

A
(
t, q
)
+ B
(
q
)
q̇ = 0, (2.3)

that is to say, only the rheonomous affine term A depends on the time variable t. We call
(2.3) A-rheonomous affine constraints. It must be noted that this class of the A-rheonomous
affine constraints contains some important examples of mechanical systems as mentioned in
Section 1 . Now, we assume a sufficient condition on independency of the A-rheonomous
affine constraints (2.3) as follows.

Assumption 2.1. The coefficient matrix B(q) of the A-rheonomous affine constraints (2.3) has
a row full-rank at any point q ∈ Q, that is,

rankB
(
q
)
= n −m, ∀q ∈ Q, (2.4)

holds.

Then, we here give a definition on classification of points in the configurationmanifold
Q in terms of the rheonomous affine term in the A-rheonomous affine constraints (2.3) as
follows.

Definition 2.2. For the rheonomous affine termA(t, q) of theA-rheonomous affine constraints
(2.3) and a time interval I ⊂ R, a point q ∈ Q such that A(t, q)/= 0, for all t ∈ I, holds is
called a rheonomous affine regular point. On the other hand, a point q ∈ Q such that A(t, q) =
0, for all t ∈ I, holds is called a rheonomous affine equilibrium point.

From Definition 2.2, we can see that each point in Q is classified into either a
rheonomous affine regular point or a rheonomous affine equilibrium point.

2.2. Geometric Representation and Some Properties

This subsection introduces a geometric representationmethod and provides some fundamen-
tal properties of the A-rheonomous affine constraints.

From (2.4) in Assumption 2.1, the n−m row vectors of B(q) in theA-rheonomous affine
constraints (2.3) are independent of each other at any point q ∈ Q. Hence, we here consider
m vectors that are independent of each other and annihilators of the n − m row vectors of
B(q) and denote them by Y1, . . . , Ym as vector fields onQ. In addition, we also denote a space
spanned by Y1, . . . , Ym, that is, a distribution on Q by

D := span{Y1, . . . , Ym}. (2.5)

Since the basial vectors of D: Y1, . . . , Ym are independent of each other at any point q ∈ Q, D
is a nonsingular distribution, that is,

dimD
(
q
)
= m, ∀q ∈ Q, (2.6)

holds.
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Tq(t)Q
q̇(t)

q̇ −X(t, q(t))

D(q(t))

−X(t, q(t))

→q : I → Q

Figure 3: Geometric representation of A-rheonomous affine constraints.

In order to represent the A-rheonomous affine constraints geometrically, we now
introduce an important vector field on Q. A curve q : I → Q is said to be satisfying the A-
rheonomous affine constraints (2.3) if for a vector field on Q: X and the generalized velocity
of q: q̇ ∈ Tq(t)Q,

q̇(t) −X(t, q(t)) ∈ D(q(t)), ∀t ∈ I, (2.7)

holds as shown in Figure 3. X is called a rheonomous affine vector field. This definition is an
extension of the one for the scleronomous affine constraints that do not contain the time
variable [27].

Now, we show essential characteristics of the rheonomous affine vector field X in the
following proposition.

Proposition 2.3. For the A-rheonomous affine constraints (2.3), the component of the rheonomous
affine vector field X, and a time interval I ⊂ R,

A
(
t, q
)
+ B
(
q
)
X
(
t, q
)
= 0, ∀q ∈ Q, ∀t ∈ I, (2.8)

holds.

Proof. Assume that a velocity vector q̇ ∈ TqQ at a point q ∈ Q satisfies the rheonomous affine
constraints (2.3). Since q̇ −X(t, q) ∈ D(q) holds, we obtain

q̇ −X(t, q) = α1
(
t, q
)
Y1
(
q
)
+ · · · + αm

(
t, q
)
Ym
(
q
)
, (2.9)

where α1(t, q), . . . , αm(t, q) are functions on Q. Now, multiply the left-hand side of (2.9) by
B(q). Since the row vectors of B(q) are annihilators of Y1(q), . . . , Ym(q), we then have

B
(
q
){
q̇ −X(t, q)} = 0. (2.10)

Furthermore, using (2.3), we can rewrite (2.10) as

B
(
q
)
q̇ −A(t, q) = 0, (2.11)

and hence we obtain (2.8).
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Consequently, under the preliminaries shown above, the A-rheonomous affine
constraints (2.3) can be geometrically represented as the next definition.

Definition 2.4. The A-rheonomous affine constraints (2.3) are geometrically represented by
a pair (D,X), where D is an m-dimensional distribution defined by (2.5) and X is called a
rheonomous affine vector field and satisfies (2.8).

In order to derive some conditions on integrability/nonintegrability for A-
rheonomous affine constraints (2.3), their geometric representation is quite important. For
the geometric representation of theA-rheonomous affine constraints shown in Definition 2.4,
the next proposition can be derived.

Proposition 2.5. For the geometric representation of the A-rheonomous affine constraints (2.3);
(D,X) and a time interval I ⊂ R, a point q ∈ Q is a rheonomous equilibrium point if and only
if

X
(
t, q(t)

) ∈ D(q(t)), ∀t ∈ I, (2.12)

holds. On the other hand, a point q ∈ Q is a rheonomous regular point if and only if

X
(
t, q(t)

)
/∈ D
(
q(t)
)
, ∀t ∈ I, (2.13)

holds.

Proof. If q ∈ Q is a rheonomous affine equilibrium point, that is, A(q) = 0 holds, we have
B(q)X(q) = 0 and hence X(t, q) ∈ D(q(t)), for all t ∈ I, is derived from (2.3). Conversely, if
X(t, q) ∈ D(q(t)) holds at a point q ∈ Q, that is, B(q)X(q) = 0, then we have A(q) = 0 from
(2.3), and it turns out that the point is a rheonomous affine equilibrium point. Hence, a point
q ∈ Q is a rheonomous equilibrium point if and only if X(t, q) ∈ D(q(t)), for all t ∈ I, holds.

Next, all the points in Q are classified into either rheonomous affine regular points
or rheonomous affine equilibrium points from Definition 2.2. Therefore, a point q ∈ Q is a
rheonomous regular point if and only if X(t, q) /∈ D(q(t)), ∀t ∈ I holds. Consequently, we
have completed the proof of this proposition.

3. Integrability and Nonintegrability Conditions

3.1. Rheonomous Bracket

This section presents some necessary and sufficient conditions for the A-rheonomous
affine constraints (2.3) in the three cases of complete integrability, partial nonintegrability,
and complete nonintegrability. First of all, we give a definition of a new operator called
rheonomous bracket in this subsection. The normal Lie bracket for two vector fields Z,W is
defined as

[Z,W] :=
∂W

∂q
Z − ∂Z

∂q
W. (3.1)
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Now, in order to derive some conditions for the A-rheonomous affine constraints, we define
a new bracket, which can be interpreted as an extension of the normal Lie bracket above, as
follows.

Definition 3.1. For the vector fields defined on Q of the geometric representation of the A-
rheonomous affine constraints (2.2); X,Y1, . . . , Ym, the rheonomous bracket is an operator, 〈·, ·〉:
TQ × TQ → TQ that satisfies the next three properties.

(a) For a rheonomous affine vector field X,

〈X,X〉 = 0 (3.2)

holds.

(b) D0 is defined as a set of vector fields that consists of Y1, . . . , Ym and iterated
rheonomous brackets of X,Y1, . . . , Ym and does not contain X. For a rheonomous
affine vector field X and a vector field Z ∈ D0,

〈X,Z〉 =
∂Z

∂t
+ [X,Z], Z ∈ D0,

〈Z,X〉 = −∂Z
∂t

+ [Z,X], Z ∈ D0,

(3.3)

hold.

(c) For two vector fields Z,W ∈ D0,

〈Z,Z〉 := 0, Z ∈ D0,

〈Z,W〉 := [Z,W], Z,W ∈ D0

(3.4)

hold.

In Definition 3.1, it is the main characteristic that the rheonomous affine vector field
X is perceived as special, and this yields an additional term of a time differential of a vector
field as shown in property (b). The rheonomous bracket will play important roles in not
only derivation of integrability and nonintegrability conditions for the A-rheonomous affine
constraints in the next subsections of this first paper but also analysis of foliation structure of
configuration manifolds and development of integrating algorithms for the A-rheonomous
affine constraints in the second paper [42]. It must be also noted that from Definition 3.1
the rheonomous bracket is equivalent to the normal Lie bracket for scleronomous affine
constraints, that is, constraints that do not contain the time variable explicitly. In addition,
it turns out from the next proposition that the rheonomous bracket has the important
characteristics in common with the normal Lie bracket.

Proposition 3.2. For the vector fields on the geometric representation of the A-rheonomous affine
constraints (2.2), X,Y1, . . . , Ym, and the set of iterated vector fields of them, D0, the following
properties (a), (b), and (c) hold.
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(a) Bilinearlity:

〈X, aZ + bW〉 = a〈X,Z〉 + b〈X,W〉,
〈aZ + bW,X〉 = a〈Z,X〉 + b〈W,X〉, Z,W ∈ D0.

(3.5)

(b) Skew-symmetry:

〈X,Z〉 = −〈Z,X〉, Z,W ∈ D0. (3.6)

(c) Jacobi’s identity:

〈〈X,Z〉,W〉 + 〈〈Z,W〉, X〉 + 〈〈W,X〉, Z〉 = 0, Z,W ∈ D0. (3.7)

Proof. Based on the definition of the rheonomous bracket, we can calculate

〈X, aZ + bW〉 =
∂(aZ + bW)

∂t
+ [X, aZ + bW]

= a
∂Z

∂t
+ a[X,Z] + b

∂W

∂t
+ b[X,W]

= a〈X,Z〉 + b〈X,W〉,

〈aZ + bW,X〉 = −∂(aZ + bW)
∂t

+ [aZ + bW,X]

= −a∂Z
∂t

+ a[Z,X] − b∂W
∂t

+ b[W,X]

= a〈Z,X〉 + b〈W,X〉.

(3.8)

Hence, we complete the proof of (a). Next, a simple calculation can show that

〈X,Z〉 =
∂Z

∂t
+ [X,Z] = −

(
−∂Z
∂t

+ [Z,X]
)

= −〈Z,X〉.
(3.9)
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Therefore, (b) holds. Finally, we will prove (c). Since we can calculate

〈〈X,Z〉,W〉 =
〈
∂Z

∂t
+ [X,Z],W

〉

=
[
∂Z

∂t
,W

]
+ [[X,Z],W]

=
∂W

∂q

∂Z

∂t
+
∂2Z

∂t∂q
W + [[X,Z],W],

〈〈Z,W〉, X〉 = − ∂〈Z,W〉
∂t

+ [〈Z,W〉, X]

= − ∂[Z,W]
∂t

+ [[Z,W], X]

= − ∂

∂t

(
∂W

∂q
Z − ∂Z

∂q
W

)
+ [[Z,W], X]

= − ∂2W

∂t∂q
Z − ∂W

∂q

∂Z

∂t
+
∂2Z

∂t∂q
W +

∂Z

∂q

∂W

∂t
+ [[Z,W], X],

〈〈W,X〉, Z〉 = [〈W,X〉, Z]

=
[
−∂W
∂t

+ [W,X], Z
]

=
[
−∂W
∂t

, Z

]
+ [[W,X], Z]

=
∂Z

∂q

∂W

∂t
+
∂2W

∂t∂q
Z + [[W,X], Z],

(3.10)

we obtain

〈〈X,Z〉,W〉 + 〈〈Z,W〉, X〉 + 〈〈W,X〉, Z〉
= [[X,Z],W] + [[Z,W], X] + [[W,X], Z] = 0,

(3.11)

where we utilize Jacobi’s identity for the normal Lie bracket. Consequently, the proof of (c) is
completed.

The properties in Proposition 2.5 can reduce the effort to calculate iterated rheonomous
brackets in checking complete nonholonomicity of the given A-rheonomous affine con-
straints.

3.2. Complete Integrability Conditions

In this subsection and the next two subsections, we will investigate the integrabil-
ity/nonintegrability of theA-rheonomous affine constraints (2.3). First, in this subsection, we
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consider the case where all the n−m A-rheonomous affine constraints (2.3) can be integrated,
that is to say, the complete integrability case.

If the A-rheonomous affine constraints (2.3) are completely integrable, we can
integrate them and obtain their independent first integrals that are represented by only the
time variable t and the configuration variable q and do not contain any differentials of the
configuration variable. Since we can reduce the dimension of a system subject to constraints
by using independent first integrals of them and transform the system into another system
with no constraints, it is quite important to examine if the constraints are integrable. We now
define a smallest and involutive time-varying distribution C0(t, q) which contains Y1, . . . , Ym
and iterated rheonomous brackets of them, and satisfies 〈X,W〉 ∈ C0, for all W ∈ C0, that
is to say, C0 is spanned by all the rheonomous brackets of X,Y1, . . . , Ym with the exception
of X. Then, some necessary and sufficient conditions on complete integrability for the A-
rheonomous affine constraints (2.3) are given by the following theorem.

Theorem 3.3. For the A-rheonomous affine constraints (2.3) defined on an n-dimensional manifold
Q and a time interval I ⊂ R, the following statements (a)–(c) are equivalent to each other. If they hold,
theA-rheonomous affine constraints (2.3) are said to be completely integrable or completely holonomic.

(a) There exist n −m independent first integrals of the A-rheonomous affine constraints (2.3):
h1(t, q), . . . , hn−m(t, q) such that

∂hi
(
t, q
)

∂t
+X
(
t, q
)
hi
(
t, q
)
= 0, i = 1, . . . , n −m, ∀q ∈ Q, ∀t ∈ I, (3.12)

Z
(
t, q
)
hi
(
t, q
)
= 0, ∀Z ∈ D, i = 1, . . . , n −m, ∀q ∈ Q, ∀t ∈ I, (3.13)

dh1 ∧ · · · ∧ dhn−m
(
t, q
)
/= 0, ∀q ∈ Q, ∀t ∈ I, (3.14)

hold, where d is the exterior differential operator defined on Q.

(b) There exists an m-dimensional time-varying integral manifold Sm(t, q0) of the A-
rheonomous affine constraints (2.3) determined by an initial point q0 ∈ Q such that

TqS
m
(
t, q0
)
= D
(
t, q
)
, ∀q ∈ Sm

(
t, q0
)
, ∀t ∈ I, (3.15)

holds.

(c) For a smallest and involutive time-varying distribution C0,

dimC0
(
t, q
)
= m, ∀q ∈ Q, ∀t ∈ I, (3.16)

holds.

Proof. First of all, the setting for the proof is given. We denote the product manifold of the
space of the time variable R and the configuration manifold Q by Q := R × Q with the
coordinate q := [t q�]�, andQ is called an expanded configuration manifoldwith the dimension
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h1(t, q), · · · , hn−m(t, q)

(b) TqSm(t, q0) = D(q), ∀q ∈ Sm(t, q0), ∀t ∈ I

(c) dim C0(t, q) = m, ∀q ∈ Q, ∀t ∈ I

Q

h1(q), · · · , hn−m(q)

(iii) dim C(q) = m + 1, ∀q ∈ Q

(a) There exist n −m independent first integrals (i) There exist n −m independent first integrals

Q := R ×Q

(ii) TqS
m+1

(q0) = D(q), ∀q ∈ S
m+1

(q0)

Figure 4: A diagram for the proof of Theorem 3.3.

n + 1. Hence, the A-rheonomous affine constraints (2.3) defined on Q can be represented by
an expanded Pfaffian equation on Q:

Ω
(
q
)
= 0 (3.17)

with n −m expanded differential forms:

Ω
(
q
)
:= A
(
t, q
)
dt + B

(
q
)
dq. (3.18)

Since the rheonomous affine vector field X satisfies A(t, q) + B(q)X(t, q) = 0 and them vector
fields Y1, . . . , Ym satisfy B(q)Y1 = · · · = B(q)Ym = 0, m + 1 annihilators of the n −m expanded
differential forms (3.18) can be derived as

X =
∂

∂t
⊕X, Y i = 0 ⊕ Yi, i = 1, . . . , m. (3.19)

We consider an (m + 1)-dimensional expanded distribution on Q that is spanned by the m + 1
vector fields X,Y 1, . . . , Ym and denote it by

D := span
{
X,Y 1, . . . , Ym

}
. (3.20)

We will prove this theorem in line with the diagram shown in Figure 4. Since it is possible to
show that the statements (i), (ii), and (iii) in Figure 4 are equivalent to each other on Q by
Frobenius’ theorem [17, 19], all we have to do is prove the three equivalences between (a)
and (i), (b) and (ii), and (c) and (iii).

We begin with the proof of the equivalence between (a) and (i). First, we prove
(a) ⇒ (i). Assume that (a) holds, that is, there exist n − m independent first integrals
h1(t, q), . . . , hn−m(t, q) of the A-rheonomous affine constraints (2.3) on Q and they satisfy
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(3.12)–(3.14). Now, we define h1(q) := h1(t, q), . . . , hn−m(q) := hn−m(t, q) and show that these
are n −m independent first integrals of the expanded Pfaffian equation (3.17) on Q, that is,

Zhj = 0, ∀Z ∈ D, j = 1, . . . , n −m, (3.21)

dh1 ∧ · · · ∧ dhn−m /= 0 (3.22)

hold, where d is the expanded exterior derivative operator defined onQ. From the form of X and
(3.12), we have

X hj =
∂hj

∂t
+X1

∂hj

∂q1
+ · · · +Xn

∂hj

∂qn

=
∂hj

∂t
+X1

∂hj

∂q1
+ · · · +Xn

∂hj

∂qn

=
∂hj

∂t
+Xhj

= 0, j = 1, . . . , n −m.

(3.23)

From the form of Yi and (3.13), we also obtain

Y ihj = 0 · ∂
∂t

+ Y 1
∂hj

∂t
+
∂hj

∂q1
+ · · · + Yn

∂hj

∂qn

= Y1
∂hj

∂q1
+ · · · + Yn

∂hj

∂qn

= Yihj

= 0, i = 1, . . . , m, j = 1, . . . , n −m.

(3.24)

Therefore, it turns out that (3.21) holds. Furthermore, calculating the left-hand side of (3.22),
we have

dh1 ∧ · · · ∧ dhn−m =
(
∂h1
∂t

dt + dh1
)
∧ · · · ∧

(
∂hn−m
∂t

dt + dhn−m
)

= dh1 ∧ · · · ∧ dhn−m +
∂h1
∂t

dt ∧ dh2 ∧ · · · ∧ dhn−m

+ · · · + ∂hn−m
∂t

dt ∧ dh1 ∧ · · · ∧ dhn−m−1,

(3.25)

and hence we can see that (3.22) holds under (3.14). So, the proof of (a) ⇒ (i) is completed.
Conversely, we then prove (a) ⇐ (i). It is assumed that there exist n − m independent first
integrals of the expanded Pfaffian equation (3.17) on Q, h1(q), . . . , hn−m(q), and they satisfy
(3.21) and (3.22). We define h1(t, q) := h1(q), . . . , hn−m(t, q) := hn−m(q) and show that they are
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n−m independent first integrals of theA-rheonomous affine constraints (2.3) onQ, that is to
say, (3.12) and (3.13) hold. By using (3.21), we obtain

∂

∂t
+Xhj = 1 · ∂

∂t
+Xhj = X hj = 0, j = 1, . . . , n −m,

Yihj = 0 + Yihj = Y ihj = 0, i = 1, . . . , m, j = 1, . . . , n −m,
(3.26)

and hence (3.12) holds. We now assume that dh1 ∧ · · · ∧dhn−m = 0, that is, h1, . . . , hn−m are not
independent of each other. Then, without loss of generality, we can write

h1
(
t, q
)
=

n−m∑

i=2

aihi
(
t, q
)
, (3.27)

that is to say, h1 is represented as a linear combination of h2, . . . , hn−m with coefficients ai (i =
2, . . . , n −m). We then have

h1
(
q
)
=

n−m∑

i=2

aihi
(
q
)
,

dh1
(
q
)
=

n−m∑

i=2

aidhi
(
q
)
.

(3.28)

Therefore, we can find that

dh1 ∧ · · · ∧ dhn−m =

(
n−m∑

i=2

aidhi

)

∧ dh2 ∧ · · · ∧ dhn−m = 0 (3.29)

holds, and hence (3.29) is inconsistent with assumption (3.22). So, it can be confirmed
that dh1 ∧ · · · ∧ dhn−m /= 0 holds and h1(t, q), . . . , hn−m(t, q) are independent first integrals.
Consequently, we have proven (a)⇐ (i), and hence the proof of (a)⇔ (i) is finished.

Next, we prove the equivalence between (b) and (ii). We first prove (b)⇐ (ii). See also
the illustration shown in Figure 5 for understanding the proof. Assume that for an (m + 1)-

dimensional submanifold in Q with the initial point q0 ∈ Q: S
m+1

(q0),

TqS
m+1(

q0
)
= D
(
q
)
, q ∈ Sm+1(

q0
)

(3.30)

holds. Now, we denote a diffeomorphism that is a projection from Q to Q at the time t by
πt : (t, q) �→ q(t) and its derivation by dπt : Tq(t)Q → TqQ. Consider a decomposition of D as
D =: H ⊕ V , whereH := span{Y 1, . . . , Ym}. In addition, we set πt0(q

0) =: q0, Cπt(q) =: q and

the projection of S
m+1

(q0) on Q to Q by πt is defined as πt(S
m+1

(q0)) =: Sm(t, q0). Then, we
can find that

dπt
(
TqS

m+1(
q0
))

= dπt
(
TqS

m(t, q
))

(3.31)
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Q

X(t, q)

Section at time t

TqQ

D(q)

Sm(t, q0)

Y (q)q

TqQ

X(q) Y (q)

D(q)

q

φX
t (q

0)

S
m+1

(q0)

q0, q0

Q = Q ×R

R

Figure 5: An illustration of Q and Q (n = 2,m = 1).

holds, and hence from (3.19) and

dπt
(
Y 1
(
q
))

= Y1
(
q
)
, . . . , dπt

(
Ym

(
q
))

= Ym
(
q
)
, (3.32)

we derive

dπt
(
D
(
q
))

= dπt
(
H
(
q
))

= D
(
q
)
. (3.33)

Therefore, from (3.30), (3.15) holds and we conclude (b)⇐ (ii). In contrast, we can prove (b)
⇒ (ii) by using the inverse mapping of πt: π−1

t : q(t) �→ (t, q) in the same manner. Especially,
from Sm(t, q0) on Q, we can construct an (m + 1)-dimensional submanifold on Q as

S
m+1(

q0
)
:=
⋃

t≥0
π−1
t

(
Sm
(
t, q0
))
. (3.34)

So, the proof of (b) ⇒ (ii) is completed, and hence we conclude that (b)⇔ (ii) holds.
Finally, we give a proof on the equivalence between (c) and (iii). We here define an

involutive distributionC defined onQ, which containsX,Y 1, . . . , Ym and iterated Lie brackets
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that consist of X,Y 1, . . . , Ym. Therefore, a necessary and sufficient condition of the complete
integrability for the expanded Pfaffian equation is given by

dimC
(
t, q
)
= m + 1, ∀t ∈ I, ∀q ∈ Q (3.35)

(cf. Frobenius’ theorem [17, 19]). Calculating the iterated Lie brackets that consist of
X,Y 1, . . . , Ym, we have

[
X
(
t, q
)
, Y i

(
q
)]

= 0 ⊕ 〈X(t, q), Yi
(
q
)〉
,

[
X
(
t, q
)
, X
(
t, q
)
, Y i

(
q
)]

= 0 ⊕ 〈X(t, q), 〈X(t, q), Yi
(
q
)〉〉

, . . .

[
Yj

(
q
)
, Y i

(
q
)]

= 0 ⊕ 〈Yj
(
q
)
, Yi
(
q
)〉
,

[
Yk

(
q
)
,
[
Yj

(
q
)
, Y i

(
q
)]]

= 0 ⊕ 〈Yk
(
q
)
,
〈
Yj
(
q
)
, Yi
(
q
)〉〉

, . . . .

(3.36)

We can see that X is independent of Y i, . . . , Ym and the iterated Lie brackets (3.36). Then, the
necessary and sufficient condition (3.35) is changed into the condition such that Y 1, . . . , Ym

and the iterated Lie brackets which consist of X,Y 1, . . . , Ym span an m-dimensional space.
From (3.19) and (3.36), we can consider only Y1, . . . , Ym on Q instead of Y 1, . . . , Ym on Q and
iterated rheonomous brackets that consist of X,Y1, . . . , Ym on Q instead of Lie brackets that
consist of X,Y 1, . . . , Ym on Q. Therefore, a necessary and sufficient condition of complete
integrability for the rheonomous affine constraints (2.2) is that Y1, . . . , Ym and the iterated
rheonomous brackets which consist of X,Y1, . . . , Ym span an m-dimensional space, that is,
(3.16) holds. Consequently, we complete the proof of (c) ⇔ (iii).

Since we have proved the equivalence between (a) and (i), (b) and (ii), and (c) and
(iii), we have completed the proof of this theorem of the complete integrability of the A-
rheonomous affine constraints (2.3).

It must be noted that though the A-rheonomous affine constraints (2.3) contain the
time variable, conditions (a)–(c) in Theorem 3.3 are similar to the ones for the scleronomous
affine constraints case [27, 29], and the rheonomous bracket plays an essential role. In order to
the check complete integrability of the given A-rheonomous affine constraints, the condition
(c) in Theorem 3.3 is very useful. By calculating some iterated rheonomous brackets of vector
fields of their geometric representation and investigating the dimension of C0, we can easily
determine their complete integrability. Now, we consider a simple example in order to verify
Theorem 3.3 as follows.

Example 3.4. We consider a 3-dimensional configuration manifold

Q =

⎧
⎨

⎩
q =

⎡

⎣
q1
q2
q3

⎤

⎦ ∈ R3 | q2 > 0, q3 > 0

⎫
⎬

⎭
(3.37)
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with n = 3 and A-rheonomous affine constraints on Q

[
tq1q2q3

0

]

{}
A(t,q)

+
[
q2q3 q1q3 q1q2
0 1 0

]

{}
B(q)

⎡

⎣
q̇1
q̇2
q̇3

⎤

⎦ = 0
(3.38)

with m = 1. In addition, we consider a time interval I := R. We can see that Assumption 2.1
holds for (3.38). One of the geometric representations of (3.38) can be obtained as follows:

X
(
t, q
)
=

⎡

⎣
−tq1
0
0

⎤

⎦, Y
(
q
)
=

⎡

⎣
−q1
0
q3

⎤

⎦. (3.39)

Calculating a iterated rheonomous brackets for X and Y above, we obtain

〈X,Y〉 =
∂Y

∂t
+ [X,Y ] = 0 +

∂Y

∂q
X − ∂X

∂q
Y =

⎡

⎣
tq1 − tq1

0
0

⎤

⎦ = 0. (3.40)

Hence, it turns out that all the iterated rheonomous brackets of X and Y are 0. Therefore, we
have

C0 = span{Y}, (3.41)

and it is confirmed that

dimC0 = 1, ∀q ∈ Q, ∀t ∈ I, (3.42)

holds. From Theorem 3.3, we can see that the A-rheonomous affine constraints (3.38) are
completely integrable. In fact, there exist two independent first integrals of (3.38):

h1
(
t, q
)
= q2 − q02, h2

(
t, q
)
=
q1q3e

(1/2)t2

q03
− q01, (3.43)

where q0 = [q01q
0
2q

0
3]

� ∈ Q is an initial point at the initial time. We can easily confirm that
(3.43) satisfies (3.12)–(3.14) of condition (a) in Theorem 3.3, and hence (3.43) are independent
first integrals of (3.38). In the second paper [42], we will derive an integrating algorithm for
completely integrable A-rheonomous affine constraints and show how to calculate (3.43).

3.3. Partial Integrability Conditions

In this subsection, we next consider the case where some of the A-rheonomous affine
constraints in (2.3) are integrable and the others are nonintegrable, that is to say, integrable
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constraints and nonintegrable ones are mixed. We call such a case partial integrability. Now,
let us derive some necessary and sufficient conditions on the partial integrability of the A-
rheonomous affine constraints (2.3) in the following theorem.

Theorem 3.5. For the A-rheonomous affine constraints (2.3) defined on an n-dimensional manifold
Q and a time interval I ⊂ R , the following statements (a)–(c) are equivalent to each other. If they
hold, the A-rheonomous affine constraints (2.3) are said to be kth order partially integrable or kth
order partially holonomic, wherem < k < n.

(a) There exist n − k independent first integrals of the A-rheonomous affine constraints (2.3):
h1(t, q), . . . , hn−k(t, q) such that

∂hi
(
t, q
)

∂t
+X
(
t, q
)
hi
(
t, q
)
= 0, i = 1, . . . , n − k, ∀q ∈ Q, ∀t ∈ I, (3.44)

Z
(
t, q
)
hi
(
t, q
)
= 0, ∀Z ∈ C0, i = 1, . . . , n − k, ∀q ∈ Q, ∀t ∈ I, (3.45)

dh1 ∧ · · · ∧ dhn−k
(
t, q
)
/= 0, ∀q ∈ Q, ∀t ∈ I, (3.46)

hold.

(b) There exists a k-dimensional time-varying integral manifold Sk(t, q0) of theA-rheonomous
affine constraints (2.3) determined by an initial point q0 ∈ Q such that

TqS
k
(
t, q0
)
= C0

(
t, q
)
, ∀q ∈ Sk

(
t, q0
)
, ∀t ∈ I, (3.47)

holds.

(c) For a smallest and involutive time-varying distribution C0,

dimC0
(
t, q
)
= k, ∀q ∈ Q, ∀t ∈ I, (3.48)

(d) holds.

Proof. We prove this theorem along the diagram shown in Figure 6. Since similar to the proof
of Theorem 3.3, we can show that the statements (i)–(iii) in Figure 6 are equivalent to each
other by using Frobenius’ theorem [17, 19], we will prove the three equivalences between (a)
and (i), (b) and (ii), and (c) and (iii) to complete the proof.

First, we show the equivalence between (a) and (i). Define a new smallest and
involutive distribution on Q, C0, that contains all the iterated Lie brackets of Y 1, . . . , Ym

and iterated Lie brackets their and satisfies [X,Z] ∈ C0 for ∀Z ∈ C0. That is to say, C0 is a
subbundle in TQ that is spanned by Y 1, . . . , Ym (X is not included) and iterated Lie brackets
of X,Y 1, . . . , Ym. Then, we can see that

C = C0 + span
{
X
}

(3.49)

holds. We now prove (a)⇒ (i). We assume that there exist n−k independent first integrals of
the A-rheonomous affine constraints(2.3) on Q: h1(t, q), . . . , hn−k(t, q) and they satisfy (3.44)–
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(b) TqSk(t, q0) = C(q), ∀q ∈ Sk(t, q0), ∀t ∈ I

h1(q), · · · , hn−k(q)h1(t, q), · · · , hn−k(t, q)
(a) There exist n − k independent first integrals

(c) dim C0(t, q) = k, ∀q ∈ Q, ∀t ∈ I

(i) There exist n − k independent first integrals

(ii) TqS
k+1

(q0) = C(q), ∀q ∈ S
m+1

(q0)

Q Q := R ×Q

(iii) dim C(q) = k + 1, ∀q ∈ Q

Figure 6: A diagram for the proof of Theorem 3.5.

(3.46). We only have to show that n − k functions on Q: h1(q) := h1(t, q), . . . , hn−k(q) :=
hn−k(t, q) are independent first integrals of the expanded Pfaffian equation (3.17) on Q, that
is,

Zhi = 0, ∀Z ∈ C, i = 1, . . . , n − k, (3.50)

dh1 ∧ · · · ∧ dhn−k /= 0 (3.51)

hold. From (3.44), it turns out that X hi = 0 holds. In addition, we can see that W ∈ C holds
for ∀W ∈ C0 from (3.45). Hence, by using (3.49), we obtain (3.50). By contrast, for (a) ⇐ (i),
since

dh1 ∧ · · · ∧ dhn−k =
(
∂h1
∂t

dt + dh1
)
∧ · · · ∧

(
∂hn−m
∂t

dt + dhn−k
)

= dh1 ∧ · · · ∧ dhn−k + ∂h1
∂t

dt ∧ dh2 ∧ · · · ∧ dhn−k

+ · · · + ∂hn−m
∂t

dt ∧ dh1 ∧ · · · ∧ dhn−k−1

(3.52)

holds, we have (3.51) under assumption (3.46). Therefore, it can be confirmed that
h1(q), . . . , hn−k(q) are n−k independent first integrals of the expanded Pfaffian equation (3.18)
on Q. Consequently, we have proven (a)⇔ (i).

We next show the equivalence between (b) and (ii) and begin with the proof of (b) ⇐
(ii). Denote by S

k+1
(q0) a (k + 1)-dimensional submanifold on Q with an initial point q0 and

assume that

TqS
k+1(

q0
)
= C
(
q
)
, ∀q ∈ Sk+1

(
q0
)

(3.53)



20 Mathematical Problems in Engineering

holds. By using the mapping πt, which is introduced in the proof of Theorem 3.3, from (3.49)
we obtain

dπt

(
TqS

k+1(
q0
))

= dπt
(
TqS

k(t, q
))
,

dπt
(
C
(
q
))

= dπt
(
C0

)
= C0

(
q
)
,

(3.54)

and hence from (3.53) we can show (3.47). Conversely, we can prove (b) ⇒ (ii) by using the
inverse mapping π−1

t . So, the proof on (b)⇔ (ii) is completed.
Finally, we give the proof of the equivalence between (c) and (iii). We now prove (c)

⇒ (iii). Since dimC0 = k > m holds from (3.48), we set

C0 = span{Y1, . . . , Ym, Ym+1, . . . , Yk}, (3.55)

where Ym+1, . . . , Yk are k−m independent vector fields onQ that are independent of Y1, . . . , Ym.
Define vector fields onQ as Y i := 0⊕Yi (i = m+ 1, . . . , k). From (3.19) and (3.36), we can see
that

C := span
{
X,Y 1, . . . , Ym, Ym+1, . . . , Y k

}
(3.56)

holds and hence we have dimC = k + 1. This results in (c) ⇒ (iii). For (c) ⇐ (iii), the proof
can be done by the inverse logic of the proof of (c) ⇒ (iii). Hence, we have completed (c) ⇔
(iii).

As a result, from the discussion above, we conclude that the statements (a)–(c) are
equivalent to each other.

Note that similar to Theorem 3.3, conditions (a)–(c) in Theorem 3.5 are also analogous
to the ones for the scleronomous affine constraints case [27, 29], and the role of the
rheonomous affine bracket is quite important here. Moreover, condition (c) in Theorem 3.5
is also quite useful for checking the partial integrability of the given A-rheonomous affine
constraints. In order to confirm Theorem 3.5, a simple example is now shown as follows.

Example 3.6. Consider a 3-dimensional configuration manifold

Q =

⎧
⎨

⎩
q =

⎡

⎣
q1
q2
q3

⎤

⎦ ∈ R3 | q2 > 0, q3 > 0

⎫
⎬

⎭
(3.57)

with n = 3 and A-rheonomous affine constraints on Q

[
tq1q2q3
q2q3

]

{}
A(t,q)

+
[
q2q3 q1q3 q1q2
0 1 q2

]

{}
B(q)

⎡

⎣
q̇1
q̇2
q̇3

⎤

⎦ = 0
(3.58)
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with m = 1. Moreover, we consider a time interval I := R. We can see that Assumption 2.1
holds for (3.58). One of the geometric representations of (3.58) can be obtained as follows:

X
(
t, q
)
=

⎡

⎣
−tq1 + q1q3

−q2q3
0

⎤

⎦, Y
(
q
)
=

⎡

⎣
−q1 + q1q3
−q2q3
q3

⎤

⎦. (3.59)

By calculating the iterated rheonomous brackets of X and Y above, we have

〈X,Y〉 =
∂Y

∂t
+ [X,Y ] = 0 +

∂Y

∂q
X − ∂X

∂q
Y =

⎡

⎣
−q1q3
q2q3
0

⎤

⎦,

〈X, 〈X,Y〉〉 =
∂〈X,Y〉

∂t
+ [X, 〈X,Y〉] =

⎡

⎣
tq1q3 − q1q23

−q2q23
0

⎤

⎦ −
⎡

⎣
tq1q3 − q1q23

−q2q23
0

⎤

⎦ = 0,

〈Y, 〈X,Y〉〉 = [Y, 〈X,Y〉] =
⎡

⎣
−q1q23

−q2q23 + q2q3
0

⎤

⎦ −
⎡

⎣
q1q3 − q1q23

−q2q23
0

⎤

⎦ =

⎡

⎣
−q1q3
q2q3
0

⎤

⎦,

...

(3.60)

Therefore, we have

C0 = span{Y, 〈X,Y〉}, (3.61)

and we can see that

dimC0 = 2, ∀q ∈ Q, ∀t ∈ I, (3.62)

holds. From Theorem 3.5, we can find that the A-rheonomous affine constraints (3.58) are
2nd order partial nonintegrable with k = 2. In fact, there exists one first integral of (3.58):

h1
(
t, q
)
=
q1q2q3e

(1/2)t2

q02q
0
3

− q01, (3.63)

where q0 = [q01 q02 q03]
� ∈ Q is an initial point at the initial time. We can easily confirm that

(3.63) satisfies (3.12)–(3.14) of condition (a) in Theorem 3.5, and hence (3.63) are independent
first integrals of (3.58). In the second paper [42], we will show how to derive (3.63) by using
an integrating algorithm for partially integrable A-rheonomous affine constraints.
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(b) dim C0(q) = n, ∀q ∈ Q (ii) dim C(q) = n + 1, ∀q ∈ Q

Q

(a) There exist no independent first integral (i) There exist no independent first integral

Q := R ×Q

Figure 7: A diagram for the proof of Theorem 3.7.

3.4. Complete Nonintegrability Conditions

Finally, we deal with the remaining case where all the A-rheonomous affine constraints (2.3)
are nonintegrable. This case is called complete nonintegrability. The complete nonintegrability
case is quite important in nonholonomic control theory and sub-Riemannian geometry
[43, 44]. Some necessary and sufficient conditions on the complete nonintegrability of the
A-rheonomous affine constraints (2.3) are shown in the next theorem.

Theorem 3.7. For the A-rheonomous affine constraints (2.3) defined on an n-dimensional manifold
Q and a time interval I ⊂ R, the following statements (a) and (b) are equivalent to each other. If they
hold, the A-rheonomous affine constraints (2.3) are said to be completely nonintegrable or completely
nonholonomic.

(a) There do not exist independent first integrals of the A-rheonomous affine constraints (2.3).

(b) For a smallest and involutive time-varying distribution C0,

dimC0
(
t, q
)
= n, ∀q ∈ Q, ∀t ∈ I, (3.64)

holds.

Proof. The diagram of the proof of Theorem 3.7 is shown in Figure 7. Similar to the proofs of
Theorems 3.3 and 3.5, we can show that the statements (i) and (ii) in Figure 7 are equivalent
to each other by using Frobenius’ theorem [17, 19], and we only have to prove the two
equivalences between (a) and (i), and (b) and (ii) in order to complete the proof of this
theorem. First, we can find that (a) ⇔ (i) obviously holds. Then, considering the case where
k = n in the proof of Theorem 3.5, we can also prove (b) ⇔ (ii), and the details are omitted.
Consequently, we conclude that the statements (a) and (b) are equivalent to each other.

From the results in Theorems 3.3–3.7, we can conclude that the integrability
or nonintegrability of the given A-rheonomous affine constraints can be confirmed by
calculating a smallest and involutive time-varying distribution C0 with the rheonomous
bracket and the conditions are similar to the ones for the scleronomous affine constraints
case [27, 29] despite the explicit existence of the time variable in the A-rheonomous affine
constraints. Now, we illustrate a simple example to check the availability of Theorem 3.7 as
follows.
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Example 3.8. We here consider a 3-dimensional configuration manifold

Q =

⎧
⎨

⎩
q =

⎡

⎣
q1
q2
q3

⎤

⎦ ∈ R3

⎫
⎬

⎭
(3.65)

with n = 3 and A-rheonomous affine constraints on Q

[
tq2
−q1

]

{}
A(t,q)

+
[
1 0 −1
0 1 1

]

{}
B(q)

⎡

⎣
q̇1
q̇2
q̇3

⎤

⎦ = 0
(3.66)

with m = 1. Now, we consider a time interval I := (0,∞]. We can see that Assumption 2.1
holds for (3.66). One of the geometric representations of (3.66) can be obtained as follows:

X
(
t, q
)
=

⎡

⎣
−tq2
q1
0

⎤

⎦, Y
(
q
)
=

⎡

⎣
1
−1
1

⎤

⎦. (3.67)

Calculating the iterated rheonomous brackets of X and Y above, we have

〈X,Y〉 =
∂Y

∂t
+ [X,Y ] = 0 +

∂Y

∂q
X − ∂X

∂q
Y =

⎡

⎣
−t
0
0

⎤

⎦,

〈Y,X〉 = − ∂Y

∂t
+ [Y,X] = 0 +

⎡

⎣
t
0
0

⎤

⎦,

〈X, 〈X,Y〉〉 =
∂〈X,Y〉

∂t
+ [X, 〈X,Y〉] =

⎡

⎣
−1
0
0

⎤

⎦ +

⎡

⎣
0
t
0

⎤

⎦ =

⎡

⎣
−1
t
0

⎤

⎦,

〈〈X,Y〉, X〉 = − ∂〈X,Y〉
∂t

+ [〈X,Y〉, X] =

⎡

⎣
1
t
0

⎤

⎦,

〈Y, 〈X,Y〉〉 = [Y, 〈X,Y〉] = 0,

〈〈X,Y〉, Y〉 = [〈X,Y〉, Y ] = 0,

...

(3.68)

Therefore, we have

C0 = span{Y, 〈X,Y〉, 〈X, 〈X,Y〉〉}, (3.69)
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Figure 8: A pendulum with a time-varying elastic string.

and it can be confirmed that

dimC0 = 3, ∀q ∈ Q, ∀t ∈ I, (3.70)

holds. From Theorem 3.7, we can see that the A-rheonomous affine constraints (3.66) are
completely nonintegrable, and hence there exist no independent first integrals of (3.66).

4. Physical Examples

4.1. Pendulum with Time-Varying Elastic String

In this section, we consider three types of physical examples in order to confirm the results
obtained in the previous sections.

First, in this subsection, we deal with a pendulum with an elastic string as shown in
Figure 8. This system is composed of a weight and an elastic string. One end of the string
is fixed to the ceiling and can swing around the fixed point. The weight is installed at the
other end of the string. As shown in Figure 8, set the x-axis and the y-axis to the horizontal
and vertical directions, respectively. We also set the origin of the coordinate system so that
it corresponds to the fixed point of the string. Therefore, we consider the 2-dimensional
configuration manifold

Q =
{
q =
[
x
y

]
∈ R2 | y ≥ 0

}
(4.1)

with n = 2. The position of the weight inQ is represented by (x, y), and the angle of the string
in the clockwise direction measured from the y-axis is denoted by θ. Now, we assume that
the length of the string is changed as time goes by, that is, a time-varying elastic string, and
we denote the length by L(t).

Obviously, this system is subject to a constraint on the configuration variables as

√
x2 + y2 = L(t). (4.2)



Mathematical Problems in Engineering 25

It is easily confirmed that since (4.2) does not contain any derivatives of the configuration
variables, (4.2) is a rheonomous holonomic constraint. Hence, we can reduce the number
of the configuration variables by replacing (x, y) by θ. However, we here deal with this
system as a physical example that is subject to an integrableA-rheonomous affine constraint.
Calculating time derivative of (4.2), we have

xẋ + yẏ = L̇(t)L(t). (4.3)

Now, for the sake of simplicity, we setN(t) := L̇(t)L(t). Then, (4.3) can be represented as an
A-rheonomous affine constraint:

−N(t)
{}
A(t)

+
[
x y
]

{}
B(q)

[
ẋ
ẏ

]
= 0,

(4.4)

where m = 1. We start with the above A-rheonomous affine constraint the (4.4). One of
geometric representations of the A-rheonomous affine constraints (4.4) can be derived as

X =

⎡

⎣
0

N(t)
y

⎤

⎦, Y =

⎡

⎣
1

−x
y

⎤

⎦. (4.5)

For the vector fields X and Y , we calculate a rheonomous bracket as

〈X,Y〉 =
∂Y

∂t
+ [X,Y ] =

⎡

⎣
0

N(t)x
y3

⎤

⎦ −
⎡

⎣
0

N(t)x
y3

⎤

⎦ =
[
0
0

]
, (4.6)

and hence we can see that all the iterated rheonomous brackets of X and Y are 0. Therefore,
we have

C0 = span{Y}, (4.7)

and so

dimC0 = 1, ∀q ∈ Q, ∀t ∈ I := R, (4.8)

holds. From Theorem 3.3, it turns out that the A-rheonomous affine constraint (4.4) is
completely integrable, and this result coincides with the problem setting of this system.

4.2. Boat on Running River with Time-Varying Stream

Next, we deal with another physical example called a boat on a running river as shown
in Figure 9. Set the x-axis and the y-axis to the transverse direction and the downstream
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Figure 9: A boat on a running river with a time-varying stream.

direction of the river, respectively, and denote the center of inertia of the boat by (x, y). In
addition, let θ be the angle of the boat. Let V (t, x) be a stream of the river that depends on the
time variable t as well as the transverse position x, that is, the stream changes as time goes by.
It is assumed that the boat is affected by the stream to the downstream direction of the river
according to the angle of the boat θ, and hence the boat drifts to the y-direction. Then, the
generalized coordinate of this system is represented by q = [x y θ]� ∈ R3, and we consider
the 3-dimensional configuration manifold

Q =

⎧
⎨

⎩
q =

⎡

⎣
x
y
θ

⎤

⎦ ∈ R3 | 0 ≤ x ≤ L
⎫
⎬

⎭
(4.9)

with n = 3, where L is the length of the river.
Considering the balance of the velocities in both the heading and side directions of the

boat, we have the A-rheonomous affine constraints of this system as

V (t, x) cos3θ
{}

A(t,q)

+
[− cos θ sin θ 0

]

{}
B(q)

⎡

⎣
ẋ
ẏ
θ̇

⎤

⎦ = 0, (4.10)

wherem = 2. We can derive one of the geometric representations of theA-rheonomous affine
constraints (4.10) as

X =

⎡

⎣
V (t, x) cos2θ

0
0

⎤

⎦, Y1 =

⎡

⎣
sin θ
cos θ
0

⎤

⎦, Y2 =

⎡

⎣
0
0
1

⎤

⎦. (4.11)
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For the vector fields X,Y1, Y2, calculate some iterated rheonomous brackets:

〈X,Y1〉 =
∂Y1

∂t
+ [X,Y1] =

⎡

⎢
⎢
⎣

−∂V
∂x

sin θcos2θ

0
0

⎤

⎥
⎥
⎦,

〈X,Y2〉 =
∂Y2

∂t
+ [X,Y2] =

⎡

⎣
2V (t, x) sin θ cos θ

0
0

⎤

⎦,

〈Y1, Y2〉 = [Y1, Y2] =

⎡

⎣
cos θ
− sin θ

0

⎤

⎦.

(4.12)

Therefore, we have

C0 = span {Y1, Y2, 〈X,Y1〉, 〈X,Y2〉, 〈Y1, Y2〉, . . .}, (4.13)

and hence

dimC0 = 3 = n, ∀q ∈ Q, t ∈ I := R, (4.14)

holds. Consequently, we conclude that the rheonomous affine constraints of this system (4.10)
are completely nonholonomic from Theorem 3.7.

4.3. Ball on Rotating Table at Time-Varying Angular Velocity

Finally, let us deal with a ball on a rotating table in this subsection. We deal with an
undeformable ball and a rotating table that turns at a time-varying angular velocity as shown
in Figure 10. We assume that the ball does not slip and rotates with a velocity received by the
rotating table. Consider the x −y coordinate system so that its originO is coincident with the
center of the rotating table, and let (x, y) be the point with which the ball contacts. We denote
the angles of rotation of the ball by using the Euler angles (θ, φ, ψ). Hence, the generalized
coordinate of this system is represented by q = [x y θ φ ψ]� ∈ R5, and we consider the
3-dimensional configuration manifold

Q =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q =

⎡

⎢⎢⎢⎢⎢
⎣

x
y
θ
φ
ψ

⎤

⎥⎥⎥⎥⎥
⎦

∈ R2 × SO(3) | (x, y) ∈ R2,
(
θ, φ, ψ

) ∈ SO(3)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.15)

with n = 5.
We here assume that the angular velocity of the rotating table depends on the time

variable and is denoted by Ω(t). In addition, we also denote the radius of the ball by R.
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Figure 10: A ball on a rotating table at a time-varying angular velocity.

Considering the balance of the velocities in both x and y directions of the ball, we have
the rheonomous affine constraints of this system as

[
Ω(t)y
−Ω(t)x

]

{}
A(t,q)

+
[
1 0 R sin θ cosψ 0 −R sinψ
0 1 R sin θ sinψ 0 R cosψ

]

{}
B(q)

⎡

⎢⎢⎢⎢⎢
⎣

ẋ
ẏ
θ̇
φ̇
ψ̇

⎤

⎥⎥⎥⎥⎥
⎦

= 0, (4.16)

wherem = 3. We can derive one of the geometric representations of (4.16) as

X =

⎡

⎢⎢⎢⎢⎢
⎣

Ω(t)y
−Ω(t)x

0
0
0

⎤

⎥⎥⎥⎥⎥
⎦
, Y1 =

⎡

⎢⎢⎢⎢⎢
⎣

−R sin θ cosψ
−R sin θ sinψ

1
0
0

⎤

⎥⎥⎥⎥⎥
⎦
, Y2 =

⎡

⎢⎢⎢⎢⎢
⎣

0
0
0
1
0

⎤

⎥⎥⎥⎥⎥
⎦
, Y3 =

⎡

⎢⎢⎢⎢⎢
⎣

R sinψ
−R cosψ

0
0
1

⎤

⎥⎥⎥⎥⎥
⎦
. (4.17)

For the vector fields X,Y1, Y2, and Y3 above, calculating some iterated rheonomous brackets,
we can obtain

〈X,Y1〉 =
∂Y1

∂t
+ [X,Y1] =

⎡

⎢⎢⎢⎢⎢
⎣

RΩ(t) sin θ sinψ
−RΩ(t) sin θ cosψ

0
0
0

⎤

⎥⎥⎥⎥⎥
⎦
,

〈X,Y2〉 =
∂Y2

∂t
+ [X,Y2] = 0,

〈X,Y3〉 =
∂Y3

∂t
+ [X,Y3] =

⎡

⎢⎢⎢⎢⎢
⎣

RΩ(t) cosψ
RΩ(t) sinψ

0
0
0

⎤

⎥⎥⎥⎥⎥
⎦
,

〈Y1, Y2〉 = [Y1, Y2] = 0, 〈Y2, Y3〉 = [Y2, Y3] = 0,
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〈Y1, Y3〉 = [Y1, Y3] =

⎡

⎢
⎢
⎢
⎢⎢
⎣

−R sin θ sinψ
R sin θ cosψ

0
0
0

⎤

⎥
⎥
⎥
⎥⎥
⎦
,

〈Y1, 〈Y1, Y3〉〉 = [Y1, [Y1, Y3]] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−R cos θ sinψ
R cos θ cosψ

0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
,

〈Y3, 〈Y1, Y3〉〉 = [Y3, [Y1, Y3]] =

⎡

⎢
⎢⎢⎢⎢
⎣

−R sin θ cosψ
−R sin θ sinψ

0
0
0

⎤

⎥
⎥⎥⎥⎥
⎦
.

(4.18)

Consequently, we can see that

C0 = span{Y1, Y2, Y3, 〈Y1, Y3〉, 〈Y1, 〈Y1, Y3〉〉, 〈Y3, 〈Y1, Y3〉〉, . . .} (4.19)

holds and hence

dimC0 = 5 = n, ∀q ∈ Q, ∀t ∈ I := R, (4.20)

holds. Consequently, from Theorem 3.7, it turns out that the rheonomous affine constraints of
this system (4.16) are completely nonintegrable.

5. Conclusions

In this paper, we have dealt with the A-rheonomous affine constraints from the standpoint
of integrability/nonintegrability. First, some fundamental properties of the A-rheonomous
affine constraints have been obtained. We next have investigated the three cases, complete
integrability, partial integrability, and complete nonintegrability for theA-rheonomous affine
constraints and derived some necessary and sufficient conditions for the respective cases by
using the rheonomous bracket that is a newly proposed operator. Some physical examples
show the effectiveness and the application potentiality of our new results.

From these results, we have mainly confirmed the three important results as follows:
(a) though the A-rheonomous affine constraints contain the time variable explicitly, the
necessary and sufficient conditions on their integrability/nonintegrability are similar to
the ones for the scleronomous affine constraints [27], (b) we can easily determine the
integrability/nonintegrability of the given A-rheonomous affine constraints by calculating
a time-varying distribution C0 and (c) the rheonomous bracket plays important roles in the
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conditions. We can say that the results obtained in this paper present useful tools for not only
control theory but also various research fields such as general mathematics and physics.

In our second paper [42], we will investigate the relationship between the integra-
bility/nonintegrability of the A-rheonomous affine constraints and foliation structures of
configuration manifolds. Moreover, we will develop integrating algorithms that are used to
calculate independent first integrals for integrable A-rheonomous affine constraints.
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