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This paper is concerned with stability analysis for singular systems with interval time-varying
delay. By constructing a novel Lyapunov functional combined with reciprocally convex approach
and linear matrix inequality (LMI) technique, improved delay-dependent stability criteria for
the considered systems to be regular, impulse free, and stable are established. The developed
results have advantages over some previous ones as they involve fewer decision variables yet less
conservatism. Numerical examples are provided to demonstrate the effectiveness of the proposed
stability results.

1. Introduction

It is well known that time delays frequently occur in many practical systems, such as bio-
logical systems, chemical systems, electronic systems, and network control systems. The time
delays are regarded as the major source of oscillation, instability, and poor performance of
dynamic systems. During the last two decades, there has been some remarkable theoretical
and practical progress in stability, stabilization, and robust control of linear time-delay
systems [1, 2]. Currently, the results of stability for time-delay systems mainly focus on time-
varying delay with range zero to an upper bound. However, in practice, the delay range
may have a nonzero lower bound, and such systems are referred to interval time-varying
delay systems. Typical examples for interval time-delay systems are networked control sys-
tems [3]. With rapid advancement in the networked control systems technology, a number of
significant results have been reported in the recent past for the stability of interval time-delay
systems [3–14]. For example, in [3], a discretized Lyapunov functional approach is employed
to obtain stability criteria for linear uncertain systems with interval time-varying delays. By
using free-weighting matrices, [4, 5] present some less conservative stability conditions. The
free-weighting matrices method was further improved in [6, 7] by constructing augmented
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Lyapunov functionals. The free-weighting matrices method is regarded as an effective
way to reduce the conservatism of the stability results; however, one chief shortcoming is
that too many free-weighting matrices introduced in the theoretical derivation sometimes
cannot reduce the conservatism of the obtained results, on the contrary, they make criteria
mathematically complex and computationally less effective. In [8, 9], via different Lyapunov
functionals with fewer matrix variables whose derivative is estimated using Jensen inequal-
ity, some simple stability criteria were obtained, these results were improved in [10] using the
convex analysis method, and the result in [10] was further improved in [11] using the
reciprocally convex approach. Recently, by introducing some integral terms in the augmented
vector and using the Lyapunov functionals with triple-integral terms, some less conservative
results were obtained in [12–14].

Singular systems, which are also referred to as descriptor systems, differential alge-
braic systems, or semistate systems whose behaviors are described by differential equations
(or difference equations) and algebraic equations. Singular systems have strong practical
relevance in a variety of physical processes such as power systems, social economic systems,
and circuit systems [15]. For this reason, singular systems have attracted a lot of researches
from mathematics and control communities. A great number of fundamental results based
on the theory of regular systems have been extended to the area of singular systems [16].
Recently, more and more attention has been paid to singular systems with delay. Singular
time-delay systems can preserve the structure of practical systems and have extensive appli-
cations in various engineering systems, including aircraft attitude control, flexible arm control
of robots, large-scale electric network control, chemical engineering systems, and lossless
transmission lines [17]. It is well known that the stability analysis for singular systems is
much more complicated than that for regular systems because it requires to consider not
only stability, but also regularity and absence of impulse (for continuous singular systems)
[18–28] or causality (for discrete singular systems) [29–32]. In order to obtain stability
conditions of singular time-delay systems, many efforts have been made in the literature,
among which the model transformation and bounding technique for cross-terms are often
used [18–20]. However, it is well known that these two kinds of methods are the main
source of conservatism. Without using model transformation and bounding technique for
cross-terms, some improved stability conditions with less conservatism have been provided
by introducing free-weighting matrices [21, 22], integral inequality [23, 24], delay decompo-
sition [25], and parameterized Lyapunov functional [26]. However, the involved time delays
of [18–26] are all time invariant, which limits the scope of applications of the given results.
In the case where time-varying delays appear in singular systems, some stability results were
proposed in [27, 28]. The range of time-varying delay considered in [27, 28] is from zero to an
upper bound. In the case of the lower bound of delay is not restricted to be zero, the stability
criteria in [27, 28] are conservative because they do not take into account the information
of the lower bound of delay. Very recently, singular systems with time-varying delay in a
range are studied in [33–38]. Nevertheless, there still exists some room for deriving less
conservative as well as computationally less expensive stability criteria, which has motivated
this paper.

In this paper, we will construct a novel Lyapunov functional and extend the recipro-
cally convex approach inspired by Park et al. [11] to analyze the stability of singular systems
with interval time-varying delay. Some improved results for the considered systems to be reg-
ular, impulse free, and stable are established in terms of LMIs. The obtained stability criteria
involve fewer decision variables comparable to those based on the free-weighting matrices
method; hence they are mathematically less complex and computationally more efficient.
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Meanwhile, the new criteria are less conservative than existing ones, which will be demon-
strated by some numerical examples.

Notations. Throughout this paper,Rn denotes the n-dimensional Euclidean space, whileRm×n

refers to the set of all real matrices with m rows and n columns. AT represents the transpose
of the matrix A, while A−1 denotes the inverse of A. For real symmetric matrices X and
Y , the notation X ≥ Y (resp., X > Y ) means matrix X − Y is positive semidefinite (resp.,
positive-definite). I is the identity matrix with appropriate dimensions. ‖x‖ refers to the
Euclidean norm of the vector x, that is, ‖x‖ =

√
xTx.

2. Problem Formulation and Preliminaries

Consider the singular system with interval time-varying delay described by:

Eẋ(t) = Ax(t) + Bx(t − d(t)),

x(θ) = ϕ(θ), θ ∈ [−d2, 0],
(2.1)

where x(t) ∈ Rn is the state vector, and ϕ(θ) ∈ Rn is a continuous vector-valued initial
function of θ ∈ [−d2, 0]. The matrix E ∈ Rn×n may be singular, and it is assumed that rankE =
r ≤ n, A,B ∈ Rn×n are known real constant matrices with appropriate dimensions. d(t) is the
time-varying delay and is assumed to satisfy

d1 ≤ d(t) ≤ d2, ḋ(t) ≤ μ, (2.2)

where 0 < d1 < d2 and 0 ≤ μ < 1 are known constants; d1 and d2 represent the lower and
upper bounds of the time-varying d(t), respectively, μ is the bound on the delay derivative.

The purpose of this paper is to formulate new delay-dependent criteria to check
the stability of singular time-delay system (2.1). Let us give the following definitions and
lemmas, which will play an indispensable role in deriving our criteria.

Definition 2.1 (see [16]). (i) The pair (E,A) is said to be regular if det(sE−A) is not identically
zero. (ii) The pair (E,A) is said to be impulse free if deg(det(sE −A)) = rankE.

Definition 2.2 (see [35]). (i) The singular time-delay system (2.1) is said to be regular and
impulse free if the pairs (E,A) and (E,A + B) are regular and impulse free. (ii) The singular
time-delay system (2.1) is said to be stable if for any ε > 0, there exists a scalar δ(ε) > 0 such
that, for any compatible initial conditions ϕ(t) satisfying sup−d2≤t≤0‖ϕ(t)‖ ≤ δ(ε), the solution
x(t) of system (2.1) satisfies ‖x(t)‖ ≤ ε for any t ≥ 0, more over limt→∞x(t) = 0.

Definition 2.3 (see [11]). Let φ1, φ2, . . . , φN : Rm 	→ Rn be a given finite number of functions
such that they have positive values in an open subset D of Rm. Then, a reciprocally convex
combination of these functions over D is a function of form

1
α1

φ1 +
1
α2

φ2 + · · · + 1
αN

φN : D 	−→ Rn, (2.3)

where the real numbers αi satisfy αi > 0 and
∑

i αi = 1.
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Lemma 2.4 (see [1]). For any symmetric positive define matrix R > 0, scalars γ2 > γ1 > 0 and
vector function x : [γ1, γ2] 	→ Rn such that the integrations concerned are well defined, the following
inequality holds

−(γ2 − γ1
)
∫ γ2

γ1

xT(s)Rx(s)ds ≤ −
∫ γ2

γ1

xT(s)dsR
∫ γ2

γ1

x(s)ds. (2.4)

Lemma 2.5 (see [11]). Let f1, f2, . . . , fN : Rm 	→ R have positive values in an open subsetD of Rm.
Then, the reciprocally convex combination of fi over D satisfies

min
{αi|αi>0,

∑
i αi=1}

∑

i

1
αi
fi(t) =

∑

i

fi(t) +max
gi, j (t)

∑

i /= j

gi,j(t)

subject to

{

gi,j : Rm 	→ R, gj,i(t) � gi,j(t),

[
fi(t) gi,j(t)

gi,j(t) fj(t)

]

≥ 0

}

.

(2.5)

3. Main Results

In this section, we consider the stability of singular time-delay system (2.1). For simplicity, we
define that ξ(t) = [xT (t) xT (t−(d(t)/2)) xT (t−d(t)) xT (t−(d1/2)) xT (t−d1) xT (t−(d2/2))
xT (t − d2)]

T , ei (i = 1, 2, . . . , 7) are block entry matrices, for example, e3 = [0 0 I 0 0 0 0]T

and e8 = (AeT1 + BeT3 )
T . Now, we provide a novel delay-dependent stability criterion for

singular time-delay system (2.1) as follows.

Theorem 3.1. Given scalars 0 < d1 < d2 and 0 ≤ μ < 1, for any delay d(t) satisfying (2.2),
singular time-delay system (2.1) is regular, impulse free, and stable if there exist matrices P > 0,Qi =[
Qi1 Qi2

QT
i2 Qi3

]
≥ 0 (i = 1, 2), Q3 ≥ 0, Q4 ≥ 0, R1 ≥ 0, R2 ≥ 0, R3 ≥ 0, Z1, Z2 and S, such that the

following LMIs (3.1)–(3.3) hold

Υ = e1E
TPeT8 + e8PEe

T
1 + [e1 e4]Q1[e1 e4]T − [e4 e5]Q1[e4 e5]T + [e1 e6]Q2[e1 e6]T

− [e6 e7]Q2[e6 e7]T + e1Q3e
T
1 −
(
1 − μ

2

)
e2Q3e

T
2 + e5Q4e

T
5 − (1 − μ

)
e3Q4e

T
3 + e8R̃e

T
8

− (e1 − e4)ETR1E(e1 − e4)T + e1SΨTeT8 + e8ΨSTeT1

−
⎡

⎣
eT2 − eT6

eT4 − eT2

⎤

⎦

T[
ETR2E ETZ1E
ETZT

1E ETR2E

]
⎡

⎣
eT2 − eT6

eT4 − eT2

⎤

⎦

−
⎡

⎣
eT3 − eT7

eT5 − eT3

⎤

⎦

T[
ETR3E ETZ2E
ETZT

2E ETR3E

]
⎡

⎣
eT3 − eT7

eT5 − eT3

⎤

⎦ < 0

(3.1)
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[
R2 Z1

ZT
1 R2

]

≥ 0 (3.2)

[
R3 Z2

ZT
2 R3

]

≥ 0, (3.3)

where R̃ = (d1/2)
2R1 + ((d2 − d1)/2)

2R2 + (d2 − d1)
2R3, and Ψ ∈ Rn×(n−r) is any full-column rank

matrix satisfying ETΨ = 0.

Proof. The proof is divided into two parts. The first part deals with the regularity and impulse-
free properties, and the second part treats the stability property of the studied class of
systems. First of all, we show that the singular time-delay system (2.1) is regular and impulse
free for any time-delay d(t) satisfying (2.2). From LMI (3.1), it follows that

⎡

⎢
⎢
⎢
⎢
⎣

Ξ11 ETPB + SΨTB Q12 + ETR1E 0

BTPE + BTΨST Ξ22 0 ETR3E − ETZ2E

QT
12 + ETR1E 0 Ξ33 −Q12

0 ETR3E − ETZT
2E −QT

12 −Q13 +Q4 − ETR3E

⎤

⎥
⎥
⎥
⎥
⎦

< 0, (3.4)

where

Ξ11 = ETPA +ATPE +Q11 +Q21 +Q3 − ETR1E + SΨTA +ATΨST ,

Ξ22 = −(1 − μ
)
Q4 − 2ETR3E + ETZ2E + ETZT

2E,

Ξ33 = Q13 −Q11 − ETR1E − ETR2E.

(3.5)

From LMI (3.4), it easy to see that Ξ11 < 0, using the fact that Q11 ≥ 0, Q21 ≥ 0 and Q3 ≥ 0, we
have

ETPA +ATPE − ETR1E + SΨTA +ATΨST < 0. (3.6)

Since rankE = r ≤ n, there must exist two invertible matrices G,H ∈ Rn×n such that

GEH =
[
Ir 0
0 0

]

. (3.7)

Set

GAH =
[
A11 A12

A21 A22

]

, G−TΨ =

[
0
Ψ̃

]

, HTS =
[
S1

S2

]

, (3.8)

where Ψ̃ ∈ R(n−r)×(n−r) is a nonsingular matrix. Pre-multiplying and post-multiplying (3.6)
byHT and H, respectively, we can easily formulate the following inequality:

[
Θ11 Θ12

ΘT
12 AT

22Ψ̃ST
2 + S2Ψ̃TA22

]

< 0, (3.9)
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where Θ11 and Θ12 are not relevant in the following discussion; the real expression of these
two matrices are omitted here. From (3.9), it is easy to see that

AT
22Ψ̃ST

2 + S2Ψ̃TA22 < 0, (3.10)

which implies that matrixA22 is nonsingular. Otherwise, supposing thatA22 is singular, there
must exist a nonzero vector η ∈ Rn−r , which ensures thatA22η = 0. And then we can conclude
that ηT (AT

22Ψ̃ST
2 + S2Ψ̃TA22)η = 0, and this contradicts (3.10). So A22 is nonsingular, which

implies that the pair (E,A) is regular and impulse free [16].
On the other hand, Pre-multiplying and post-multiplying (3.4) by [I I I I] and

[I I I I]T , respectively, yields

ETP(A + B) + (A + B)TPE − ET (R2 + R3)E + SΨT (A + B) + (A + B)TΨST

+Q21 +Q3 + μQ4 < 0.
(3.11)

From (3.11), taking conditions Q21 ≥ 0, Q3 ≥ 0, Q4 ≥ 0 and μ ≥ 0 into account, we obtain

ETP(A + B) + (A + B)TPE − ET (R2 + R3)E + SΨT (A + B) + (A + B)TΨST < 0. (3.12)

Proceeding in a similar manner as above, we can find (3.12) implies that the pair (E,A+B) is
regular and impulse free. Thus, according to Definition 2.2, singular time-delay system (2.1)
is regular and impulse free for any time-delay d(t) satisfying (2.2).

In the following, we will prove that singular delay-delay system (2.1) is stable.
Construct a new class Lyapunov functional for system (2.1) as follows:

V (t) = V1(t) + V2(t) + V3(t), (3.13)

where

V1(t) = xT (t)ETPEx(t),

V2(t) =
∫ t

t−d1/2
ξT1 (s)Q1ξ1(s)ds +

∫ t

t−d2/2
ξT2 (s)Q2ξ2(s)ds

+
∫ t

t−d(t)/2
xT (s)Q3x(s)ds +

∫ t−d1

t−d(t)
xT (s)Q4x(s)ds,

V3(t) =
d1

2

∫0

−d1/2

∫ t

t+α
ẋT(β

)
ETR1Eẋ

(
β
)
dβdα +

d2 − d1

2

∫−d1/2

−d2/2

∫ t

t+α
ẋT(β

)
ETR2Eẋ

(
β
)
dβdα

+ (d2 − d1)
∫−d1

−d2

∫ t

t+α
ẋT(β

)
ETR3Eẋ

(
β
)
dβdα,

(3.14)
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with

ξ1(s) =
[

xT (s) xT

(

s − d1

2

)]T
, ξ2(s) =

[

xT (s) xT

(

s − d2

2

)]T
. (3.15)

It is easy to see that

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t). (3.16)

The time derivative of each Vi(t) (i = 1, 2, 3) along trajectories of the singular time-delay
system (2.1) can be processed as

V̇1(t) = 2xT (t)ETPEẋ(t) = 2ξT (t)e1ETPeT8 ξ(t), (3.17)

V̇2(t) = ξT1 (t)Q1ξ1(t) − ξT1

(

t − d1

2

)

Q1ξ1

(

t − d1

2

)

+ ξT2 (t)Q2ξ2(t) − ξT2

(

t − d2

2

)

Q2ξ2

(

t − d2

2

)

+ xT (t)Q3x(t) −
(

1 − ḋ(t)
2

)

xT

(

t − d(t)
2

)

Q3x

(

t − d(t)
2

)

+ xT (t − d1)Q4x(t − d1) −
(
1 − ḋ(t)

)
xT (t − d(t))Q4x(t − d(t))

� ξT (t)
(
[e1 e4]Q1[e1 e4]T − [e4 e5]Q1[e4 e5]T + [e1 e6]Q2[e1 e6]T

−[e6 e7]Q2[e6 e7]T + e1Q3e
T
1 −
(
1 − μ

2

)
e2Q3e

T
2 + e5Q4e

T
5 − (1 − μ

)
e3Q4e

T
3

)
ξ(t),

(3.18)

V̇3(t) = ẋT (t)ETR̃Eẋ(t) − d1

2

∫ t

t−d1/2
ẋT (s)ETR1Eẋ(s)ds

− d2 − d1

2

∫ t−d1/2

t−d2/2
ẋT (s)ETR2Eẋ(s)ds − (d2 − d1)

∫ t−d1

t−d2

ẋT (s)ETR3Eẋ(s)ds

= ẋT (t)ETR̃Eẋ(t) − d1

2

∫ t

t−d1/2
ẋT (s)ETR1Eẋ(s)ds

− d2 − d1

2

∫ t−d(t)/2

t−d2/2
ẋT (s)ETR2Eẋ(s)ds − d2 − d1

2

∫ t−d1/2

t−d(t)/2
ẋT (s)ETR2Eẋ(s)ds

− (d2 − d1)
∫ t−d(t)

t−d2

ẋT (s)ETR3Eẋ(s)ds − (d2 − d1)
∫ t−d1

t−d(t)
ẋT (s)ETR3Eẋ(s)ds.

(3.19)
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Applying Lemma 2.4 to the last five integral terms, we can obtain

V̇3(t) � ξT (t)e8R̃eT8 ξ(t) − ξT (t)(e1 − e4)ETR1E(e1 − e4)T ξ(t) − 1
α1

f1(t) − 1
α2

f2(t)

− 1
α1

g1(t) − 1
α2

g2(t),

(3.20)

where

α1 =
d2 − d(t)
d2 − d1

, α2 =
d(t) − d1

d2 − d1
,

f1(t) = ξT (t)(e2 − e6)ETR2E(e2 − e6)T ξ(t), f2(t) = ξT (t)(e4 − e2)ETR2E(e4 − e2)T ξ(t),

g1(t) = ξT (t)(e3 − e7)ETR3E(e3 − e7)T ξ(t), g2(t) = ξT (t)(e5 − e3)ETR3E(e5 − e3)T ξ(t).
(3.21)

Pre-multiplying and post-multiplying LMI (3.2) by diag{ξT (t)(e2 − e6)ET , ξT (t)(e4 − e2)ET}
and diag{E(e2 − e6)

T ξ(t), E(e4 − e2)
T ξ(t)}, respectively, we have

[
f1(t) f1,2(t)

f2,1(t) f2(t)

]

≥ 0, (3.22)

where

f1,2(t) = ξT (t)(e2 − e6)ETZ1E(e4 − e2)T ξ(t),

f2,1(t) = ξT (t)(e4 − e2)ETZT
1E(e2 − e6)T ξ(t).

(3.23)

By using Lemma 2.5, we have

− 1
α1

f1(t) − 1
α2

f2(t) ≤ − f1(t) − f2(t) − f1,2(t) − f2,1(t)

= −ξT(t)
⎡

⎣
eT2 − eT6

eT4 − eT2

⎤

⎦

T⎡

⎣
ETR2E ETZ1E

ETZT
1E ETR2E

⎤

⎦

⎡

⎣
eT2 − eT6

eT4 − eT2

⎤

⎦ξ(t).

(3.24)

Similarly, from LMI (3.3), we can get

− 1
α1

g1(t) − 1
α2

g2(t) ≤ −ξT (t)
⎡

⎣
eT3 − eT7

eT5 − eT3

⎤

⎦

T[
ETR3E ETZ2E

ETZT
2E ETR3E

]⎡

⎣
eT3 − eT7

eT5 − eT3

⎤

⎦ξ(t). (3.25)
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Combining (3.20)–(3.25), we can furthermore get

V̇3(t) ≤ ξT (t)e8R̃eT8 ξ(t) − ξT (t)(e1 − e4)ETR1E(e1 − e4)T ξ(t)

− ξT (t)

⎡

⎣
eT2 − eT6

eT4 − eT2

⎤

⎦

T[
ETR2E ETZ1E

ETZT
1E ETR2E

]⎡

⎣
eT2 − eT6

eT4 − eT2

⎤

⎦ξ(t)

− ξT (t)

⎡

⎣
eT3 − eT7

eT5 − eT3

⎤

⎦

T[
ETR3E ETZ2E

ETZT
2E ETR3E

]⎡

⎣
eT3 − eT7

eT5 − eT3

⎤

⎦ξ(t).

(3.26)

Note that when d(t) = d1 or d(t) = d2, we have ξT (t)(e4 − e2) = ξT (t)(e5 − e3) = 0 or ξT (t)(e2 −
e6) = ξT (t)(e3 − e7) = 0, respectively. So relation (3.26) still holds.

Noting ETΨ = 0, we have

0 = 2xT (t)SΨTEẋ(t) = 2ξT (t)e1SΨTeT8 ξ(t), (3.27)

where S is any matrix with appropriate dimensions.
Adding (3.27) to the right of (3.16) and substituting (3.17), (3.18), and (3.26) into

(3.16), we have

V̇ (t) ≤ ξT (t)Υξ(t). (3.28)

From LMI (3.1), it is easy to see that V̇ (t) < 0 for any ξ(t)/= 0. Hence, there exists a sufficiently
small positive scalar ε > 0, such that

V̇ (t) ≤ −ε‖x(t)‖2. (3.29)

By (3.29), the following steps are similar to the proof of Proposition 1 in [35] and Theorem
1 in [36], we can deduce that singular time-delay system (2.1) is stable. This completes our
proof.

Remark 3.2. Based on the new Lyapunov functional in (3.13), together with the reciprocally
convex approach and LMI technique, Theorem 3.1 proposed a delay-dependent criterion
guaranteeing the considered singular time-delay system to be regular, impulse free, and
stable. Lyapunov functional (3.13) is constructed by using the idea of “delay-partitioning”
[25, 37, 39]. We consider the lower bound d1, upper bound d2, and time-varying delay d(t)
in our Lyapunov functional by dividing them into two equal segments, such that the informa-
tion of delayed states d1/2, d2/2 and d(t)/2 are all taken into account. Therefore, the criterion
in Theorem 3.1 is expected to be less conservative than some previous ones, which will be
demonstrated in the sequel.
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If the matrix E is nonsingular, then the stability problem of singular system (2.1) is
reduced to analyzing the stability of the regular system:

ẋ(t) = Ax(t) + Bx(t − d(t)),

x(θ) = ϕ(θ), θ ∈ [−d2, 0].
(3.30)

This problem has been widely studied in the recent literature (see, e.g., [3–14]). We choose
Lyapunov functional:

Ṽ (t) = Ṽ1(t) + V2(t) + Ṽ3(t), (3.31)

where

Ṽ1(t) = xT (t)Px(t), (3.32)

Ṽ3(t) =
d1

2

∫0

−d1/2

∫ t

t+α
ẋT(β

)
R1ẋ
(
β
)
dβdα +

d2 − d1

2

∫−d1/2

−d2/2

∫ t

t+α
ẋT(β

)
R2ẋ
(
β
)
dβdα

+ (d2 − d1)
∫−d1

−d2

∫ t

t+α
ẋT(β

)
R3ẋ
(
β
)
dβdα,

(3.33)

and V2(t) is defined in (3.13).

By employing the Lyapunov functional (3.31) and using the similar proof of Theorem
3.1, we can obtain the following delay-dependent stability criterion for time-delay system
(3.30).

Corollary 3.3. Given scalars 0 < d1 < d2 and 0 ≤ μ < 1, for any delay d(t) satisfying (2.2), time-
delay system (3.30) is stable if there exist matrices P > 0, Qi =

[
Qi1 Qi2

QT
i2 Qi3

]
≥ 0 (i = 1, 2), Q3 ≥ 0,

Q4 ≥ 0, R1 ≥ 0, R2 ≥ 0, R3 ≥ 0 and Z1, Z2, such that LMIs (3.2), (3.3), and following LMI (3.34)
hold

e1Pe
T
8 + e8Pe

T
1 + [e1 e4]Q1[e1 e4]T − [e4 e5]Q1[e4 e5]T

+ [e1 e6]Q2[e1 e6]T − [e6 e7]Q2[e6 e7]T

+ e1Q3e
T
1 −
(
1 − μ

2

)
e2Q3e

T
2 + e5Q4e

T
5 − (1 − μ

)
e3Q4e

T
3 + e8R̃e

T
8 − (e1 − e4)R1(e1 − e4)T

−
⎡

⎣
eT2 − eT6

eT4 − eT2

⎤

⎦

T⎡

⎣
R2 Z1

ZT
1 R2

⎤

⎦

⎡

⎣
eT2 − eT6

eT4 − eT2

⎤

⎦ −
⎡

⎣
eT3 − eT7

eT5 − eT3

⎤

⎦

T⎡

⎣
R3 Z2

ZT
2 R3

⎤

⎦

⎡

⎣
eT3 − eT7

eT5 − eT3

⎤

⎦ < 0,

(3.34)

where matrix R̃ is defined in (3.1).
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Remark 3.4. As mentioned in the introduction, through the use of free-weighting matrices [5]
or the introduction of the Lyapunov functional with triple-integral terms [13, 14], we can
derive less conservative stability criteria for system (3.30), but it makes the criteria mathe-
matically complex and computationally less effective. In this paper, the Lyapunov functional
(3.31) does not contain any triple-integral terms, and when estimating V̇ (t), we have not
introduced free-weighting matrix. From a mathematical point of view, it is simple. Mean-
while, Corollary 3.3 in this paper is less conservative than the results in [5, 13, 14], which will
be demonstrated in the sequel.

Theorem 3.1 and Corollary 3.3 give new stability criteria of system (2.1) and system
(3.30)with d(t) satisfying (2.2), respectively. They can be applied to both slow and fast time-
varying delays only if 0 ≤ μ < 1 is known. In many circumstances, the information of the
time derivative of delay μ is unknown or the time derivative of delay is known but μ ≥ 1.
Regarding this case, the delay-dependent and rate-independent criteria can be derived by
choosing Q3 = Q4 = 0 in Theorem 3.1 and Corollary 3.3, respectively. Therefore, we have the
following Corollaries 3.5 and 3.6.

Corollary 3.5. Given scalars 0 < d1 < d2, for any delay d(t) satisfying d1 ≤ d(t) ≤ d2, singular sys-
tem (2.1) is regular, impulse free, and stable if there exist matrices P > 0, Qi =

[
Qi1 Qi2

QT
i2 Qi3

]
≥ 0, Zi (i =

1, 2), Rj ≥ 0 (j = 1, 2, 3) and S, such that LMIs (3.2), (3.3), and following LMI (3.35) hold

e1E
TPeT8 + e8PEe

T
1 + [e1 e4]Q1[e1 e4]T − [e4 e5]Q1[e4 e5]T + [e1 e6]Q2[e1 e6]T

− [e6 e7]Q2[e6 e7]T + e8R̃e
T
8 − (e1 − e4)ETR1E(e1 − e4)T + e1SΨTeT8 + e8ΨSTeT1

−
⎡

⎣
eT2 − eT6

eT4 − eT2

⎤

⎦

T[
ETR2E ETZ1E

ETZT
1E ETR2E

]⎡

⎣
eT2 − eT6

eT4 − eT2

⎤

⎦

−
⎡

⎣
eT3 − eT7

eT5 − eT3

⎤

⎦

T[
ETR3E ETZ2E

ETZT
2E ETR3E

]⎡

⎣
eT3 − eT7

eT5 − eT3

⎤

⎦ < 0,

(3.35)

where matrices R̃ and Ψ are defined in (3.1).

Corollary 3.6. Given scalars 0 < d1 < d2, for any delay d(t) satisfying d1 ≤ d(t) ≤ d2, time-delay
system (3.30) is stable if there exist matrices P > 0, Qi =

[
Qi1 Qi2

QT
i2 Qi3

]
≥ 0, Zi (i = 1, 2) and Rj ≥ 0 (j =

1, 2, 3), such that LMIs (3.2), (3.3), and following LMI (3.36) hold

e1Pe
T
8 + e8Pe

T
1 + [e1 e4]Q1[e1 e4]T − [e4 e5]Q1[e4 e5]T + [e1 e6]Q2[e1 e6]T

− [e6 e7]Q2[e6 e7]T + e8R̃e
T
8 − (e1 − e4)R1(e1 − e4)T

−
⎡

⎣
eT2 − eT6

eT4 − eT2

⎤

⎦

T⎡

⎣
R2 Z1

ZT
1 R2

⎤

⎦

⎡

⎣
eT2 − eT6

eT4 − eT2

⎤

⎦ −
⎡

⎣
eT3 − eT7

eT5 − eT3

⎤

⎦

T[
R3 Z2

ZT
2 R3

]
⎡

⎣
eT3 − eT7

eT5 − eT3

⎤

⎦ < 0,

(3.36)

where matrix R̃ is defined in (3.1).
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Remark 3.7. By employing similar method and choosing Q1 = 0, R1 = 0 in Lyapunov func-
tionals (3.13) and (3.31), all the above results obtained in this paper can easily extend to
delay-dependent stability results for systems (2.1) and (3.30) with d1 = 0. As for example,
we can obtain a delay-dependent stability criterion using similar method of Theorem 3.1 for
system (2.1)with d1 = 0, and d(t) = d is a constant time delay. The obtained stability criterion
for this case is shown in the following Corollary 3.8.

Corollary 3.8. Given scalar d2 > 0, for any constant time delay d(t) = d satisfying 0 ≤ d ≤ d2,
singular time-delay system (2.1) is regular, impulse free, and stable if there exist matrices P > 0,Q2 =[
Q21 Q22

QT
22 Q23

]
≥ 0, Q3 ≥ 0, Q4 ≥ 0, R2 ≥ 0, R3 ≥ 0, Z1, Z2 and S, such that LMIs (3.2),(3.3), and

following LMI (3.37) hold

e1E
TPeT6 + e6PEe

T
1 + [e1 e4]Q2[e1 e4]

T − [e4 e5]Q2[e4 e5]
T + e1(Q3 +Q4)e

T
1

− e2Q3e
T
2 − e4Q4e

T
4 + e6Re

T
6 + e1SΨTeT6 + e6ΨSTeT1

−
⎡

⎣
eT2 − eT4

eT1 − eT2

⎤

⎦

T
[
ETR2E ETZ1E
ETZT

1E ETR2E

]
⎡

⎣
eT2 − eT4

eT1 − eT2

⎤

⎦

−
⎡

⎣
eT3 − eT5

eT1 − eT3

⎤

⎦

T
[
ETR3E ETZ2E
ETZT

2E ETR3E

]
⎡

⎣
eT3 − eT5

eT1 − eT3

⎤

⎦ < 0,

(3.37)

where R = (d2/2)
2R2 + d2

2R3, Ψ ∈ Rn×(n−r) is any full-column rank matrix satisfying ETΨ = 0, and
ei (i = 1, 2, . . . , 5) are block entry matrices, for example, e2 = [0 I 0 0 0]T , and e6 = (AeT1 +Be

T
3 )

T.

Remark 3.9. It is worth pointing out that the obtained results in this paper are formulated in
terms of LMIs, they can be easily solved using any LMI toolbox like one of Matlab or the one
of Scilab.

4. Numerical Examples

In this section, we use three examples and compare our results with the previous ones to
show the effectiveness of ours.

Example 4.1. Consider the singular time-delay system (2.1)with

E =
[
1 0
0 0

]

, A =
[
0.5 0
0 −1

]

, B =
[−1.1 1

0 0.5

]

. (4.1)

For various μ, the allowable upper bounds d2, which guarantee regular, impulse free,
and stable of system (2.1) for given lower bounds d1, are listed in Table 1. From Table 1, it
can be seen that the stability criterion in Theorem 3.1 is less conservative than that in [35].
Especially, when d1 = 1.1, the result in [35] is not feasible while the allowable upper bounds
d2 can also be obtained from Theorem 3.1 in this paper.
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Table 1: Allowable upper bound d2 with given d1 for different μ.

d1 Methods d1 = 0.1 d1 = 0.3 d1 = 0.5 d1 = 0.7 d1 = 0.9 d1 = 1.1

μ = 0.1 [35] 1.0494 1.0497 1.0504 1.0518 1.0565 —
Theorem 3.1 1.0769 1.0860 1.0887 1.0872 1.0873 1.1066

μ = 0.3 [35] 1.0277 1.0315 1.0379 1.0466 1.0565 —
Theorem 3.1 1.0598 1.0615 1.0645 1.0726 1.0865 1.1066

μ = 0.5 [35] 1.0235 1.0303 1.0379 1.0466 1.0565 —
Theorem 3.1 1.0598 1.0607 1.0644 1.0726 1.0865 1.1066

μ = 0.7 [35] 1.0235 1.0303 1.0379 1.0466 1.0565 —
Theorem 3.1 1.0598 1.0607 1.0644 1.0726 1.0865 1.1066

Table 2: Allowable upper bound d2 with given d1 for different μ.

μ Methods d1 = 1 d1 = 2 d1 = 3 d1 = 4 d1 = 5

μ = 0.3

[5] 2.8119 2.8119 3.3173 4.0905 —
[13] 3.0538 3.0129 3.3408 4.1690 5.0275
[14] 3.1208 3.1092 3.4186 4.2097 5.0440

Corollary 3.3 3.1623 3.1754 3.4580 4.2576 5.0976

μ = 0.5

[5] 2.3372 2.6181 3.3173 4.0905 —
[13] 2.3058 2.5663 3.3408 4.1690 5.0275
[14] 2.3513 2.6987 3.4186 4.2097 5.0440

Corollary 3.3 2.4594 2.7241 3.4580 4.2576 5.0976

μ = 0.9

[5] 2.0665 2.6181 3.3173 4.0905 —
[13] 1.9008 2.5663 3.3408 4.1690 5.0275
[14] 2.0921 2.6987 3.4186 4.2097 5.0440

Corollary 3.3 2.1207 2.7241 3.4580 4.2576 5.0976

Example 4.2. Consider the time-delay system (3.30) with

A =
[−2 0
0 −0.9

]

, B =
[−1 0
−1 −1

]

. (4.2)

For various μ, the allowable upper bounds d2, which guarantee the stability of system
(3.30) for given lower bounds d1, are listed in Table 2. Moreover, the number of decision
variables involved in the stability criteria are given in Table 3. From Tables 2 and 3, it can be
seen that Corollary 3.3 in this paper has fewer decision variables and less conservatism than
those results in [5, 13, 14].

For unknown μ, the allowable upper bounds d2, which guarantee the stability of
system (3.30) for given lower bounds d1, are listed in Table 4. From Table 4, it can be seen
that Corollary 3.6 in this paper give larger upper bounds of time delay than ones in [4, 5, 8–
11, 13, 14].

Example 4.3. Consider the singular time-delay system (2.1)with

E =
[
1 0
0 0

]

, A =
[−0.3012 0.1257
0.2351 −1.0998

]

, B =
[−0.5c 0

0 −0.1c
]

, (4.3)
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Table 3: Number of decision variables.

Methods Number of decision variables
[5] 13n2 + 5n
[13] 18n2 + 8n
[14] 10.5n2 + 7.5n
Corollary 3.3 9n2 + 5n

Table 4: Allowable upper bound d2 with given d1 for unknown μ.

Method d1 = 1 d1 = 2 d1 = 3 d1 = 4 d1 = 5
[4] 1.7424 2.4328 3.2234 4.0643 —
[8] 1.7661 2.4404 3.2260 4.0649 —
[10] 1.8737 2.5048 3.2591 4.0744 —
[5, 11] 2.0665 2.6181 3.3173 4.0905 —
[9] 1.8043 2.5213 3.3311 4.1880 5.0722
[13] 1.9008 2.5663 3.3408 4.1690 5.0275
[14] 2.0921 2.6987 3.4186 4.2097 5.0440
Corollary 3.6 2.1207 2.7241 3.4580 4.2576 5.0976

Table 5: Allowable upper bound d2 for different c.

c 1 1.2 1.4 1.6 2
[18] 2.0362 1.7691 1.5619 1.3977 1.1548
[26] (N = 2) 2.1660 1.8760 1.6470 1.4730 1.2160
[22] 2.2750 1.9635 1.7282 1.5438 1.2729
[23, 24] 4.1762 3.1768 2.5740 2.1675 1.6509
Corollary 3.8 4.4496 3.3657 2.7167 2.2814 1.7310

where c is a scalar. It is assumed that d1 = 0 and d(t) = d are constant delays satisfying
0 ≤ d ≤ d2. For various c, the allowable upper bounds d2, which guarantee regular,
impulse free, and stable of system (2.1), are listed in Table 5. From Table 5, it is clear that the
Corollary 3.8 in this paper gives better results than those in [18, 22–24, 26].

5. Conclusion

This paper deals with the problem of stability for singular systems with interval time-varying
delay. A new stability criterion for singular systems to be regular, impulse free, and stable is
proposed in terms of LMIs. Based on the obtained criterion, some improved stability results
for the regular systems with interval time-varying delay are also given. The obtained results
in this paper have been shown to be less conservative than recently reported results. More-
over, the proposed method decreases the computational complexity comparable to some
existing methods. Three numerical examples are given to illustrate the applicability of the
results.
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