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Gradient-based algorithms are efficient to compute numerical solutions of optimal control prob-
lems for hybrid systems (OCPHS), and the key point is how to get the sensitivity analysis of the
optimal control problems. In this paper, optimality condition-based sensitivity analysis of optimal
control for hybrid systemswithmode invariants and control constraints is addressed under a priori
fixed mode transition order. The decision variables are the mode transition instant sequence and
admissible continuous control functions. After equivalent transformation of the original problem,
the derivatives of the objective functional with respect to control variables are established based on
optimal necessary conditions. By using the obtained derivatives, a control vector parametrization
method is implemented to obtain the numerical solution to the OCPHS. Examples are given to
illustrate the results.

1. Introduction

In many fields of applications, such as powertrain systems of automobiles and multistage
chemical processes, dynamics of the systems involve a sequence of distinct modes with fixed
mode transition order, forming a hybrid system characterized by the coexistence and inter-
action of discrete and continuous dynamics (the mode is commonly denoted by a discrete
state of the systems in hybrid systems literature). To achieve some overall optimal perfor-
mance for the systems, the duration and the admissible continuous control function of each
mode must be determined as a whole [1–3]; thus, it necessitates the use of theories and
techniques for the analysis and synthesis of hybrid dynamical systems. With the growing
importance of hybrid models, various classes of hybrid systems for analysis, design, and
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optimization have been addressed by research communities in recent years. For more discus-
sions on various literature results, the reader is referred to [4–8], and the references therein.

The existed results on OCPHS can be divided into the following two categories. One is
about the optimal control theory onOCPHS. The theory inherits conventional optimal control
theory and can be regarded as the extension of conventional optimal control theory [3, 9–14].
When control can take any value, Xu and Antsaklis [3] and Hwang et al. [9] addressed the
variational method for hybrid systems. Sussmann [10], Shaikh and Caines [11], and Dmitruk
and Kaganovich [12] established the Maximum Principle for hybrid systems with control
constraints. Branicky et al. [14] and Bensoussan and Menaldi [13] provided the dynamic
programming principle for general hybrid systems.

The other results focus on how to compute optimal control for OCPHS, which can
be carried out by using a wide variety of methods (see [3, 6, 11, 15–20] and the references
therein). Given a prespecified order of mode transitions, Xu and Antsaklis [3] obtained
the optimal continuous control and optimal switching instants based on parameterization
of the switching instant for switching hybrid systems with free control. Under a fixed
switching sequence of modes, Attia et al. [19] considered an optimization problem for a
class of impulsive hybrid systems where continuous control function is not involved. When
switching hybrid systems with control constraints are considered, Shaikh and Caines [11]
proposed two algorithms for obtaining the optimal control. As far as switching hybrid
systems without external continuous control function are concerned, Egerstedt et al. [6] and
Johnson and Murphey [18] derived the gradients and second-order derivatives of the cost
functional, respectively, and used them to design an associated algorithm to get the mode
transition instants. Based on the hybrid Maximum Principle, Taringoo and Caines [20]
provided gradient geodesic and Newton geodesic algorithms for the optimization of autono-
mous hybrid systems, and convergence analysis for the algorithms was also provided. From
the view of dynamic programming, Seatzu et al. [16] provided an optimal state feedback
control law to switched piecewise affine autonomous systems. Generally, these algorithms
pose the hierarchy [17, 21, 22], and the basic module of the hierarchical algorithms is how
to get optimal continuous control and optimal mode transition instants, though the main
challenge of OCPHS is how to get the optimal mode transition order. The basic module of the
hierarchical algorithms is commonly gradient based due to that gradient information can
provide a better searching direction and hence reduce computation burden and help the
gradient-based algorithms converge quickly, which motivates us to pay attention to the
sensitivity analysis of optimal control for hybrid systems.

Although the derivative of cost functional with respect to switching instants has been
discussed in the aforementioned literature [3, 6, 18], the derivative of cost functional with
respect to control function is not involved. When hybrid systems are considered, due to
the coexistence and interaction of discrete and continuous dynamics, the derivative of cost
functional w.r.t control functions is nontrivial and is not directly formulated by ∂H/∂u as
conventional optimal control indicates, whereH is the Hamiltonian function. The derivative
will be a function of the derivatives of continuous states w.r.t control functions at the instants
of subsequent modes. In this paper, the derivatives of cost functional w.r.t control functions
are established analytically, which can facilitate the design of associated gradient-based
algorithms.

Motivated by the work of Vassiliadis et al. [1, 2] and Jennings et al. [23], in this
paper, optimal control problem of hybrid systems (OCPHS) with mode invariants which
describe the conditions that continuous states have to satisfy at this mode are considered.
Based on optimal necessary conditions, the derivatives of the objective functional w.r.t control
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variables, that is, the mode transition instant sequence and admissible continuous control
functions, are derived analytically. As a result, a control vector parametrization method is
implemented to obtain the numerical solution to optimal control of the hybrid systems with
the obtained derivatives. The sensitivity analysis in Vassiliadis et al. [1, 2] is similar to the
work, in which the sensitivity of states w.r.t control parameters is directly obtained from the
state equations and the sensitivity of objective functional with respect to control parameters
is not involved. In contrast, this paper derives the derivatives of cost functional w.r.t control
variables based on the optimality conditions and gives the explicitly expression of the deriva-
tives. Therefore, the main contributions of this paper are listed as follows. (a)Optimality con-
ditions-based sensitivity analysis of optimal control for hybrid systems with mode invariants
are given explicitly, and (b) following the given derivatives, a control vector parameterization
method is designed to obtain the numerical solution. Compared with the existing results on
the OCPHS with fixed mode transition order, the settings in this paper cover not only the
control constraints, but also the continuous states constraints, which makes the results here
more general.

The paper is organized as follows. In the next section, the hybrid system with mode
invariants and its optimal control problem are formulated. In Section 3, the equivalent prob-
lem and associated optimal conditions are analyzed. The derivatives of the objective func-
tional w.r.t control variables are established in Section 4, and a control vector parametriza-
tion approach is also proposed in this section. Some numerical examples are presented in
Section 5, and Section 6 contains conclusions.

Terminology and Notation

N denotes the set of positive integers. R and R+ denote the set of real numbers and non-
negative real numbers, respectively. AT denotes the transpose of a vector (or a matrix) A.
Cl([a, b],Rn) denotes the family of continuous functions f from [a, b] to R

n with up to l order
derivatives. ‖ · ‖ denotes the Euclidean norm.

2. Hybrid Systems and Its Optimal Control Problem

2.1. Hybrid Systems

Engineered systems, such as chemical engineering systems and powertrain systems of
automobiles, always undergo multiple modes which are represented by a discrete state i
taking values from set I .= {1, 2, . . . ,M} and pose hybrid characters. The evolution of discrete
state i is determined by mode transition sequence. A mode transition sequence schedules the
sequence of active modes ij , ij ∈ I and is a sequence of pairs of (tj−1, ij), which can be defined
by {(t0, i1), (t1, i2), . . .} .= (θ, π) where θ .= {t0, t1, . . .} and π

.= {i1, i2, . . .} are referred to as
mode transition instants and mode transition order, respectively. A pair of (tj−1, ij) indicates
that at instant tj−1, the hybrid system transits from mode ij−1 to mode ij . During the time
interval [tj−1, tj), mode ij is active and unchanged.

The mode transition order π of the considered hybrid dynamical systems is known a
priori. Without loss of generality, it is supposed that themode transition order is {i1, i2, . . . , iK}
over the finite horizon [t0, tf], ij ∈ I, j = 1, 2, . . . , K. Moreover, according to each distinct
mode, the continuous states are restricted in a specified range which is referred to as mode
invariants. Here, the mode invariants are formulated by a set of inequalities. Thus, for each
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mode ij ∈ I and its active horizon [tj−1, tj), the dynamics of the considered systems can be
formulated by

ẋ = fij (x, u),

pij (x) < 0,

x
(
tj−1
)
= ψij

(
x
(
t−j−1
))
,

gij
(
x
(
t−j
))

= 0,

(2.1)

where x ∈ R
n, u ∈ Uij ⊆ R

m is a piecewise continuous function, fij : R
n × Uij → R

n, tj is the
mode transition instant when a particular mode transition occurs, pij , ψij , and gij are hij < n,
n and rij ≤ n dimensional vectors for ij ∈ I, respectively. n,m, hij , rij ∈ N. To make the hybrid
systems formulated by (2.1) well defined, the following assumption is needed.

Assumption 2.1. For any ij ∈ I, fij ∈ Cl(Rn × Uij ;R
n), l ≥ 1, l ∈ N, and such that a uniform

Lipschitz condition holds, that is, there exists Kf <∞ such that

∥∥∥fij (x, u) − fij
(
x′, u

)∥∥∥ ≤ Kf

∥∥x − x′∥∥, (2.2)

where x, x′ ∈ R
n, u ∈ Uij .

Remark 2.2. pij (x) < 0 indicates mode invariant for mode ij ∈ I, which describes the con-
ditions that the continuous states have to satisfy at this mode and can be referred to as the
path constraints of the continuous states in Vassiliadis et al. [1, 2].

Remark 2.3. gij (x(t
−
j )) = 0 can be referred to as mode transition conditions which describe

the conditions on the continuous states under which a particular mode transition takes place.
When mode ij is active over [tj−1, tj), then, at t−j , x meets an (n − rij )-dimensional smooth
manifold Sij = {x | gij (x) = 0} and mode transition from ij to ij+1 occurs. The mode transition
conditions implicitly define the mode ij ’s active horizon [tj−1, tj). To prevent Zeno behavior
from occurrence, tj−1 < tj is assumed. Physically, the mode transition conditions are always
the boundary of closure of the mode invariant pij < 0.

Remark 2.4. x(tj−1) = ψij (x(t
−
j−1)) is the outcome of themode transition and describes the effect

that the transition will have on the continuous states. It can be viewed as junction conditions
in Vassiliadis et al. [1, 2]. It is assumed that ψij ∈ Cl(Rn), l ≥ 1, l ∈ N.

Remark 2.5. Basically, for general hybrid systems, the evaluation of i should be formulated
by a function of impulsive control or a graph, which generates mode transition sequence, as
formulated in Song and Li [24] and Cassandras and Lygeros [8]. However, the order of the
mode transition π is known a prior here thus, the evaluation of i is determined only by the
transition instants tj , and the evaluation function of i is omitted here.

Besides Assumption 2.1, to make the considered systems to be well defined, there are
some additional assumptions on mode invariants and mode transition conditions should be
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imposed. Here, it is supposed that the mode invariants and mode transition conditions meet
the requirements as in Taringoo and Caines [20].

2.2. Optimal Control Problem for Hybrid Systems

Let Li ∈ Cl(Rn×Ui;R) be a running cost function, ϕij ∈ Cl(Rn;R+) be a discrete state transition
cost function, and φ ∈ Cl(Rn;R+) be a terminal cost function, i, j ∈ I, l ≥ 1, l ∈ N, respectively.
The optimal control problem for the hybrid systems (2.1) is stated as follows.

Optimal Problem A

Consider a hybrid system formulated by (2.1), given a fixed time interval [t0, tf] and a
prespecified mode transition order π = {i1, i2, . . . , iK}, find a continuous control u ∈ Uij in
each mode ij ∈ I and mode transition instants θ = {t1, . . . , tK−1}, such that the corresponding
continuous state trajectory x departs from a given initial state x(t0) = x0 andmeets an (n− lf)-
dimensional smooth manifold Sf = {x | ϑ(x) = 0, ϑ : R

n → R
lf }, lf ∈ N, at tf and the cost

functional

J(θ, u) = φ
(
x
(
tf
))

+
∫ tf

t0

Li(t)(x(t), u(t))dt +
K−1∑

j=1

ϕij ij+1

(
x
(
t−j
))

(2.3)

is minimized.

Remark 2.6. As it is well known, when t0 and tf are unknown points in some fixed interval
T ⊂ R+, this problem can be transformed to one with fixed time essentially by introducing an
additional state variable.

There are fruitful strategies about how to compute OCPHS (see [15] and the references
therein), and the basic idea is briefly reviewed as follows for completeness.

Obtaining the optimal control for hybrid systems is very difficult due to the inter-
actions between the continuous states and discrete states which produce a mode transition
sequence that increases the feasibility range of the decision variables. One algorithm frame-
work for dealing with this complexity is the decomposition method as follows:

min
((π,θ),u)

J((π, θ), u) = min
(π,θ)

min
u
J(u | (π, θ)) = min

π
min
θ

min
u
J((u, θ) | π), (2.4)

where J(· | b)means that b is given.
According to this framework, the master problem is how to get the optimum of the

inner functional, that is, minimize J(u, θ) given π . The key point of finding the optimal solu-
tion of J(u, θ) is how to get the sensitivity of the objective with respect to control variables,
which provides a better direction for searching and hence reduces computational burden
and help associated algorithms converge quickly and accelerate the primary problem con-
vergence eventually.

In next section, the derivatives of cost functional with respect to control variables
are established analytically based on optimality condition, which can facilitate the design
of associated gradient-based algorithms.
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3. Equivalent Problem and Its Optimal Conditions

When control vector parametrization methods are implemented to obtain numerical solution
to the OCPHS, updating the parameters of control profiles should be at the same time point
when iterative procedure is running. However, the fact is that the mode active horizon
[tj−1, tj) for mode ij ∈ I is varying during the procedure running, so a fixed horizon should be
introduced, which will guarantee the updating of parameters of control profiles is at the same
time point. For this purpose, let τ ∈ [0, K] be a time independent variable, and t ∈ [tj−1, tj)
can be formulated by

t = tj−1 +
(
τ − (j − 1

))(
tj − tj−1

)
, τ ∈ [j − 1, j

)
, j = 1, . . . , K. (3.1)

In addition, to deal with mode invariants constraints pij (x) < 0, slack algebraic

variable sij = [sij1, . . . , sijhij ]
T ∈ R

hij
+ is introduced for each mode ij ∈ I, such that pij (x) +

diag[sij1, . . . , sijhij ]sij = 0. For τ ∈ [j − 1, j), denote xj(τ)
.= x(tj−1 + (τ − (j − 1))(tj − tj−1)),

uj(τ)
.= u(tj−1 + (τ − (j − 1))(tj − tj−1)), sj(τ)

.= sij (tj−1 + (τ − (j − 1))(tj − tj−1)), and let
x = [x1, . . . , xK]

T , u = [u1, . . . ,uK]
T , and s = [s1, . . . , sK]

T .
According to the above definition, the Optimal Problem A can be transcribed into an

equivalent Optimal Problem B as follows:

Optimal Problem B

Given a fixed interval [0, K], find continuous inputs u ∈ Ui1 × · · · × UiK , s ∈ R
hi1
+ × · · · × R

hiK
+

and θ, such that the corresponding continuous state trajectory x1 departs from a given initial
state x1(0) = x0 and xK meets an (n − lf)-dimensional smooth manifold Sf = {xK | ϑ(xK) =
0, ϑ : R

n → R
lf } at K, and the cost functional

J̃(θ,u, s) = φ(xK(K)) +
K∑

j=1

∫ j

j−1
L̃ij
(
xj(τ),uj(τ), sj(τ)

)
dτ +

K−1∑

j=1

ϕij ij+1
(
xj
(
j−
))

(3.2)

is minimized, subject to

dxj(τ)
dτ

= f̃ij
(
xj(τ),uj(τ)

) .=
(
tj − tj−1

)
fij
(
xj(τ),uj(τ)

)
,

xj
(
j − 1

)
= ψij

(
xj−1
((
j − 1

)−))
,

gij
(
xj
(
j−
))

= 0,

(3.3)

where

L̃ij
(
xj ,uj , sj

)
=
(
tj − tj−1

)
Lij , Lij = Lij

(
xj ,uj

)
+M

hij∑

l=1

(
pij l
(
xj
)
+ s2ij l

)2
, (3.4)

andM is a large positive constant.
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According to Theorems 2 and 3 in Dmitruk and Kaganovich [12], when M is big
enough Optimal Problem B is equivalent to Optimal Problem A.

Remark 3.1. The penalty function term, say, M
∑hij

l=1(pij l(xj) + s2
ij l
)2, cannot always guarantee

the state satisfies the mode invariant conditions. However, the methodworks well in practice;
moreover, the mode transition order is fixed in this paper which reduces the negative effect
of the penalty function method for OCPHS.

For τ ∈ [j − 1, j), j = 1, . . . , K, let λj ∈ R
n, and define Hamiltonian functionHj by

Hj

(
λj , xj ,uj , sj

)
= L̃ij

(
xj ,uj , sj

)
+ λTj f̃ij

(
xj ,uj

)
, (3.5)

and according to Sussmann [10], Shaikh and Caines [11], and Dmitruk and Kaganovich [12],
the following Theorem 3.2 holds.

Theorem 3.2. In order that u and s are optimal for Optimal Problem B, it is necessary that there exist
vector functions λj , j = 1, . . . , K, such that the following conditions hold:

(a) for almost any τ ∈ [j − 1, j), the following state equations hold:

dxj(τ)
dτ

= f̃ij
(
xj(τ),uj(τ)

)
, (3.6)

(b) for almost any τ ∈ [j − 1, j), the following costate equations hold:

λ̇j = −
(
∂L̃ij
∂xj

)T

−
⎛

⎝
∂f̃ij
∂xj

⎞

⎠

T

λj , (3.7)

(c) for a.e. τ ∈ [j − 1, j),

Hj

(
λ∗j , x

∗
j ,u

∗
j , s

∗
j

)
= 0, (3.8)

(d) minimality condition: for all τ ∈ [j − 1, j),

min{

uj∈Uij
,sj∈R

hij
+

}Hj

(
λ∗j , x

∗
j ,uj , s

∗
j

)
= 0,

(3.9)
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(e) transversality conditions for λj ,

λj+1
(
j
)
= βj , j = 1, . . . , K − 1,

λj
(
j−
)
=

(
∂gij

∂xj
(
j−
)

)T

αj −
(

∂ψij+1

∂xj
(
j−
)

)T

βj +

(
∂ϕij ij+1

∂xj
(
j−
)

)T

, j = 1, . . . , K − 1,

λK(K) =
(

∂φ

∂xK(K)

)T
+
(

∂ϑ

∂xK(K)

)T
αK,

(3.10)

where αj ∈ R
hi , βj ∈ R

n are Lagrangian multipliers. Based on Theorem 3.2, the sensitivity analysis is
established in the next section for Optimal Problem B.

4. Sensitivity Analysis and Parametrization Method

For finding numerical solution to the OCPHS effectively, based on Theorem 3.2, the deriva-
tives of the objective functional J̃(·) with respect to the control u, s, and the mode transition
instant tj , j = 1, . . . , K−1 are established in this section, and by using the obtained derivatives
associated parametrization method is proposed.

4.1. Sensitivity Analysis

Lemma 4.1. The derivatives of xj(j−), j = 1, . . . , K, w.r.t tk and uk are given, respectively, as follows
for k = 1, . . . , K − 1,

dxj
(
j−
)

dtk
= 0, j = 1, . . . , k − 1,

dxk(k−)
dtk

= fik
(
xk
(
k−
)
,uk
(
k−
))
,

dxk+1
(
(k + 1)−

)

dtk
= Ωk+1,

dxj
(
j−
)

dtk
=

[
j∏

l=k+2

Φl(l, l − 1)
dψil

dxl−1
(
(l − 1)−

)

]

Ωk+1, j = k + 2, . . . , K,

(4.1)

δxj
(
j−
)

δuk
= 0, j = 1, . . . , k − 1,

δxk(k−)
δuk

= Γk(τ),

δxj
(
j−
)

δuk
=

j∏

l=k+1

[

Φl(l, l − 1)
dψil

dxl−1
(
(l − 1)−

)

]

Γk(τ), j = k + 1, . . . , K,

(4.2)
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where

Ωk+1 = Φk+1(k + 1, k)
dψik+1
dxk(k−)

fik
(
xk
(
k−
)
,uk
(
k−
)) − fik+1(xk+1(k),uk+1(k)),

Γk(τ) = (tk − tk−1)Φk(k, τ)
∂fik
∂uk

, Φl(τ, v) = exp
(∫ τ

v

(tl − tl−1)
∂fil
∂xl

da

)
.

(4.3)

Note that x(tj) is a functional vector of uk, and the expression δxj/δuk is used, where
the notation δxj/δuk is the functional derivatives which describe the response of the func-
tional xj to an infinitesimal change in the function uk at each point.

Proof. The proof of (4.1) is only going to be shown for easily reading. The proof for (4.2) can
be found in Appendix.

When j = 1, . . . , k − 1, xj(j−) and xj+1(j) are independent of tk, and obviously dxj(j−)/
dtk = 0 holds. In the case of j = k, xk(k−) is a function of tk which gives rise to dxk(k−)/dtk =
fik(xk(k

−),uk(k−)).
Case i. (j = k + 1). In this case, xk+1 is a function of tk and xk+1(k), and we have

dxk+1(τ)
dtk

=
∂xk+1
∂tk

+
∂xk+1

∂xk+1(k)
∂xk+1(k)
∂tk

. (4.4)

Note that in (4.4), ∂xk+1/∂tk is produced by the perturbation of tk, and (∂xk+1/
∂xk+1(k))(∂xk+1(k)/∂tk) is produced by the perturbation of xk+1(k) with respect to tk. Obvi-
ously, for τ ∈ [k, k + 1),

∂xk+1(τ)
∂tk

= −fik+1(xk+1(k),uk+1(k)). (4.5)

The solution to ∂xk+1(τ)/∂xk+1(k) is given by

∂xk+1(τ)
∂xk+1(k+)

= I + (tk+1 − tk)
∫ τ

k

∂fik+1
∂xk+1

∂xk+1(v)
∂xk+1(k)

dv. (4.6)

Equation (4.6) is a linear system about ∂xk+1/∂xk+1(k). Define the state transition
matrix Φl(τ, v) by

Φl(τ, v) = exp
(∫ τ

v

(tl − tl−1)
∂fil(a)
∂xl(a)

da

)
, (4.7)

according to (4.6), and we have

∂xk+1(τ)
∂xk+1(k)

= Φk+1(τ, k). (4.8)
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Thus,

dxk+1(τ)
dtk

= Φk+1(τ, k)
∂xk+1(k)
∂tk

− fik+1(xk+1(k),uk+1(k)). (4.9)

At transition instants tj , since xj+1(j) = ψij+1(xj(j
−)), so

dxj+1
(
j
)

dtk
=

dψij+1

dxj
(
j−
)
dxj
(
j−
)

dtk
, (4.10)

which implies

∂xk+1(k)
∂tk

=
dψik+1
dxk(k−)

dxk(k−)
dtk

=
dψik+1
dxk(k−)

fik
(
xk
(
k−
)
,uk
(
k−
))
. (4.11)

According to (4.9), and we have

dxk+1
(
(k + 1)−

)

dtk
= Φk+1(k + 1, k)

dψik+1
dxk(k−)

fik
(
xk
(
k−
)
,uk
(
k−
))

− fik+1(xk+1(k),uk+1(k))
.= Ωk+1.

(4.12)

Case ii. (j = k + 2, . . . , K). When j = k + 2, . . . , K, the following holds:

dxj(τ)
dtk

=
dxj
(
j − 1

)

dtk
+
(
tj − tj−1

)
∫ τ

j−1

∂fij
∂xj

dxj(v)
dtk

dv, τ ∈ [j − 1, j
)
. (4.13)

Then,

dxj(τ)
dtk

= Φj

(
τ, j − 1

)dxj
(
j − 1

)

dtk
. (4.14)

Substituting the term dxj(j − 1)/dtk in (4.14) by (4.10), we obtain

dxj
(
j−
)

dtk
=

[
j∏

l=k+2

Φl(l, l − 1)
dψil

dxl−1
(
(l − 1)−

)

]

Ωk+1. (4.15)
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Theorem 4.2. The derivatives of the objective functional J̃(·) w.r.t tk, uk and sk are given, respec-
tively, as follows:

dJ̃

dtk
= Lik

(
xk
(
k−
)
,uk
(
k−
)
, sk
(
k−
)) − Lik+1(xk+1(k),uk+1(k), sk+1(k))

+ λk
(
k−
)T
fik
(
xk
(
k−
)
,uk
(
k−
)) − λk+1(k)Tfik+1(xk+1(k),uk+1(k))

−
K−1∑

j=k

αTj
∂gij

∂xj
(
j−
)
dxj
(
j−
)

dtk
− αTK

∂ϑ

∂xK(K)
dxK(K)
dtk

δJ̃

δuk
=
∂Hk

∂uk
−
K−1∑

j=k

αTj
∂gij

∂xj
(
j−
)
δxj
(
j−
)

δuk
− αTK

∂ϑ

∂xK(K)
δxK(K)
δuk

δJ̃

δsk
=
∂Hk

∂sk
.

(4.16)

Before proving Theorem 4.2, Lemma 4.3 is firstly given as follows.

Lemma 4.3. For j = k + 2, . . . , K,

d

dtk

∫ j

j−1
L̃ij
(
xj ,uj , sj

)
dτ = λj

(
j − 1

)T dxj
(
j − 1

)

dtk
− λj
(
j−
)T dxj

(
j−
)

dtk
. (4.17)

Proof. For any j = k + 2, . . . , K, we have

d

dtk

∫ j

j−1
L̃ij
(
xj ,uj , sj

)
dτ =

∫ j

j−1

d

dtk

(
Hj

(
λj , xj ,uj , sj

) − λTj f̃ij
)
dτ

=
∫ j

j−1

⎛

⎝∂Hj

∂xj

dxj
dtk

+
∂Hj

∂λj

dλj

dtk
−
(
dλj

dtk

)T

f̃ij − λTj
d

dtk
f̃ij

⎞

⎠dτ.

(4.18)

Since the following holds by Theorem 3.2,

(
∂Hj

∂xj

)T

= −λ̇j ,
(
∂Hj

∂λj

)T

= f̃ij , (4.19)
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then

d

dtk

∫ j

j−1
L̃ij
(
xj ,uj , sj

)
dτ =

∫ j

j−1

⎛

⎝−(λ̇j
)T dxj
dtk

+
(
f̃ij

)T dλj
dtk

−
(
dλj

dtk

)T

f̃ij − λTj
d

dtk
f̃ij

⎞

⎠dτ

=
∫ j

j−1

(

−(λ̇j
)T dxj
dtk

− λTj
d

dtk
f̃ij

)

dτ = −
∫ j

j−1

d

dτ

(

λTj
dxj
dtk

)

dτ

= λj
(
j − 1

)T dxj
(
j − 1

)

dtk
− λj
(
j−
)T dxj

(
j−
)

dtk
.

(4.20)

Obviously, when j = k, k + 1, we have

d

dtk

∫k

k−1
L̃ik(xk,uk, sk)dτ =

d

dtk

∫ tk

tk−1
Lik(x, u, sik)dt = Lik

(
xk
(
k−
)
,uk
(
k−
)
, sk
(
k−
))
,

(4.21)

d

dtk

∫k+1

k

L̃ik+1(xk+1,uk+1, sk+1)dτ = λk+1(k)
T dxk+1(k)

dtk
− λk+1

(
(k + 1)−

)T dxk+1
(
(k + 1)−

)

dtk

− Lik+1(xk+1(k),uk+1(k), sk+1(k)).
(4.22)

Nowwe prove Theorem 4.2. We are only going to show dJ̃/dtk for easily reading. The
proofs for δJ̃/δuk and δJ̃/δsk can be found in Appendix.

Proof. J̃(θ,u, s) can be formulated as

J̃(θ,u, s) = φ(xK(K)) +
k−1∑

j=1

∫ j

j−1
L̃ij
(
xj ,uj , sj

)
dτ

+
K∑

j=k

∫ j

j−1
L̃ij
(
xj ,uj , sj

)
dτ +

K−1∑

j=1

ϕij ij+1
(
xj
(
j−
))
.

(4.23)

Since L̃ij (·) is independent of tk for j = 1, . . . , k − 1, then dJ̃/dtk can be obtained by

dJ̃

dtk
(θ,u, s) =

∂φ(xK(K))
∂xK(K)

dxK(K)
dtk

+
d

dtk

K∑

j=k

∫ j

j−1
L̃ij
(
xj ,uj , sj

)
dτ +

K−1∑

j=1

∂ϕij ij+1

∂xj
(
j−
)
dxj
(
j−
)

dtk
.

(4.24)
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Substituting (4.17), (4.21), and (4.22) into (4.24), we have

dJ̃

dtk
(θ,u, s) =

∂φ(xK(K))
∂xK(K)

dxK(K)
dtk

+ Lik
(
xk
(
k−
)
,uk
(
k−
)
, sk
(
k−
))

− Lik+1(xk+1(k),uk+1(k), sk+1(k)) + λk+1(k)T
dxk+1(k)
dtk

+
∂ϕikik+1
∂xk(k−)

dxk(k−)
dtk

−
K−1∑

j=k+1

(

λj
(
j−
)T dxj

(
j−
)

dtk
− λj+1

(
j
)T dxj+1

(
j
)

dtk
−
∂ϕij ij+1

∂xj
(
j−
)
dxj
(
j−
)

dtk

)

− λK(K)T
dxK(K)
dtk

.

(4.25)

Due to Theorem 3.2 and (4.10), dJ̃/dtk can be formulated by

dJ̃

dtk
(θ,u, s) =

(
∂φ(xK(K))
∂xK(K)

− λK(K)T
)
dxK(K)
dtk

+ Lik
(
xk
(
k−
)
,uk
(
k−
)
, sk
(
k−
))

− Lik+1(xk+1(k),uk+1(k), sk+1(k)) + λk
(
k−
)T dxk(k−)

dtk

− λk+1(k)Tfik+1(xk+1(k),uk+1(k))

− αTk
∂pik

∂xk(k−)
dxk(k−)
dtk

−
K−1∑

j=k

αTj
∂gij

∂xj
(
j−
)
dxj
(
j−
)

dtk

= Lik
(
xk
(
k−
)
,uk
(
k−
)
, sk
(
k−
)) − Lik+1(xk+1(k),uk+1(k), sk+1(k))

+ λk
(
k−
)T
fik
(
xk
(
k−
)
,uk
(
k−
)) − λk+1(k)Tfik+1(xk+1(k),uk+1(k))

−
K−1∑

j=k

αTj
∂gij

∂xj
(
j−
)
dxj
(
j−
)

dtk
− αTK

∂ϑ

∂xK(K)
dxK(K)
dtk

.

(4.26)

Note that when second-order derivatives are needed, there is no difficulty to obtain
the second-order derivatives following the above procedure.

4.2. Parametrization Method

To obtain the numerical solution to optimal control for hybrid systems, continuous control
profiles are parameterized on each mode active horizon in this section. Then the numerical
solution to optimal controls can be computed based on the obtained sensitivity analysis
results. The basic idea behind the proposed method using finite parameterizations of the
controls is to transcribe the original infinite dimensional problem, that is, C-problem, into
a finite dimensional nonlinear programming problem, that is, P -problem [25]. Here, the
parametrization method that the control profiles are approximated by a family of Lagrange
form polynomials is implemented.
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Partition each horizon [j − 1, j) into Nj elements as j − 1 = τj0 < τj1 < · · · < τjNj = j
where τjl are referred to as collocation points, l = 0, . . . ,Nj . Let ujl denote the value of uj at
τjl, l = 0, . . . ,Nj . Thus, the control variable uj is represented approximately by a Lagrange
interpolation profile for j = 1, . . . , K,

uj(τ) =
Nj∑

l=0

l̂l(τ)ujl, τ ∈ [j − 1, j
)
, (4.27)

where l̂l(τ) =
∏Nj

m=0,m/= l
((τ − τjm)/(τjl − τjm)). sj is also parameterized by

sj(τ) =
Nj∑

l=0

l̂l(τ)sjl, τ ∈ [j − 1, j
)
, (4.28)

where sjl is the value of sj at the collocation points τjl, l = 0, . . . ,Nj .
As a result, based on the obtained derivatives, the numerical solution of u and θ

to optimal control for the hybrid systems can be solved simultaneously and efficiently by
adopting gradient-based algorithms as described in Xu and Antsaklis [3] and Egerstedt et al.
[6]. Note that the derivatives are functions of costate λj as formulated in Theorem 4.2. When
control polynomial profiles are implemented, a multipoint boundary value problem about
state and costate expressed by (3.6), (3.7), and (3.10) will be solved, which produces the
derivatives.

Although the Lagrange interpolation profiles may cause the state or/and control tra-
jectories violate their constraints, this parameterizations method has been proved useful in
practice. Moreover, there are some techniques to decrease the defect [1, 2].

Remark 4.4. Control variable uj can be approximated by several piecewise Lagrange inter-
polation profiles by further partitioning the element [j − 1, j). More detail of the parameter-
izations methods can be found in Vassiliadis et al. [1, 2], Kameswaran and Biegler [26], and
the references therein. Only one Lagrange interpolation profile is used here to show the pro-
cess of the proposed method.

5. Some Examples

To illustrate the effectiveness of the developed method, two examples with different situa-
tions are presented in the following. Numerical examples are conducted on an ThinkPad X61
2.10-GHz PC with 2G of RAM. The program is implemented using MatLab 7. The order of
Lagrange polynomials in the examples is 3.

Example 5.1. The prototype of this example comes from Vassiliadis et al. [1]. The hybrid sys-
tem consists of two batch reactors as shown in Figure 1. The first reactor denoted by mode 1
is fitted with a heating coil which can be used to manipulate the reactor temperature u over
time and is initially loaded with 0.1m3 of an aqueous solution of component x1 of concen-
tration 2000mol/m3. This reacts to form components x2 according to the consecutive reaction
scheme 2x1 → x2. After completion of the first reaction, an amount of dilute aqueous solution
of component x2 of concentration 600mol/m3 is added instantaneously to the products of
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x1

x2

Heat
exchange

Mode 1 Mode 2

Figure 1: Two batch reactors system.

the first reactor, and the mixture is loaded into the second reactor denoted by mode 2 where
the reaction x2 → x3 takes place under isothermal conditions at a fixed temperature. The
decision variables are the temperature u of the mode 1, and the durations of the two mode
over the horizon [0, 180]. The dynamics of the hybrid systems can be described by

Mode 1:

ẋ1 = − 0.0888e(−2500/u)x2
1,

ẋ2 = 0.0444e(−2500/u)x2
1 − 6889.0e(−5000/u)x2,

ẋ3 = 0.

(5.1)

Mode 2:

ẋ1 = 0,

ẋ2 = − 0.07x2 − 8.0 × 10−5x2
2,

ẋ3 = 0.02x2,

(5.2)

with x(0) = [2000 0 0]T . The system transits once at t = t1(t0 < t1 < tf) from mode 1 to 2
with x1(t1) = x1(t−1 )/1.7, x2(t1) = (x2(t−1 ) + 420)/1.7. The OCPHS is to find an optimal mode
transition instant t1 and an optimal input 298 ≤ u(t) ≤ 398, t ∈ [t0, t1], to maximize the cost
functional

max
t1,u

x3
(
tf
)
, (5.3)

with x3(tf) ≥ 150 must be satisfied.

By using the proposed method, the optimal mode transition instant is t1 = 105 and
the corresponding optimal cost is J∗ = 150.0285. The corresponding continuous control and
state trajectories are shown in Figure 2. In Vassiliadis et al. [1], the transition instants and
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Figure 2: State trajectories and control input of Example 5.1.

the optimal cost are t1 = 106, J∗ = 150.294, respectively, which are solved by software package
DAEOPT.

Example 5.2. Example 5.2 comes from Xu and Antsaklis [3] and is also reconsidered by
Hwang et al. [9]. Different from the example in the two references, the control constraint is
imposed. The example can be referred to as autonomous switching hybrid systems with
mode invariants. Consider the hybrid system consisting of

Mode 1:

ẋ =
(
1.5 0
0 1

)
x +
(
1
1

)
u, (5.4)

Mode 2:

ẋ =
(

0.5 0.866
0.866 −0.5

)
x +
(
1
1

)
u, (5.5)

with x0 = [1 1]T . Assume that t0 = 0, tf = 2 and the system transits once at t = t1 (t0 <
t1 < tf) from Mode 1 to 2 when the state trajectories intersect the linear manifold defined by
m(x) = x1 + x2 − 7 = 0. Mode 1 is active with its mode invariant x1 + x2 − 7 < 0 and Mode
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Figure 3: State trajectories and control input of Example 5.2.

2 is active with its mode invariant x1 + x2 − 7 > 0. The OCPHS is to find an optimal mode
transition instant t1 and an optimal input u(t) ∈ [−1, 1] such that the cost functional

J(t1, u) =
1
2

[
(
x1
(
tf
) − 10

)2 +
(
x2
(
tf
) − 6

)2 +
∫ tf

t0

u2(t)dt

]

(5.6)

is minimized.

By using the method developed here, the optimal mode transition instant is t1 = 1.1857
and the corresponding optimal cost is J∗ = 0.1246. The corresponding continuous control and
state trajectories are shown in Figure 3. In Xu and Antsaklis [3], the transition instants and
the optimal cost are t1 = 1.1624, J∗ = 0.1130, respectively. The bad performance results from
that the optimal control is approximated by polynomial.

6. Conclusions

The optimal control problem for hybrid systems (OCPHS)with mode invariants and control
constraints is addressed under a priori fixed mode transition order. By introducing new
independent variables and auxiliary algebraic variables, the original OCPHS is transformed
into an equivalent optimal control problem, and the optimality conditions for the OCPHS
is stated. Based on the optimality conditions, the derivatives of the objective functional w.r.t
control variables, that is, mode transition instant sequence and admissible continuous control
functions, are established analytically. As a result, a control vector parametrization method
is implemented to obtain the numerical solution by using gradient-based algorithms with
the obtained derivatives. Compared with the existing results on the OCPHS with fixed mode
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transition order, the settings cover not only the control constraints but also the continuous
states constraints, which makes the obtained results more general. Note that when no infor-
mation about the mode transition sequence is known a priori, the discrete model methods
formulated in Bemporad and Morari [27], Barton et al. [15], and Song et al. [28] seem
appropriate. In addition, when uncertainties are considered in the systems, the reader is
referred to Hu et al. [29] and the references therein.

Appendix

For any τ ∈ [k − 1, k), k = 1, . . . , K, let uk(τ) ∈ Uik be given and let δuk(τ) ∈ Uik be arbitrary
but fixed. Define a perturbation of uk as

uk(τ ; ε) = uk(τ) + εδuk(τ), (A.1)

where ε ∈ R is arbitrarily small such that uk(τ ; ε) ∈ Uik . For the time being, assume that
the other controls, uj , j = 1, . . . , K, j /= k, be given and fixed. For brevity, let xj and xj(·; ε)
denote the state trajectories corresponding to uk and uk(τ ; ε), respectively. Similarly, let λj
and λj(·; ε) denote the costate trajectories corresponding to uk and uk(ε), respectively, which
are the solutions of the costate equations

xj(·; ε) = xj(·) + εδxj(·),
λj(·; ε) = λj(·) + εδλj(·).

(A.2)

Proof of (4.2) in Lemma 4.1. When j = 1, . . . , k − 1, obviously in these cases xj is independent
of uk, that is, δxj(j−; ε) = 0, which leads to

δxj
(
j−
)

δuk
= 0, j = 1, . . . , k − 1. (A.3)

Case i (j = k). Since

δẋk = (tk − tk−1)
(
∂fik
∂xk

δxk +
∂fik
∂uk

δuk
)
, (A.4)

with δxk(k − 1) = 0, thus we have

δxk
(
k−
)
=
∫k

k−1
Φk(k, τ)(tk − tk−1)

∂fik
∂uk

δukdτ, (A.5)

where Φk is the state transition matrix defined in Section 3. Based on the definition of func-
tional derivative, there exists

δxk(k−)
δuk

= (tk − tk−1)Φk(k, τ)
∂fik
∂uk

.= Γk(τ). (A.6)
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Case (ii) (j = k + 1, . . . , K). In this case,

δẋj(τ ; ε) =
(
tj − tj−1

)∂fij
∂xj

δxj , τ ∈ [j − 1, j
)
, (A.7)

which gives rise to

δxj
(
j−; ε
)
= Φj

(
j, j − 1

)
δxj
(
j − 1

)
. (A.8)

Atmode transition instant tj , j = 1, . . . , K−1, xj+1(j) = ψij+1(xj(j−)) holds, which results
in

δxj+1
(
j
)
=

dψij+1

dxj
(
j−
)δxj

(
j−
)
. (A.9)

Substituting (A.9) into (A.8), we obtain

δxj
(
j−
)
=

j∏

l=k+1

[

Φl(l, l − 1)
dψil

dxl−1
(
(l − 1)−

)

]

δxk
(
k−
)
. (A.10)

According to the definition of functional derivative, we have

δxj
(
j−
)

δuk
=

j∏

l=k+1

[

Φl(l, l − 1)
dψil

dxl−1
(
(l − 1)−

)

]

Γk(τ). (A.11)

This completes the proof.

Before proving the δJ̃/δuk in Theorem 4.2, Lemma A.1 is firstly given as follows.

Lemma A.1. For any j = k + 1, . . . , K,

δ

∫ j

j−1
L̃ij
(
xj ,uj , si

)
dτ = λj

(
j − 1

)T
δxj
(
j − 1

) − λj
(
j−
)T
δxj
(
j−
)
. (A.12)

Proof. Note that

δ

∫ j

j−1
L̃ij
(
xj ,uj , sj

)
dτ = δ

∫ j

j−1

(
Hj

(
λj , xj ,uj , sj

) − λTj f̃ij
)
dτ

=
∫ j

j−1

(
∂Hj

∂xj
δxj +

∂Hj

∂λj
δλj −

(
δλj
)T
f̃ij − λTj δf̃ij

)

dτ.

(A.13)
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Since the following holds by Theorem 3.2:

(
∂Hj

∂xj

)T

= −λ̇j ,
(
∂Hj

∂λj

)T

= f̃ij , (A.14)

therefore,

δ

∫ j

j−1
L̃ij
(
xj ,uj , sj

)
dτ = −

∫ j

j−1

((
λ̇j
)T
δxj + λTj δf̃ij

)
dτ = −

∫ j

j−1

((
λ̇j
)T
δxj + λTj δẋij

)
dτ

= −
∫ j

j−1

d

dτ

(
λTj δxj

)
dτ = λj

(
j − 1

)T
δxj
(
j − 1

) − λj
(
j−
)T
δxj
(
j−
)
.

(A.15)

Obviously, when j = k, we have

δ

∫k

k−1
L̃ik(xk,uk, sk)dτ = λk(k − 1)Tδxk(k − 1) − λk

(
k−
)T
δxk
(
k−
)
+
∫k

k−1

∂Hk

∂uk
δukdτ.

(A.16)

Proof of δJ̃/δuk in Theorem 4.2. J̃(θ,u(ε), s) can be rewritten by

J̃(θ,u(ε), s) = φ(xK(K)) +
k−1∑

j=1

∫ j

j−1
L̃ij
(
xj ,uj , sj

)
dτ +

∫k

k−1
L̃ik(xk(ε),uk(ε), sk)dτ

+
K∑

j=k+1

∫ j

j−1
L̃ij
(
xj(ε),uj , sj

)
dτ +

K−1∑

j=1

ϕij ij+1
(
xj
(
j−
))
.

(A.17)

Applying a δ-operation to (A.17) leads to

δJ̃ =
dJ̃
(
ρ,u(ε), s

)

dε

∣∣∣∣∣
ε=0

=
∂φ(xK(K))
∂xK(K)

δxK(K) +
∫k

k−1

∂Hk

∂uk
δukdτ

+
K∑

j=k

(
λj
(
j − 1

)T
δxj
(
j − 1

) − λj
(
j−
)T
δxj
(
j−
))

+
K−1∑

j=1

∂ϕij ij+1

∂xj
(
j−
)δxj

(
j−
)

=
∂φ(xK(K))
∂xK(K)

δxK(K) +
∫k

k−1

∂Hk

∂uk
δukdτ + λk(k − 1)Tδxk(k − 1)

−
K−1∑

j=k

(

λj
(
j−
)T
δxj
(
j−
) − λj+1

(
j
)T
δxj+1

(
j
) −

∂ϕij ij+1

∂xj
(
j−
)δxj

(
j−
)
)

− λK(K)TδxK(K).

(A.18)
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Due to Theorem 3.2 and (A.9), δJ̃ can be reformulated by

δJ̃ =
(
∂φ(xK(K))
∂xK(K)

− λK(K)T
)
δxK(K) +

∫k

k−1

∂Hk

∂uk
δukdτ

−
K−1∑

j=k

αTj
∂gij

∂xj
(
j−
)δxj

(
j−
)

=
∫k

k−1

∂Hk

∂uk
δukdτ −

K−1∑

j=k

αTj
∂gij

∂xj
(
j−
)δxj

(
j−
) − αTK

∂ϑ

∂xK(K)
δxK(K).

(A.19)

Then according to the definition of functional derivative, we have

δJ̃

δuk
=
∂Hk

∂uk
−
K−1∑

j=k

αTj
∂gij

∂xj
(
j−
)
δxj
(
j−
)

δuk
− αTK

∂ϑ

∂xK(K)
δxK(K)
δuk

. (A.20)

Obviously, the functional derivative of J̃ with respect to sk can be directly given by

δJ̃

δsk
=
∂Hk

∂sk
. (A.21)

This completes the proof.
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