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This work calculates the stress intensity factors (SIFs) at the crack tips, predicts the crack initiation
angles, and simulates the crack propagation path in the two-dimensional cracked anisotropic
materials using the single-domain boundary element method (BEM) combined with maximum
circumferential stress criterion. The BEM formulation, based on the relative displacements of the
crack tip, is used to determine the mixed-mode SIFs and simulate the crack propagation behavior.
Numerical examples of the application of the formulation for different crack inclination angles,
crack lengths, degree of material anisotropy, and crack types are presented. Furthermore, the
propagation path in Cracked Straight Through Brazilian Disc (CSTBD) specimen is numerically
predicted and the results of numerical and experimental data compared with the actual laboratory
observations. Good agreement is found between the two approaches. The proposed BEM
formulation is therefore suitable to simulate the process of crack propagation. Additionally, the
anisotropic rock slope failure initiated by the tensile crack can also be analyzed by the proposed
crack propagation simulation technique.

1. Introduction

Fracture mechanics theory has been developed to solve many geotechnical engineering
problems, such as blasting, hydraulic fracturing, and slope stability. In two-dimensional
fracture mechanics problems, SIFs are important parameters in analysis of cracked materials.
The singularity of stresses near the crack tip is the challenge to numerical modelling methods,
even to the BEM. Because the coincidence of the crack surfaces gives rise to a singular system
of algebraic equations, the solution of cracked problem cannot be obtained with the direct
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formulation of the BEM. Several special methods within the scope of the BEM have been
suggested for handling stress singularities, such as the Green’s function method [1], the
subregional method [2–4], and the displacement discontinuity method (DDM) [5–7].

The Green’s function method overcomes the crack modelling problem without
considering any source point along the crack boundaries. This method has the advantage
of avoiding crack surface modelling and gives excellent accuracy; it is, however, restricted to
very simple crack geometries for which analytical Green’s function is available. The sub-
regional method has the advantage of modelling cracks with any geometric shape. The
method has the disadvantage of introducing the artificial boundaries of the original region
into several subregions, thus resulting in a large system of equations. In crack propagation
analysis, these artificial boundaries must be repeatedly introduced for each increment of
the crack extension. Therefore, this method cannot be easily implemented as an automatic
procedure in an incremental analysis of crack extension problems. The DDM overcomes
the crack modelling by replacing each pair of coincident source points on crack boundaries
by a single source point [8]. Instead of using the Green’s stresses and displacements from
point forces, the DDM uses Green’s functions corresponding to point dislocations, that is,
displacement discontinuities. This method is quite suitable for crack problems in infinite
domains where there is no crack boundary. However, it alone may not be efficient for finite
domain problems since the kernel functions in the DDM involve singularities with order
higher than those in the traditional displacement BEM. Hence, this method is not suitable for
problems involving finite domains.

With the advances in single-domain BEM in recent decades, it involves two sets
of boundary integral equations for the study of cracked media [9–21]. The single-domain
analysis can eliminate remeshing problems, which are typical of the FEM and the subregional
BEM. The single-domain BEM has received considerable attention and has been found to be
a proper method for simulating crack propagation processes.

The single-domain BEM formulation can be achieved by applying the displacement
integral equation to the no-crack boundary only, and the traction integral equation on one
side of the crack surface only. Since only one side of the crack surface is collocated, one needs
to choose either the relative crack opening displacement (COD). This BEM formulation can
be applied to the general fracture mechanics analysis in anisotropic media while keeping the
single-domain merit.

In this study, the BEM formulation combined with the maximum circumferential
stress criterion is adopted to predict the crack initiation angles and to simulate the
crack propagation paths. Crack propagation in an anisotropic homogeneous plate under
mixed-mode I-II loading is simulated by an incremental crack growth with a piece-wise
linear discretization. A new computer program, which can automatically generate a new
mesh required for analyzing the changing boundary configuration sequentially, has been
developed to simulate the fracture propagation process. To demonstrate the proposed BEM
procedure for predicting crack propagation in anisotropic materials, the propagation path in
a CSTBD is numerically predicted and compared with the actual laboratory observations.

A geotechnical engineering problem, slope stability, was analyzed here by the
proposed crack propagation simulation technique. Slope stability analysis in the past relied
heavily on the use of the limit equilibrium method. An analysis is often carried out by
first assuming a failure mode, then using an extensive search to determine the location of
critical failure surface. From the type of analysis, estimates of the normal and shear stress
distribution on the failure surface and a factor of safety are obtained. This type of study has
proved very effective for most engineering applications. However, numerical models, such
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as continuum models and discontinuum models, tend to be general purpose in nature; that
is, they are capable of solving a wide variety of problems. While it is often desirable to have
a general-purpose tool available, it requires that each problem be constructed individually.
The zones must be arranged by the user to fit the limits of geomechanical units and/or the
slope geometry. Hence, numerical models often require more time to set up and run than
special-purpose tools such as limit equilibrium method.

In the past, the two most popular techniques in continuum mechanics, namely, finite
element method (FEM) and finite difference method (FDM), are used in the analysis of
the slope stability problems. Early numerical analyses of rock slopes were predominantly
undertaken using continuum finite element codes. Kalkani and Piteau (1976) [22], for
example, used this method to analyze toppling of rock slopes at Hells Gate in British
Columbia, Canada, and Krahn and Morgenstern (1976) [23] undertook preliminary finite
element modeling of the Frank Slide in Albetra, Canada. More recently, Stacey et al. in 2003
[24] used finite element analysis in an innovative analysis of extensile strain distributions
associated with deep open pit mines. The use of finite difference codes has predominantly
involved the use of the FLAC 2D and 3D codes [25]. Coggan et al. (2000) [26] demonstrated
the use of both 2D and 3D finite difference analyses in the back analysis of highly kaolinised
china clay slopes [27]. However, the tensile crack propagation simulations are scarce in
these analyses. This study is interested in the modeling of the fracture propagation path
resulting from an unstable slope. The approach is based on fracture mechanics in that fracture
propagation is permitted only from the tips of existing cracks. An anisotropic rock slope
with a tensile crack is modelled. Failure is triggered by a rise of water pressure within
the previously existing crack. At present time, only the tensile failure is considered for the
fracture propagation under mixed mode constraints.

2. Methodology

2.1. Basic Equations for Anisotropic Elasticity

For the linear elastic, homogeneous, and anisotropic material, the stress and displacement
fields can be formulated in terms of two analytical functions, φk(zk), of the complex variables
zk = x + μky (k = 1, 2), where μk are the roots of the following characteristic equation [28]:

a11μ
4 − 2a16μ

3 + (2a12 + a66)μ2 − 2a26μ + a22 = 0, (2.1)

where the coefficients aij are the compliance components calculated in the x-y coordinate
system. The detailed relationship of these components with the material elasticity can be
found in Chen et al. (1998) [28]. If the roots μj of (2.1) are assumed to be distinct, the general
expression for the stress and displacements is [28, 29]. One has

σx = 2 Re
[
μ2

1φ
′
1(z1) + μ2

2φ
′
2(z2)

]
,

σy = 2 Re
[
φ′

1(z1) + φ′
2(z2)

]
,

τxy = −2 Re
[
μ1φ

′
1(z1) + μ2φ

′
2(z2)

]
,

u = 2 Re
[
A11φ1(z1) +A12φ2(z2)

]
,

ν = 2 Re
[
A21φ1(z1) +A22φ2(z2)

]
,

(2.2)
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where

A1j = a11μ
2
j + a12 − a16μj,

A2j = a12μj +
a22

μj
− a26

(
j = 1, 2

)
.

(2.3)

The traction components in the x and y directions are

Tx = 2 Re
[
μ1φ1(z1) + μ2φ2(z2)

]
,

Ty = −2 Re
[
φ1(z1) + φ2(z2)

]
.

(2.4)

With the complex analytical functions φi(zi), one can, in general, express (2.2) and
(2.4) as follows [28, 30, 31]

ui = 2 Re

⎡
⎣

2∑
j=1

Aijφj
(
zj
)
⎤
⎦, Ti = −2 Re

⎡
⎣

2∑
j=1

Bijφj
(
zj
)
⎤
⎦,

σ2i = 2 Re

⎡
⎣

2∑
j=1

Bijφ
′
j

(
zj
)
⎤
⎦, σ1i = −2 Re

⎡
⎣

2∑
j=1

Bijμjφ
′
j

(
zj
)
⎤
⎦ (i = 1, 2),

(2.5)

where zj = x + μjy, the complex number μj , and the elements of the complex matrices A are
defined in (2.3), and matrices B can be defined as

Bij =

[−μ1 −μ2

1 1

]
. (2.6)

Considering the concentrated forces acting at the source point (x0, y0), the analytic
functions (φk) with the complex variables can be expressed as [30]

φk(zk) =
−1
2π

[
Dklf1 ln

(
zk − z0

k

)
+Dk2f2 ln

(
zk − z0

k

)]
, (2.7)

where z0
k
= x0 + μky0 and fk are the magnitudes of the point force in the k-direction, and

Dkl = U−1
(
V −1 + V

−1)−1
, U =

[
A11 A12

A21 A22

]
,

V = iUW−1, W =

[−μ1 −μ2

1 1

]
,

(2.8)

where i =
√−1, overbar means the complex conjugate, and superscript −1 means matrix

inverse.
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Green’s functions of the tractions Tij and displacements Uij can be obtained by sub-
stituting (2.7) into (2.5). Their complete expressions are as follows [32]:

Tij
(
zk, z

0
k

)
= 2 Re

[
Qi1
(
μ1nx − ny

)
Rj1/

(
z1 − z0

1

)
+Qi2

(
μ2nx − ny

)
Rj2/

(
z2 − z0

2

)]
,

Uij

(
zk, z

0
k

)
= 2 Re

[
Pi1Rj1 ln

(
z1 − z0

1

)
+ Pi2Rj2 ln

(
z2 − z0

2

)] (
i, j = 1, 2

)
.

(2.9)

In (2.9), nx and ny are the outward normal components of the field points, and

Qij = −W =

[
μ1 μ2

−1 −1

]
. (2.10)

The complex coefficients Rjk are obtained from the requirements of unit loads at z0
k and from

the displacement continuity for the fundamental solution. They are the solutions of the fol-
lowing equation:

⎡
⎢⎢⎢⎢⎢⎣

1 −1 1 −1

μ1 −μ1 μ2 −μ2

A11 −A11 A12 −A12

A21 −A21 A22 −A22

⎤
⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎣

Rj1

Rj1

Rj2

Rj2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δj2

(2πi)
−δj1
(2πi)

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2.11)

where δjk is the Kronecker delta.

2.2. Single-Domain Boundary Integral Equations

A single-domain boundary element method (BEM), based on the relative displacements
at the crack tip, is used to determine the mixed-mode SIFs of anisotropic materials. The
single-domain BEM formulation consists of the following displacement and traction integral
equations (see Figure 1).

(1) Displacement integral equation: We have

Cij

(
z0
k,B

)
uj
(
z0
k,B

)
+
∫

ΓB
Tij
(
zk,B, z

0
k,B

)
uj(zk,B)dΓ(zk,B)

+
∫

ΓC
Tij
(
zk,C, z

0
k,B

)[
uj(zk,C+) − uj(zk,C−)

]
dΓ(zk,C)

=
∫

ΓB
Uij

(
zk,B, z

0
k,B

)
tj(zk,B)dΓ(zk,B),

(2.12)

where zk and z0
k are the field and source points on the boundary. Here, the

subscripts B and C denote the outer boundary and the crack surface, respectively.
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Figure 1: Geometry of a two-dimensional cracked domain.

Cij are coefficients that depend only on the local geometry of the uncracked
boundary at z0

k,B
; Tij and Uij are the Green’s traction and displacement given

in (2.9); uj and tj are the boundary displacement and traction; ΓC has the same
outward normal as ΓC+.

(2) Traction integral equation: One has

0.5tj
(
z0
k,C

)
+ nm

(
z0
k,C

)∫

ΓB
ClmikTij,k

(
zk,B, z

0
k,C

)
uj(zk,B)dΓ(zk,B)

+ nm
(
z0
k,C

)∫

ΓC
ClmikTij,k

(
zk,C, z

0
k,C

)[
uj(zk,C+) − uj(zk,C−)

]
dΓ(zk,C)

= nm
(
z0
k,C

)∫

ΓB
ClmikUij,k

(
zk,B, z

0
k,C

)
tj(zk,B)dΓ(zk,B),

(2.13)

where Clmik is the fourth-order stiffness tensor for anisotropic medium; nm is the
unit outward normal to the contour path; the gradient tensors Tij,k and Uij,k denote
differentiation with respect to z0

k.

The Cauchy singularity in (2.12) can be avoided by the rigid-body motion method.
The integrand on the right-hand side of (2.12) has only integrable singularity, which can
be resolved by the bicubic transformation method [33]. The hypersingularity in (2.13) is
resolved by the Gauss quadrature formula, which is very similar to the traditional weighted
Gauss quadrature but with a different weight. Therefore, (2.12) and (2.13) can be discretized
and solved numerically for the unknown displacements (or the relative crack opening
displacements (CODs) on the crack surface) and tractions. In the following section, we
present an approach for the evaluation of mixed-mode SIFs.
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2.3. Evaluation of Mixed-Mode SIFs

The mixed-mode SIFs for anisotropic materials can be determined by using the extrapolation
method of the relative COD, combined with a set of the shape functions. The relative COD is
defined as [18]

Δui =
3∑
k=1

φkΔuki , (2.14)

where the subscript i(= 1, 2) denotes the components of the relative COD, and the superscript
k(= 1, 2, 3) denotes the relative COD at nodes s = −2/3, 0, 2/3, respectively; φk are the shape
functions which can be expressed as follows:

φ1 =
3
√

3
8

√
s + 1

[
5 − 8(s + 1) + 3(s + 1)2

]
,

φ2 =
1
4

√
s + 1

[
−5 + 18(s + 1) − 9(s + 1)2

]
,

φ3 =
3
√

3

8
√

5

√
s + 1

[
1 − 4(s + 1) + 3(s + 1)2

]
.

(2.15)

It is well known that for a crack in a homogeneous and anisotropic solid, the relative
COD is proportional to

√
r, where r is the distance behined the crack tip. Therefore, the

relation of the relative CODs and the SIFs can be found as [18, 33]

Δu1 = 2

√
2r
π
(H11KI +H12KII),

Δu2 = 2

√
2r
π
(H21KI +H22KII),

(2.16)

where

H11 = Im
(
μ2A11 − μ1A12

μ1 − μ2

)
, H12 = Im

(
A11 −A12

μ1 − μ2

)
,

H21 = Im
(
μ2A21 − μ1A22

μ1 − μ2

)
, H22 = Im

(
A21 −A22

μ1 − μ2

)
.

(2.17)

Substituting (2.14) into (2.16), a set of algebraic equations is obtained, and then the
SIFs KI and KII can be solved. A sign convention for the corresponding SIFs is shown in
Figure 2. Using the relative COD, the sign of SIFs can then be determined.



8 Mathematical Problems in Engineering

2.4. Particular Solutions of Gravity and Far-Field Stresses

As mentioned above, if the particular solutions corresponding to the body force of gravity
and far-field stresses can be derived in exact closed form, the single-domain BEM formulation
presented in this study can then be applied to solve the body force and far-field problems. For
the gravity force, the exact close-form solutions can be obtained in a similar way as for the
corresponding half-space case [17]. Assuming that the gravity has the components gx and gy,
respectively, in the x- and y-directions, the particular solution for the displacements can be
found as [34]

u
p
x = a1ρgxx

2 + b1ρgyy
2,

u
p
y = a2ρgxx

2 + b2ρgyy
2,

(2.18)

where the coefficients ai and bi depend on the elastic stiffness and their expressions are

a1 =
0.5(c55c66 − c56c56)

Δ1
,

a2 =
0.5(c15c56 − c55c16)

Δ1
,

b1 =
0.5(c24c46 − c26c44)

Δ2
,

b2 =
0.5(c44c66 − c46c46)

Δ2
,

(2.19)

where

Δ1 = c11c55c66 + 2c16c15c56 − c55c
2
16 − c11c

2
56 − c66c

2
15,

Δ2 = c22c44c66 + 2c26c24c46 − c44c
2
26 − c22c

2
46 − c66c

2
24,

(2.20)

and cij are the elastic stiffness coefficients.
Similarly, the particular stresses can be expressed as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
p

11

[7pt]σp22

[7pt]σp23

[7pt]σp13

[7pt]σp12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d11 d12

d21 d22

d41 d42

d51 d52

d61 d62

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
ρgxx

ρgyy

]
. (2.21)
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Mode I (opening mode) Mode II (sliding mode)

Crack tip Crack tip

KI> 0 KII>0

Figure 2: Sign convention used for determining SIFs in mode I and mode II.

Again, dij depend on the elastic stiffness coefficients, and their expressions are

d11 = 1, d21 = 2(a1c12 + a2c26),

d41 = 2(a1c14 + a2c46), d51 = 0, d61 = 0,

d12 = 2(b2c12 + b1c16), d22 = 1, d42 = 0,

d52 = 2(b2c25 + b1c56), d62 = 0.

(2.22)

2.5. Crack Initiation and Propagation

Three criteria are commonly utilized to predict the crack initiation angle in fracture mechanics
problems: the maximum circumferential stress criterion, or σ-criterion [35]; the maximum
energy release rate criterion, orG-criterion [36]; the minimum strain energy density criterion,
or S-criterion [37]. Among them, the σ-criterion has been found to predict well the directions
of crack initiation compared to the experimental results for polymethylmethacrylate [38, 39]
and brittle clay [40]. Because of its simplicity, the σ-criterion seems to be the most popular
criterion in mixed mode I-II fracture studies [41]. Therefore, the σ-criterion is utilized in this
paper to determine the crack initiation angle.

For anisotropic materials, the general form of the elastic stress field near the crack tip
in the local Cartesian coordinates x”-y”, as shown in Figure 3, can be expressed in terms of
the two SIFs KI and KII as follows [29]:

σx′′ =
KI√
2πr

Re

[
μ1μ2

μ1 − μ2

(
μ2√

cos θ + μ2 sin θ
− μ1√

cos θ + μ1 sin θ

)]

+
KII√
2πr

Re

[
1

μ1 − μ2

(
μ2

2√
cos θ + μ2 sin θ

− μ2
1√

cos θ + μ1 sin θ

)]
,
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σy′′ =
KI√
2πr

Re

[
1

μ1 − μ2

(
μ1√

cos θ + μ2 sin θ
− μ2√

cos θ + μ1 sin θ

)]

+
KII√
2πr

Re

[
1

μ1 − μ2

(
1√

cos θ + μ2 sin θ
− 1√

cos θ + μ1 sin θ

)]
,

τx′′y′′ =
KI√
2πr

Re

[
μ1μ2

μ1 − μ2

(
1√

cos θ + μ1 sin θ
− 1√

cos θ + μ2 sin θ

)]

+
KII√
2πr

Re

[
1

μ1 − μ2

(
μ1√

cos θ + μ1 sin θ
− μ2√

cos θ + μ2 sin θ

)]
,

(2.23)

where μ1 and μ2 are the roots of (2.1). We have

σθ =
σx′′ + σy′′

2
− σx′′ − σy′′

2
cos 2θ − τx′′y′′ sin 2θ,

τrθ = −σx” − σy”

2
sin 2θ + τx”y” cos 2θ.

(2.24)

For the σ-criterion, the angle of crack initiation, θ0, must satisfy the following:

∂σθ
∂θ

= 0 (or τrθ = 0),
∂2σθ
∂θ2

< 0. (2.25)

A numerical procedure is applied to find the angle θ0 when σθ is maximum for known
values of the material elastic constants, the anisotropic orientation angle ψ, and the crack
geometry.

Since the proposed BEM formulation is simple and can be used for any kind of crack
geometry, it is straightforward to extend to analyze the crack propagation in anisotropic
materials. The process of crack propagation in anisotropic homogeneous material under
mixed mode I-II loading is simulated by incremental crack extension with a piecewise linear
discretization. For each incremental analysis, the crack extension is conveniently modeled by
a new boundary element. A computer program has been developed to automatically generate
new data required for sequentially analyzing the changing boundary configuration. Based on
the calculation of the SIFs and crack initiation angle for each increment, the procedure of crack
propagation can be simulated. The steps in the crack propagation process are summarized as
follows (Figure 4):

(1) compute the SIFs using the proposed BEM formulation;

(2) determine the angle of crack initiation based on the maximum circumferential stress
criterion;

(3) extend the crack by a linear element (of length selected by the user) along the
direction determined in step (2);

(4) automatically generate the new BEM mesh;

(5) repeat all of the above steps until the crack is near the outer boundary.
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Crack Tip

r

σθ

σθ

σr

τrθ

θ

x′′

y′′

Figure 3: Crack tip coordinate system and stress components.

θA2

θA1

θB1

θB2

A

B

Figure 4: Process of crack propagation by increasing the number of linear elements.

3. Results of Numerical Analysis

A computer program, which is based on the aforementioned BEM formulation, has been
accomplished to analyze the SIFs for isotropic and anisotropic materials. The SIFs for both
isotropic and anisotropic materials with different crack angles, crack lengths, and anisotropic
orientations are analyzed by the program.

The stresses in a linear elastic anisotropic medium depend merely on ratios of elastic
constants and ratios of geometric dimensions. Thus, units of the problems can be eliminated
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y

W

β

2a

R

W

Figure 5: The geometry of cracked Brazilian disc.

by the method of normalization. Accordingly, the SIFs of the following examples are
normalized with respect to the applied load and to the square root of half crack length.

Totally 9 numerical examples including isotropic and anisotropic materials are
presented to illustrate the accuracy and versatility of the proposed BEM program for
determining the SIFs, predicting the crack initiation angle, and simulating crack propagation
path. The examples include cases for finite/infinite domains, curved/edge cracks, and
isotropic/anisotropic conditions. A generalized plane stress is assumed in all the examples
except for crack propagation simulation of slope failure.

3.1. Stress Intensity Factors Determination

Example 1: Isotropic Cracked Brazilian Disc

In order to compare our results with the existing published results, an isotropic and cracked
Brazilian disc with a central slant crack is considered. The geometry of the problem is that
of a thin circular disc of radius R and thickness t with a central crack of length 2a, loaded
with a pair of concentrated and diametral compressive load W , as shown in Figure 5. The
outer boundary and crack surface are discretized with 28 continuous and 10 discontinuous
quadratic elements, respectively. Two cases are analyzed: (1) a/R = 0.5, the crack angle
β varies between 0 and π/2, and (2) β = 45◦, a/R varies between 0.1 and 0.7. The two
normalized SIFs, FI(= KI/σ

√
πa) and FII(= KII/σ

√
πa), calculated with the BEM program

for these two cases, are compared with those obtained numerically by Atkinson et al. [42]
and Chen et al. [28]. The results are shown in Tables 1 and 2. In general, a good agreement is
found among these three methods.
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Table 1: Normalized SIFs for a central slant in an isotropic Brazilian disc subjected to a concentrated load
(a/R = 0.5).

β (rad.) Atkinson et al. (1982) [42] Chen et al. (1998) [28] This study
KI/σ

√
πa KII/σ

√
πa KI/σ

√
πa KII/σ

√
πa KI/σ

√
πa KII/σ

√
πa

0 1.387 0 1.339 0 1.343 0
π/16 0.970 −1.340 0.960 −1.275 0.952 −1.281
2π/16 0.030 −2.113 0.074 −2.061 0.056 −2.050
3π/16 −0.946 −2.300 −0.903 −2.275 −0.915 −2.262
π/4 −1.784 −2.132 −1.737 −2.103 −1.749 −2.098
5π/16 −2.446 −1.728 −2.377 −1.711 −2.395 −1.714
6π/16 −2.885 −1.188 −2.826 −1.197 −2.851 −1.202
7π/16 −3.127 −0.604 −3.092 −0.614 −3.123 −0.617
π/2 −3.208 0 −3.180 0 −3.213 0

Table 2: Normalized SIFs for a central slant in an isotropic Brazilian disc subjected to a concentrated load
(β = 45◦).

a/R
Atkinson et al. (1982) [42] Chen et al. (1998) [28] This study

KI/σ
√
πa KII/σ

√
πa KI/σ

√
πa KII/σ

√
πa KI/σ

√
πa KII/σ

√
πa

0.1 −1.035 −2.010 −1.020 −1.968 −1.018 −1.965
0.2 −1.139 −2.035 −1.116 −1.995 −1.116 −1.992
0.3 −1.306 −2.069 −1.272 −2.036 −1.277 −2.029
0.4 −1.528 −2.100 −1.484 −2.069 −1.492 −2.065
0.5 −1.784 −2.132 −1.737 −2.103 −1.749 −2.098
0.6 −2.048 −2.200 −2.020 −2.148 −2.039 −2.139
0.7 N.A. N.A. −2.337 −2.213 −2.364 −2.224

Example 2: A Curved Crack in an Infinite Domain

Consider a circular-arc crack of a radius R embedded in an infinite domain under a far-field
tensile stress σ and out-of-plane shear stress τ as shown in Figure 6. The center of the circular
arc is taken at the origin of the coordinate system, the midpoint of the crack is located on
the x-axis, and the angle subtended by the crack is 2α. In this example only 20 discontinuous
quadratic elements are used to discretize the curved crack surface. For α = 30◦ and α = 45◦,
the numerical solutions of SIFs calculated by this study as well as the analytic ones by Tada
et al. [43] are shown in Table 3.

Example 3: Anisotropic Rectangular Plate under a Uniform Tension

In order to evaluate the influence of material anisotropy on the SIFs, consider an anisotropic
rectangular plate of width 2w, and height 2h with a central crack inclined 45◦ to the x-axis,
as shown in Figure 7. The plate is loaded with a uniform tensile stress in the y direction. The
ratios of crack length and of height to width are a/W = 0.2 and h/W = 2.0, respectively.
The material is glass-epoxy with elastic properties E = 48.26 GPa, E′ = 17.24 GPa, ν′ = 0.29,
and G′ = 6.89 GPa. The direction of the fibers is rotated from ψ = 0◦ to ψ = 180◦. The
outer boundary and crack surface are discretized with 32 continuous and 10 discontinuous
quadratic elements, respectively. Table 4 shows the results obtained by the proposed method
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Figure 6: A curved crack under a far-field tensile stress σ and out-of-plane shear stress τ .

Table 3: Normalized SIFs for a circular arc crack in an infinite domain.

α
Tada et al. (1985) [43] This study

KI/σ
√
πa KII/σ

√
πa KI/σ

√
πa KII/σ

√
πa

30◦ 0.5501 0.3304 0.5528 0.3288
45◦ 0.4574 0.5112 0.4643 0.5126

as well as those by Sollero and Aliabadi [44], Gandhi [45], and Chen et al. [28]. Again, an
excellent agreement is obtained.

Example 4: Cracked Body Hanging under Its Own Weight

Consider a body with a crack of length 2a under the gravitational loading as shown in
Figure 8. The ratios of distance from crack to free end to height are h/l = 0.5. The ratio of
crack length to width is varied from 0.05 to 0.5. The outer boundary and crack surface are
discretized with 44 continuous and 30 discontinuous quadratic elements, respectively. Plane
strain condition is considered. Table 5 shows the results obtained by the proposed method
as well as the analytic ones by Shi’s handbook [46], and the numerical ones by Ostanin et al.
(2011) [47]. Again, an excellent agreement is obtained.

Example 5: Edge Crack in an Elastic Body Hanging under Its Own Weight

Figure 9 shows a square block l × l containing an edge crack of length a is hanging under its
own weight. The distance of crack tip to the free end is h. Poisson’s ratio is assumed to be zero.
In this example, the outer boundary and crack surface are discretized with 44 continuous and
30 discontinuous quadratic elements, respectively. Table 6 shows the normalized SIFs of mode
I. This problem was solved previously by Ostanin et al. (2011) [47] using a complex variable
boundary element method (CVBEM). As shown in Table 6, the present numerical results are
in excellent agreement with those obtained by Ostanin et al. (2011) [47].
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Table 4: Normalized SIFs for a central slant in anisotropic rectangular plate subjected to a uniform tension
(β = 45◦, a/R = 0.5).

ψ
(Deg.)

Gandhi (1972) [45] Sollero and Aliabadi
(1995) [15]

Chen et al. (1998) [28] This study

KI/σ
√
πa KII/σ

√
πa KI/σ

√
πa KII/σ

√
πa KI/σ

√
πa KII/σ

√
πa KI/σ

√
πa KII/σ

√
πa

0 0.522 0.507 0.517 0.506 0.519 0.504 0.524 0.514
45 0.515 0.505 0.513 0.502 0.516 0.505 0.518 0.513
90 0.513 0.509 0.515 0.510 0.537 0.532 0.533 0.527
105 0.517 0.510 0.518 0.512 0.507 0.502 0.540 0.528
120 0.524 0.512 0.526 0.513 0.520 0.508 0.541 0.526
135 0.532 0.511 0.535 0.514 0.532 0.511 0.536 0.522
180 0.522 0.507 0.517 0.506 0.519 0.504 0.524 0.514

Table 5: Normalized SIFs of mode I for a cracked body under its own weight.

a/b

Exact Sol. Numerical Sol.
Sih (1973) [46] Ostanin et al. (2011) [47] This study
KI/σ

√
πa KI/σ

√
πa Diff. (%) KI/σ

√
πa Diff. (%)

0.05 0.793 0.795 0.25 0.795 0.25
0.10 1.121 1.125 0.35 1.124 0.27
0.15 1.373 1.381 0.58 1.379 0.44
0.20 1.585 1.600 0.94 1.591 0.38
0.25 1.772 1.798 1.5 1.779 0.40
0.30 1.942 1.980 2.0 1.956 0.72
0.35 2.097 2.514 2.7 2.085 0.57
0.40 2.242 2.321 3.5 2.230 0.54
0.45 2.378 2.484 4.9 2.368 0.80
0.50 2.507 2.644 5.5 2.450 2.27

3.2. Crack Initiation Angle Prediction and Propagation Path Simulation

The proposed BEM formulation combined with the maximum circumferential stress criterion
is developed to predict the angle of crack initiation and to simulate the path of crack
propagation under mixed-mode loading. The crack propagation process in the cracked
materials is numerically estimated by two-dimensional stress and displacement analysis. In
order to understand the behavior of cracks under mixed-mode loading, the BEM program is
applied.

Example 1: Crack Initiation Angle Prediction

The proposed BEM formulation is also used to predict the initial growth of cracks in
anisotropic materials. To examine the validity of our crack initiation prediction procedure,
the tests of Erdogan and Sih [35] and Vallejo [40] are reproduced numerically with our BEM
program. Erdogan and Sih [35] conducted uniaxial tension test on isotropic Plexiglass sheets
229 × 457 × 4.8 mm in size containing a 50.8 mm central crack. The crack inclination angle β
between the crack plane and the tensile stress is varied. Figure 10 shows the variation of the
crack initiation angle θ0 with the crack angle β determined numerically and experimentally.
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Figure 7: An anisotropic rectangular plate with a central crack inclined 45◦ under uniform tensile stress σ.

A good agreement is found between the experimental results of Erdogan and Sih [35] and
our numerical predictions.

Other verification is done using the experimental results of Vallejo [40]. The uniaxial
compression tests were conducted on cracked prismatic specimens of kaolinite clay 76.2 ×
76.2 × 25.4 mm in size containing a central crack 24.9 mm in length by Vallejo [40].
Several tests are carried out by varying the crack angle β between the crack plane and
the compressive stress. Figure 11 shows a comparison between the crack initiation angles
measured experimentally and those predicted numerically. Again, a good agreement is found
with the experimental results.

Example 2: Isotropic Cracked Plate under Pure Mode I Loading

The behavior of an existing crack under pure mode I loading is studied for the application.
The first problem, as shown in Figure 12, is a square plate with a horizontal edge crack
subjected to uniaxial tension. The width of the square plate is w. The initial crack length, a,
is equal to w/3. The no-crack boundary and crack surface are discretized with 55 continuous
and 10 discontinuous quadratic elements, respectively. According to the experimental results
from Erdogan and Sih [35], it is known that the crack propagation angle (θ) is zero when
the crack inclination angle (β) is 90 degree with respect to y-axis, which means that the crack
will propagate along the horizontal direction. Figure 13 shows the path of crack propagation
under pure mode I loading. It is shown that the path of crack propagation is a horizontal line,
which is in full agreement with the experimental results made by Erdogan and Sih [35].
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a
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Figure 8: A cracked body hanging under its own weight.
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ρg

Figure 9: An edge crack elastic body hanging under its own weight.

Example 3: Crack Propagation Path Simulation on Anisotropic Material

To demonstrate the proposed BEM procedure when predicting crack propagation in the
anisotropic materials under mixed-mode I-II loading, the propagation path in a CSTBD
specimen is numerically predicted and compared with the actual laboratory observations.
In these experiments, a crack initially inclined with respect to the applied stress is allowed
to grow under concentrated diametrical loading. The Brazilian tests on CSTBD specimens
with a diameter of 7.4 cm, a thickness of 1 cm, and a crack length of 2.2 cm are conducted
to observe the actual propagation paths and are compared with the numerical predictions.
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0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90

Numerical results (this study)

Experimental results (Vallejo, 1987) [40]

C
ra

ck
 in

it
ia

ti
on

 a
ng

le
,θ

0
(◦
)

Crack angle, β

β

(◦)

Water content, w = 3%
w = 9%

θ0

σ

σ

Figure 11: Variation of crack initiation angle θ0 with the crack angle β. Prismatic sample of kaolinite clay
subjected to uniaxial compression.

Details of the experimental procedure can be found in the paper by Ke et al. [48]. The five
elastic constants of anisotropic marble are E = 78.302 GPa, E′ = 67.681 GPa, ν = 0.267,
ν′ = 0.185, G = 30.735 GPa, and G′ = 25.336 GPa, respectively. The ratios of E/E′ and E/G′ are
1.156 and 3.091, respectively. Since the value of E/E′ = 1.156, this marble can be classified as
a slightly anisotropic rock.

Two specimens with the material inclination angle ψ = 45◦, defined as the AM-4,
and DM-4, have crack angles β = 0◦ and β = 45◦ respectively. After Brazilian tests with
cracked specimens, the paths of crack propagation for AM-4 and DM-4 are shown in Figures
14 and 16, respectively. It can be observed that the crack propagates nearly perpendicular
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Figure 12: Square plate with a straight edge crack under pure mode I loading.

Simulation of propagation path

Figure 13: Crack propagation path and normalized SIFs of the cracked plate initially under pure mode I
loading.

to the crack surface in the initial stage and then rapidly approaches toward the loading
point. The proposed BEM procedure is also used to simulate crack propagation in the CSTBD
specimens. The outer boundary and crack surface are discretized with 28 continuous and
20 discontinuous quadratic elements, respectively. Figures 15 and 17 are the comparisons of
crack propagation paths between experimental observations and numerical predictions in
AM4 and DM-4, respectively. Again, the proposed BEM procedure accurately simulates the
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Figure 14: Photograph of specimen AM-4 after failure (ψ = 0◦ and β = 45◦).

Numerical result
Experimental result

Ψ = 0, β = 45

Figure 15: Propagation of a crack at the center of a CSTBD specimen with ψ = 0◦ and β = 45◦. Comparison
between experimental observations and numerical predictions for specimen AM-4.

crack propagation in these anisotropic specimens. According to the simulations of foregoing
examples, it can be concluded that the proposed BEM is capable of predicting the crack
propagation in anisotropic rocks.

3.3. Crack Propagation Simulation of Slope Failure

A slope 15 m high with a 2 m deep initial tension crack located on the top of the slope is
used for the analysis. 10 discontinuous quadratic elements and 46 quadratic elements were
used to discretize the crack surface and outer boundary. Plane strain condition is considered.
The top of the slope has surface recharge due to heavy rain. Figure 18 gives a description
of the problem layout that includes the slope geometry and the crack. The crack propagation
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Figure 16: Photograph of specimen DM-4 after failure (ψ = 45◦ and β = 45◦).

Numerical result
Experimental result

Ψ = 45, β = 45

Figure 17: Propagation of a crack at the center of a CSTBD specimen with ψ = 45◦ and β = 45◦. Comparison
between experimental observations and numerical predictions for specimen DM-4.
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(2 m )
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2 m

Tension crack
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Figure 18: The description of an anisotropic rock slope.
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Ψ = 0
Ψ = 15
Ψ = 30
Ψ = 45

Ψ = 60
Ψ = 75
Ψ = 90

Figure 19: The anisotropic rock slope failure surface simulated by the proposed BEM.

process under body force of gravity is considered. The crack increment length is fixed at a size
1/6 times the crack tip element. An anisotropic rock slope was simulated with different values
of rock anisotropy (ψ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦). The dimensionless elastic constant
(E/E′ = 3) is considered. Figure 18 gives a description of the problem layout that includes
the slope geometry, the crack, and anisotropy orientation. Figure 19 shows the slope failure
surfaces simulated by the BEM. It can be found that the slope failure surfaces depend on
the different anisotropy inclination angles. The anisotropy orientation angle ψ has a strong
influence on the surface of slope failure.

4. Conclusions

A formulation of the BEM, based on the relative displacements near the crack tip, is
utilized to determine the mixed-mode SIFs of anisotropic rocks. Numerical examples for the
determination of the mixed-mode SIFs for a CSTBD specimen are presented for isotropic
and anisotropic media. The numerical results obtained by the proposed method are in good
agreement with those reported by previously published results. In addition, the SIFs for
various crack geometry and loading type such as a curved crack under far-field tensile
stress and a cracked body hanging by its own weight are also determined by the proposed
BEM formulation. The numerical results obtained by this study are in agreement with those
reported by previously published results.

This paper presents the development of BEM procedure based on the maximum
circumferential stress criterion for predicting the crack initiation directions and propagation
paths in isotropic and anisotropic materials under mixed-mode loading. Good agreements are
found between crack initiation and propagation predicted with the BEM and experimental
observations reported by previous researchers of isotropic materials. Numerical simulations
of crack initiation and propagation in CSTBD specimens of the anisotropic rock are also found
to compare well with experimental results. Additionally, the crack propagation simulation
technique is used to apply for analyzing the rock slope within a preexisting tensile crack. We
can find that the slope failure surfaces strongly depend on the different anisotropy inclination
angles.
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Nomenclature

β: The crack inclination angle [deg.]
ψ: The material orientation angle [deg.]
a: The half crack length
CSTBD: The cracked straight through Brazilian disc
D: The diameter of Brazilian disc
E: The Young’s modulus
SIF(s): The Stress Intensity Factor(s)
KI: The mode I SIF [MPa m1/2]
KII: The mode II SIF [MPa m1/2]
FI: The normalized mode I SIF
FII: The normalized mode II SIF.
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