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The stochastic uncapacitated lot-sizing problems with incremental quantity discount have been
studied in this paper. First, a multistage stochastic mixed integer model is established by the
scenario analysis approach and an equivalent reformulation is obtained through proper relaxation
under the decreasing unit order price assumption. The proposed reformulation allows us to extend
the production-path property to this framework, and furthermore we provide a more accurate
characterization of the optimal solution. Then, a backward dynamic programming algorithm is
developed to obtain the optimal solution and considering its exponential computation complexity
in term of time stages, we design a new rolling horizon heuristic based on the proposed property.
Comparisons with the commercial solver CPLEX and other heuristics indicate better performance
of our proposed algorithms in both quality of solution and run time.

1. Introduction

The lot-sizing problems have been the subject of intensive research in the last few decades.
The basic definition of single-item lot-sizing problems can be stated as follows: the order
(production), inventory and backlog quantities in each period should be determined to
meet the deterministic but dynamic demand over a finite time horizon. The objective is
to minimize the total costs, which consist of the fixed setup cost, order cost and inventory
cost. Different quantity discount policies, such as all-units quantity discount and incremental
quantity discount, have been widely executed in practice and thus have also been introduced
into the lot-sizing problems.

Although the deterministic planning and scheduling models have been intensively
studied, in practice there are many different sources of uncertainties, such as customer
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demand, production lead-time, and product price, which make information that will be
needed in subsequent decision stages unavailable to the decision maker. In such cases, the
solution provided by a deterministic model may be of little value in terms of applicability
of the model’s recommendations, see Beraldi et al. [1]. Thus the stochastic version of lot-
sizing problems has been studied recently and with the advent of stochastic programming,
the classical deterministic lot-sizing models have been extended to scenario-based multistage
stochastic mixed integer programming.

Wagner and Whitin [2] first introduced the single-item dynamic lot-sizing problems
without backlogging. They proposed a dynamic programming approach based on the
Wagner-Whitin (W-W) property, that is, no production is undertaken if inventory is
available. Because W-W property holds for the nondiscount problem, many heuristics
have been developed based on this property; however, in the all-units quantity discount
case, the property does not necessarily hold due to its discontinuous piecewise linear cost
structure by Hu and Munson [3]. For the modified all-units discount problem, Chan et
al. [4] demonstrated that a zero-inventory-ordering policy based on the W-W property
exists, whose cost is no more than 4/3 times the optimal cost. Federgruen and Lee [5]
characterized structural properties of optimal solutions for both all-units and incremental
quantity discount, and proposed dynamic programming algorithms with complexity O(T3)
and O(T2), respectively, and with T being the number of periods in the planning horizon.
For deterministic capacitated lot-sizing problem with general piecewise linear cost function,
Shaw and Wagelmans [6] presented a dynamic programming procedure with complexity
O(T2qd), where T is the number of periods, d is the average demand and q is the
average number of pieces required to represent the production cost function. Note that this
pseudopolynomial time algorithm is based on the assumption that the demand is an integral
value.

For the stochastic version problem, although Ahmed et al. [7] showed that the W-
W property does not hold for the stochastic lot-sizing problems several modified W-W
properties have been presented for different versions of the stochastic lot-sizing problems:
Guan and Miller [8] studied the stochastic uncapacitated lot-sizing problems with uncertain
parameters and introduced the production path property for the optimal solution. Further,
the production path property was extended to the stochastic capacitated lot-sizing problems
with backlogging in Guan and Miller [8] and the dynamic programming algorithms based
on this property have been presented. For the stochastic lot-sizing problems with random
lead times, Huang and Küçükyavuz [9] presented the Semi-Wagner-Whitin property under
assumption that no order crosses in time.

Besides the algorithms based on the extended W-W properties, Lulli and Sen [10]
and Ahmed et al. [7] have presented branch-and-price and branch-and-bound algorithms,
respectively to solve the proposed multistage integer programming. Although such branch-
and-bound-based (B&B-based)methods have broad application prospects for general integer
programming, special structure properties of the stochastic lot-sizing problems have not been
explored in order to design customized algorithms, and only computational results for small-
size stochastic batch-sizing problems have been reported in Lulli and Sen [10]. Other heuristic
methods, such as the fix and relax, have also been redesigned to solve particular stochastic
lot-sizing problems, see [1, 11]. We also refer the reader to the recent literature review of
[12–14].

To the best of our knowledge, little research has been reported on the stochastic lot-
sizing problems with incremental quantity discount (SLP-IQD). However as it is reported in
the survey by Munson and Rosenblatt [15], 83% of the buyers received quantity discounts
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for most of the items they purchased and 37% of orders involved either the offer or receipt
of some incremental quantity discounts; thus, the study on quantity discount is of great
importance in practice. In this paper, a multistage stochastic mixed-integer programming
model is established and under decreasing unit order price assumption, an equivalent
relaxed formulation is obtained. The reformulation provides the possibility of extending the
production path property for optimal solution of SLP-IQD. The extended production path
property is not only a direct extension to the case with incremental quantity discount, but
also provides a more accurate characterization for the optimal solution. Then, a backward
dynamic programming algorithm has been developed. Although it can obtain optimal
solutions in polynomial time in terms of the number of nodes, it has an exponential
computational complexity in terms of the number of stages. Thus, a new rolling horizon
heuristic which makes use of the extended production path property and has flexible
parameters settings is presented in order to balance the desired solution quality and run time.
Numerical experiments have been implemented to explore the proper parameters settings
and validate the effectiveness of the proposed algorithms by comparison with the CPLEX
11.1 solver and other heuristics.

The remainder of the paper is organized as follows. In Section 2, we first introduce
the deterministic formulation and then formulate the general multistage stochastic mixed
integer model for the stochastic uncapacitated lot-sizing problems with incremental quantity
discount (SULP-IQD). An equivalent reformulation is proposed under the decreasing unit
order price assumption. In Section 3, the extended production path property is proven and
a backward dynamic programming algorithm and a rolling horizon heuristic with flexible
parameters settings are developed. Computational results are reported and discussed in
Section 4. Section 5 presents conclusions.

2. Mathematical Model

2.1. Deterministic Lot-Sizing Problems with Incremental Quantity Discount

First, we will establish an mathematical model for the deterministic uncapacitated lot-sizing
problems with incremental quantity discount (DULS-IQD). Considering a planning horizon
of T time periods (stages), at each period t, the nonnegative demand dt, variable inventory
holding cost ht, the variable setup cost ct, and piecewise order cost function ft(·) at period
t ∈ {1, . . . , T} are given. Variable st denotes the inventory quantity at the end of period t, and
variable xt and Boolean variable yt denote the order quantity and fixed charge variable at
period t, respectively.

The incremental quantity discount cost structure is given as follows:

the unit order cost =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pt,1 for the first Qt,1 units,
pt,2 for the next Qt,2 −Qt,1units,
...

...
pt,Kt for each unit in excess of Qt,Kt−1units,

(2.1)

where Kt denotes the number of price intervals. Suppose that Qt,0 = 0 and Qt,Kt = +∞.
The decreasing unit order price assumption, that is, pt,k > pt,k+1, k = 1, . . . , Kt − 1 with
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0 = Qt,0 < Qt,1 < · · · < Qt,k < Qt,k+1 < · · · < Qt,Kt = +∞ always naturally holds in practice. The
piecewise order cost function is given as

ft(xt) =

{
pt,1xt, if Qt,0 ≤ xt < Qt,1,
∑k−1

j=1
{(

pt,j − pt,j+1
)
Qt,j

}
+ pt,kxt, if Qt,k−1 ≤ xt < Qt,k, k = 2, . . . , Kt.

(2.2)

Thus, the DULS-IQD can be formulated as

min :
T∑

t=1

{
ft(xt) + htst + ctyt

}
(2.3)

subject to

st−1 + xt − dt = st, t = 1, . . . , T, (2.4)

xt ≤ Myt, t = 1, . . . , T, (2.5)

xt ≥ 0, st ≥ 0, s0 = 0 t = 1, . . . , T, (2.6)

yt ∈ {0, 1}, t = 1, . . . , T. (2.7)

The objective function (2.3) minimizes the sum of inventory cost, setup cost and
piecewise order cost. Constraints (2.4) guarantee that the dynamic demands in every period
are met. Constraints (2.5) are the capacity constraints, and here we assume that M is a
sufficiently large upper bound on xt. Constraints (2.6) ensure that there is no backlogging
and order quantity variables are nonnegative. Without loss of generality, we suppose that
there is no initial inventory. Setup variable yt is defined as a binary variable in constraints
(2.7).

2.2. Stochastic Lot-Sizing Problems with Incremental Quantity Discount

In this subsection, a stochastic model is established by scenario analysis approach.We assume
that the problem parameters follow discrete time stochastic processes with a finite probability
space and evolve as a multistage stochastic scenario tree. Let node n at stage t (t = 1, . . . , T)
represent all the realization of the system leading up to and including stage t, and set N
denotes the set of all nodes. Let set L denote the set of leaf nodes. Thus a scenario represents
a path from the root node (indexed as n = 0) to a leaf node. The related notation is given as
follows:

a(n): parent of node n,

t(n): time stage of node n, t(n) ∈ {1, . . . , T},
D(n): the set of all descendants of node n and n ∈ D(n),

P(n,m): the set of nodes on a path from node n to node m, where m ∈ D(n), and
we assume that P(n,m) includes n and m,
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C(n): children nodes of node n, that is, C(n) = {m ∈ N : a(m) = n},

θn: the likelihood (probability) assigned to node n, θn > 0.

Here using the above notation, the deterministic model in the above subsection can
be extended to the stochastic environments by replacing the stage index t ∈ {1, . . . , T} with
node index n ∈ N. The multistage stochastic problem formulation, denoted by SP, is given as
follows:

(SP) min :
∑

n∈N

{
θn
{
fn(xn) + hnsn + cnyn

}}

(2.8)

subject to

sa(n) + xn − dn = sn, n ∈ N,

xn ≤ Myn, n ∈ N,

xn ≥ 0, sn ≥ 0, sa(0) = 0, n ∈ N,

yn ∈ {0, 1}, n ∈ N.

(2.9)

An equivalent mixed integer programming formulation can be easily obtained by
introducing auxiliary order quantity variables and corresponding Boolean variables. A group
of variables are assigned for each order quantity interval as follows:

xn,k ≥ 0, n ∈ N, k = 1, . . . , Kn,

yn,k =

{
0, xn,k = 0,
1, Qn,k−1 < xn,k ≤ Qn,k.

(2.10)

For model brevity, we introduce the following notations: pn,k
Δ= θnpn,k, hn

Δ= θnhn, and

cn,k
Δ= θn{cn+

∑k−1
j=1 {(pn,j−pn,j+1)Qn,j}}. Note that the setup cost also increases correspondingly

in index k, that is, cn,k < cn,k+1 for each node n ∈ N. An equivalent MIP formulation, ESP1, is
given as follows:

(ESP1) min :
∑

n∈N

{
Kn∑

k=1

{
pn,kxn,k + cn,kyn,k

}
+ hnsn

}

(2.11)
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subject to

sa(n) +
Kn∑

k=1

xn,k − dn = sn, n ∈ N, (2.12)

Qn,k−1yn,k ≤ xn,k ≤ Qn,kyn,k, n ∈ N,k = 1, . . . , Kn, (2.13)

Kn∑

k=1

yn,k ≤ 1, n ∈ N, (2.14)

xn,k ≥ 0, sn ≥ 0, sa(0) = 0, n ∈ N,k = 1, . . . , Kn, (2.15)

yn,k ∈ {0, 1}, n ∈ N,k = 1, . . . , Kn. (2.16)

Proposition 2.1. Formulation ESP1 is equivalent to the original formulation SP.

Proof. Suppose that {x∗
n,k

, y∗
n,k

, s∗n | n ∈ N,k = 1, . . . , Kn} is an optimal solution of ESP1. For
each n ∈ N, there exists at most one kn ∈ {1, . . . , Kn} such that y∗

n,kn
= 1 and M ≥ x∗

n,kn
>

0 by constraints (2.13), (2.14), and the optimality. Note that if
∑Kn

k′=1 x
∗
n,k′ = x∗

n,kn
= 0, then

∑Kn

k′=1 y
∗
n,k′ = y∗

n,kn
= 0. Thus, by checking constraints in SP, we construct a corresponding

feasible solution of SP as {x∗
n = x∗

n,kn
, y∗

n = y∗
n,kn

, s∗n = s∗n | n ∈ N}. By the definition of pn,k, cn,k
and hn, the constructed feasible solution of SP has the same objective cost to {x∗

n,k, y
∗
n,k, s

∗
n |

n ∈ N,k = 1, . . . , Kn}.
For each optimal solution of SP, {x∗

n, y
∗
n, s

∗
n | n ∈ N}, we define the corresponding

solution for ESP1 as follows: for given n ∈ N, if Qn,k−1 < x∗
n ≤ Qn,k, then {x∗

n,k = x∗
n, y

∗
n,k =

1, s∗n = s∗n, x
∗
n,k′ = y∗

n,k′ = 0, k′ /= k} and if x∗
n = 0, then {x∗

n,k = 0, y∗
n,k = 0, s∗n = s∗n, k ∈

{1, . . . , Kn}}. By checking its feasibility and the objective cost in ESP1, we conclude that the
constructed solution is also feasible in ESP1 and has same objective cost to {x∗

n, y
∗
n, s

∗
n | n ∈

N}.

Further, by relaxing the constraints on Boolean variables and order quantity variables
in (2.13)-(2.14), the following formulation, denoted by ESP2, and proposition can be obtained.

(ESP2) min :
∑

n∈N

{
Kn∑

k=1

{
pn,kxn,k + cn,kyn,k

}
+ hnsn

}

(2.17)

subject to

sa(n) +
Kn∑

k=1

xn,k − dn = sn, n ∈ N,

xn,k ≤ yn,kM, n ∈ N, k = 1, . . . , Kn,

xn,k ≥ 0, sn ≥ 0, sa(0) = 0 n ∈ N, k = 1, . . . , Kn,

yn,k ∈ {0, 1}, n ∈ N, k = 1, . . . , Kn.

(2.18)
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Proposition 2.2. Under the decreasing unit order price assumption, formulation ESP2 is equivalent
to ESP1 and SP.

Proof. Because the feasible set of the relaxed formulation ESP2 contains the feasible set of
ESP1, the optimal solutions of ESP2 must be proven feasible for ESP1. Let {x̃∗

n,k, ỹ
∗
n,k, s̃

∗
n | n ∈

N,k = 1, . . . , Kn} be an optimal solution of ESP2. First note that if ỹ∗
n,k

= 1, we must have
x̃∗
n,k

> 0 otherwise it contradicts the optimality since cn,k > 0.

Second, it is asserted that the relaxed constraints
∑Kn

k=1 yn,k ≤ 1, n ∈ N always hold for
every optimal solution of ESP2. Suppose that ỹ∗

n,l = ỹ∗
n,m = 1, n ∈ N, 1 ≤ l /=m ≤ Kn; thus,

x̃∗
n,l > 0 and x̃∗

n,m > 0. Without loss of generality, suppose that m > l and Qn,r−1 ≤ x̃∗
n,l + x̃∗

n,m <
Qn,r , 1 ≤ r ≤ Kn, then

cn,r + pn,r

(
x̃∗
n,l + x̃∗

n,m

)

= θn

⎧
⎨

⎩
cn +

r−1∑

j=1

{(
pn,j − pn,j+1

)
Qn,j

}
+ pn,r

(
x̃∗
n,l + x̃∗

n,m

)
⎫
⎬

⎭

= θn

⎧
⎨

⎩

r−1∑

j=m

{(
pn,j − pn,j+1

)
Qn,j

}
+ pn,r

(
x̃∗
n,l + x̃∗

n,m

)
− pn,m

(
x̃∗
n,l + x̃∗

n,m

)
⎫
⎬

⎭

+ cn,m + pn,m

(
x̃∗
n,l + x̃∗

n,m

)

≤ θn

⎧
⎨

⎩

r−1∑

j=m

{(
pn,j − pn,j+1

)(
x̃∗
n,l + x̃∗

n,m

)}
+ pn,r

(
x̃∗
n,l + x̃∗

n,m

)
− pn,m

(
x̃∗
n,l + x̃∗

n,m

)
⎫
⎬

⎭

+ cn,m + pn,m

(
x̃∗
n,l + x̃∗

n,m

)

= cn,m + pn,m

(
x̃∗
n,l + x̃∗

n,m

)

< cn,m + pn,mx̃
∗
n,m + pn,lx̃

∗
n,l

< cn,m + pn,mx̃
∗
n,m + cn,l + pn,lx̃

∗
n,l,

(2.19)

where
∑r−1

j=m{(pn,j − pn,j+1) = pn,m − pn,r in the third inequality.
From the above analysis, a better solution can always be obtained by setting x̂∗

n,r =
∑Kn

j=1 x̃
∗
n,j , ŷ

∗
n,r = 1, where Qn,r−1 ≤ ∑Kn

j=1 x̃
∗
n,j ≤ Qn,r , and x̂∗

n,k = 0, ŷ∗
n,k = 0, k /= r, which

contradicts the optimality.
Third, we prove that the relaxed constraints Qn,k−1yn,k < xn,k ≤ Qn,kyn,k, n ∈ N,k =

1, . . . , Kn also hold for the optimal solution. Assume that x̃∗
n,l

> 0 and x̃∗
n,m = 0 for allm/= l, but
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the inequality constraintQn,l−1 ≤ x̃∗
n,l ≤ Qn,l does not hold. Without loss of generality, suppose

that Qn,r−1 < x̃∗
n,l

≤ Qn,r ≤ Qn,l−1 where r ≤ l − 1, then

cn,l + pn,lx̃
∗
n,l = θn

⎧
⎨

⎩
cn +

l−1∑

j=1

{(
pn,j − pn,j+1

)
Qn,j

}
+ pn,lx̃

∗
n,l

⎫
⎬

⎭

= cn,r + pn,r x̃
∗
n,l + θn

⎧
⎨

⎩

l−1∑

j=r

{(
pn,j − pn,j+1

)
Qn,j

}
+
(
pn,l − pn,r

)
x̃∗
n,l

⎫
⎬

⎭

> cn,r + pn,r x̃
∗
n,l.

(2.20)

Therefore, we reach a contradiction because we obtain a better solution by setting x̂∗
n,r =

x̃∗
n,l
, ŷ∗

n,r = 1, and x̂∗
n,k

= 0, ŷ∗
n,k

= 0 for k /= r. Since the optimal solution of ESP2 satisfies all the
constraints of ESP1, and ESP2 is obtained from ESP1 by relaxing its constraints, this implies
that ESP2 is equivalent to ESP1 and SP.

3. Optimality Condition and Algorithms

In this section, we explore the property of the SULS-IQD and design-efficient algorithms.
It is necessary to highlight the differences between the deterministic problems and the
stochastic problems. First, Ahmed et al. [7] and Huang and Küçükyavuz [9] have shown
that W-W property does not hold for the stochastic version problems. The reason is that one
production or positive order, which is made to exactly cover the demand along certain path,
will inevitably influence all its descendant nodes. The violation happens when this positive
order could not cover some nodes and their inventory level is nonzero. Thus, we develop
an extended production-path property for the stochastic problem and design a dynamic
programming algorithm. Second, since the number of nodes grows exponentially as the
number of time stages increases for stochastic version problems, the traditional dynamic
programming methods fail to run efficiently. So, we further design an approximate heuristic
based on the proposed property to obtain good enough solutions efficiently in this section.

3.1. Extended Production-Path Property

Formulation ESP2 presented in Section 2 is essential to handle the piecewise linear objective
function and extend the production path property to the SULS-IQD. The following
proposition is not only a direct extension of Guan and Miller [8] when incremental quantity
discount is provided, but also a more accurate characterization of the optimal solution. It
shows that there always exists an optimal solution such that if a positive order is made at
node n, the order quantity exactly covers the demand along the path from node n to a certain
descendant nodem; moreover, no positive order will be made for these nodes along the path
from node n to the parent node of m.

Proposition 3.1 (extended production-path property). For any instance of SULS-IDQ, there
exists an optimal solution (x∗, y∗, s∗), such that for each node n ∈ N, if x∗

n,k
> 0, then there exist

m ∈ D(n) and Qn,k−1 < dn,m − s∗
a(n) ≤ Qn,k such that
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(1) x∗
n,i = 0, y∗

n,i = 0, for all i = 1, . . . , Kn, i /= k;

(2) x∗
n,k

= dn,m − s∗
a(n), y

∗
n,k

= 1;

(3) x∗
l,i
= 0, y∗

l,i
= 0, for all l ∈ P(n, a(m)) \ {n}, i = 1, . . . , Kl.

Note that under assumption that all lead time is equal to 1 and by similar arguments,
the second optimal condition can be regarded as an extension of the Semi-Wagner-Whitin
Property in Huang and Küçükyavuz [9]; however, the third optimal condition provides new
restrictions which narrow the scope of the expected optimal solutions. In the next section, an
improved backward dynamic programming algorithm and a rolling horizon heuristic based
on the extended production-path property will be presented.

For any optimal solution of ESP2, (x, y, s), if xn,k > 0, we introduce the following
definition:

NP (n) =

{

m | m ∈ D(n),
Kl∑

k=1

xl,k = 0, ∀l ∈ P(n, a(m)) \ {n},
Km∑

k=1

xm,k > 0

}

,

NNP (n) =

{

m | m ∈ D(n) ∩ L,
Kl∑

k=1

xl,k = 0, ∀l ∈ P(n,m) \ {n}
}

,

(3.1)

where set NP (n) contains the first node with positive order quantity after node n, and set
NNP (n) contains these leaf nodes from which to node n no positive order has been placed
except node n. Note that if a certain positive order quantity is properly transferred between
node n and all the nodes in set NP (n), the feasibility can be kept and only the cost for nodes
in the following set is changed:

φ(n) = {m | m ∈ P(n, l), ∀l ∈ NP (n) ∪NNP (n)}. (3.2)

Proof. First, it is asserted that there exists at least an optimal solution by Weierstrass’ theorem
since the feasible set is compact (note that

∑Kn

k=1 xn,k can be bounded by maxm∈D(n)∪L{dn,m})
and the objective function is continuous. Then for any given optimal solution of ESP2,
(x∗, y∗, s∗), if x∗

n,k
> 0, the first part holds from Proposition 2.2. Next, we show that an optimal

solution holding the above property can always be constructed from any given optimal
solution of ESP2 by adjusting the variable’s value.

We scan the optimal solution (x∗, y∗, s∗) from stage 1 to stage T . Assume that there
exists a node n with x∗

n,k
> 0 not holding the property, but for nodes at stage t < t(n) the

conclusion holds, the following approach adjusts variables’ value assigned to nodes in D(n)
to satisfy the property without changing variables’ value before stage t(n). For any feasible
solution (x, y, s) of ESP2, we define the object cost function as

F(x, y, s) =
∑

n∈N

{
Kn∑

k=1

{
pn,kxn,k + cn,kyn,k

}
+ hnsn

}

. (3.3)
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The objective cost for (x∗, y∗, s∗) is

F(x∗, y∗, s∗
)

=
∑

m∈N\φ(n)

⎧
⎨

⎩

Km∑

j=1

{
pm,jx

∗
m,j + cm,jy

∗
m,j

}
+ hms

∗
m

⎫
⎬

⎭
+ pn,kx

∗
n,k + cn,ky

∗
n,k

+ hns
∗
n +

∑

m∈φ(n){{n}∪NP (n)}
hms

∗
m +

∑

m∈NP (n)

{
pm,jm

x∗
m,jm

+ cm,jmy
∗
m,jm

+ hms
∗
m

}
,

(3.4)

where jm is the unique positive order quantity at node m,m ∈ NP (n), and the node set N
is divided into four subsets: {n}, NP (n), φ(n) \ {{n} ∪ NP (n)}, and N \ φ(n). For any node
m ∈ φ(n) \ {{n} ∪NP (n)}, no order is placed.

Since x∗
m,jm

> 0 form ∈ NP (n) (by definition) and s∗m > 0 form ∈ NNP (n) (otherwise it
contradicts the assumption), we choose small positive scalar ε satisfying

0 < ε ≤ x∗
n,k, (3.5)

0 < ε ≤ s∗m, for m ∈ NNP (n), (3.6)

0 < ε ≤ x∗
m,jm

, for m ∈ NP (n), (3.7)

such that the following solutions are feasible for ESP2

x∗
n,k = x∗

n,k − ε, s∗m = s∗m − ε for m ∈ φ(n) \NP (n),

x∗
m,jm = x∗

m,jm
+ ε for n ∈ NP (n),

x̂∗
n,k = x∗

n,k + ε, ŝ∗m = s∗m + ε for m ∈ φ(n) \NP (n),

(3.8)

x̂∗
m,jm

= x∗
m,jm

− ε for n ∈ NP (n) (3.9)

and keep the value of other variables unchanged. For given ε satisfying constraints (3.5)–
(3.7), the objective costs of (x∗, y∗, s∗) and (x̂∗, ŷ∗, ŝ∗) are

F(x∗, y∗, s∗
)

=
∑

m∈N\φ(n)

⎧
⎨

⎩

Km∑

j=1

{
pm,jx

∗
m,j + cm,jy

∗
m,j

}
+ hms

∗
m

⎫
⎬

⎭
+ pn,k

(
x∗
n,k − ε

)
+ cn,ky

∗
n,k + hn(s∗n − ε)

+
∑

m∈φ(n)\{{n}∪NP (n)}
hm(s∗m − ε) +

∑

m∈NP (n)

{
pm,jm

(
x∗
m,jm

+ ε
)
+ cm,jmy

∗
m,jm

+ hms
∗
m

}

= F(x∗, y∗, s∗
) − pn,kε − hnε −

∑

m∈φ(n)\{{n}∪NP (n)}
hmε +

∑

m∈NP (n)

pm,jm
ε

= F(x∗, y∗, s∗
) − pn,kε −

∑

m∈φ(n)\NP (n)

hmε +
∑

m∈NP (n)

pm,jm
ε,
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F(x̂∗, ŷ∗, ŝ∗
)

=
∑

m∈N\φ(n)

⎧
⎨

⎩

Km∑

j=1

{
pm,jx

∗
m,j + cm,jy

∗
m,j

}
+ hms

∗
m

⎫
⎬

⎭
+ pn,k

(
x∗
n,k + ε

)
+ cn,ky

∗
n,k + hn(s∗n + ε)

+
∑

m∈φ(n)\{{n}∪NP (n)}
hm(s∗m + ε) +

∑

m∈NP (n)

{
pm,jm

(
x∗
m,jm

− ε
)
+ cm,jmy

∗
m,jm

+ hms
∗
m

}

= F(x∗, y∗, s∗
)
+ pn,kε + hnε +

∑

m∈φ(n)\{{n}∪NP (n)}
hmε −

∑

m∈NP (n)

pm,jm
ε.

= F(x∗, y∗, s∗
)
+ pn,kε +

∑

m∈φ(n)\NP (n)

hmε −
∑

m∈NP (n)

pm,jm
ε.

(3.10)

Note that the first equality comes from the definition of (x∗, y∗, s∗), (x̂∗, ŷ∗, ŝ∗), andF function.
The second one is obtained by comparing with the value of F(x∗, y∗, s∗) and the last one
is obtained by rearranging the terms in the former, where hnε +

∑
m∈φ(n)\{{n}∪NP (n)} hmε =

∑
m∈φ(n)\NP (n) hmε.

Since (x∗, y∗, s∗) is an optimal solution of ESP2, thus we must have pn,k +
∑

m∈φ(n)\NP (n) hm − ∑
m∈NP (n) pm,jm

= 0 and (x∗, y∗, s∗), (x̂∗, ŷ∗, ŝ∗) are also optimal solution
for ESP2. Now we increase ε so that at least one of the following cases occur.

Case 1. If equality in (3.5) holds, then we have eliminated the undesired positive order
at node n and (x∗, y∗, s∗) will be used to construct an eventual solution by a similar method.

Case 2. If equality in (3.6) for a certain m holds, then there exists m ∈ D(n) such that
x∗
n,k = dn,m − s∗

a(n) and x∗
l,k = 0, y∗

l,k = 0 for all l ∈ P(n, a(m)) \ {n}, k = 1, . . . , Kl. Next,
(x∗, y∗, s∗) will be used to construct an eventual solution by a similar method.

Case 3. If equality in (3.7) for a certain m holds, then we apply the above analysis to
(x̂∗, ŷ∗, ŝ∗). Since there are finite nodes in D(m), eventually case 1 or case 2 will occur (in the
worst case NP (n) = ∅ after finite steps).

Thus, the optimal solution holding the proposed property can always be constructed
after finite steps.

3.2. Dynamic Programming Algorithm

To recursively calculate the optimal solution, the following functions are introduced as in
Guan and Miller [8]:

H(n, s): value function at node n when its initial inventory is sa(n) = s, that is,
H(n, s) = min{∑m∈D(n){

∑Km

k=1{pm,kxm,k + cm,kym,k} + hmsm}} subject to constraints
(2.18) and sa(n) = s:

HP (n, s): production value function at n when its initial inventory is sa(n) = s and
∑Kn

k=1 xn,k > 0:

HNP (n, s): nonproduction value function at n when its initial inventory is sa(n) = s

and
∑Kn

k=1 xn,k = 0.
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For each stage t = 1 to T
For each node n at stage t

For each possible initial inventory sm = d0,m − d0,a(n) ≥ 0, m ∈ N
(if t = 1, set sm = 0)

step 1: Calculate HP (n, sm) by (3.11)
step 2: Calculate HNP (n, sm) by (3.12) if d0,m − d0,n >= 0,

otherwiseHNP (n, sm) = +∞
step 3: Calculate H(n) by (3.13)

End For Iteration (sm)
End For Iteration (n)

End For Iteration (t)

Algorithm 1: Dynamic programming algorithm.

From Proposition 3.1, if a positive order quantity is made at node n when the initial
inventory is s, then there exists a node j ∈ D(n), such that xn = dn,j − s. Therefore, the
following equations hold:

HP (n, s)

= min
j∈D(n): Qn,k−1<dn,j−s≤Qn,k

⎧
⎨

⎩
cn,k + pn,k

(
dn,j − s

)
+ hn

(
dn,j − dn

)
+

∑

m∈C(n)
H
(
m,dn,j − dn

)

⎫
⎬

⎭
,

(3.11)

HNP (n, s) = hn(s − dn) +
∑

m∈C(n)
H(m, s − dn), (3.12)

H(n, s) = min{HP (n, s),HNP (n, s)}. (3.13)

To obtain the exact optimal solution of SP, it is not necessary to completely characterize
the value function H(0, s). We only need to calculate its values at possible positive
discontinuous points. That is, with zero initial inventory assumption for node n ∈ N \ {0},
we only need to evaluate H(n, s) for s = d0,m − d0,a(n) ≥ 0, m ∈ N since dn,m − dn = d0,m − d0,n

in (3.11). Thus, we give the following dynamic programming for SULS-IQD:
Without loss of generality, we assume | C(n) |= C for all n ∈ N in the following

analysis. Dynamic programming demonstrates a straight method to obtain the optimal
solution. Although Guan and Miller [8] showed that general SULS without incremental
quantity discount can be solved in O(| V (0)|2 max{logV (0),C}), the above algorithm runs in
exponential time in terms of T since V (0) = (CT − 1)/(C − 1). The exponential computational
time encourages us to develop a more effective algorithm for the problems with large
numbers of stages (see Algorithm 1).

3.3. Rolling Horizon Heuristic

In dynamic lot-sizing and scheduling problemswith a large planning horizon, rolling horizon
heuristics have been developed to decompose the original large-scale problem into a set of
smaller subproblems. See, for example, [11, 16]. In contrast with the existing heuristics, the
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proposed RHH based on the extended production-path property stems from the proposed
dynamic programming algorithm. In the heuristic, nonproduction strategy is developed
to take advantage of the accurate characterization of the optimal solution, and then look-
forward and look-backward heuristic strategies are developed to reduce the computation
complexity of the complete enumeration in evaluation of the value function. The computation
complexity is also analyzed to demonstrate its advantage for the problems with a large
planning horizon.

(1) Nonproduction Strategy

At each iteration for sm in DP algorithm for given n, if m ∈ D(n) \ {n}, step 1 can be skipped
and set H(n) = HNP (n, sm) since it violates part 3 of Proposition 3.1. In such case, even if
H(n) = HP (n, sm) < HNP (n, sm), and there exist optimal solutions with

∑Kn

k=1 xn,k > 0, we will
not lose the optimality because it is guaranteed that there exists an optimal solution satisfying
the extended production path property in Proposition 3.1. The nonproduction strategy can be
stated as

if m ∈ D(n) \ {n}, then skip step1 and set H(n) = HNP (n, sm) at step3. (3.14)

(2) Look-Forward Strategy

At step 1 for given node n at stage t and initial inventory sm = d0,m − d0,a(n), (3.11)
requires calculating all the positive orders that cover demand from node n to a certain node
j ∈ D(n). These complete enumeration calculations are very time-consuming, thus we define
the following look-forward strategy with parameter FT (forward time stage):

HP (n, s)

= min
j∈DFT(n):Qn,k−1≤dn,j−s≤Qn,k

⎧
⎨

⎩
cn,k + pn,k

(
dn,j − s

)
+ hn

(
dn,j − dn

)
+

∑

m∈C(n)
H
(
m,d0,j − d0,n

)

⎫
⎬

⎭
,

(3.15)

where DFT(n) = {j | j ∈ D(n) and t(j) − t(n) ≤ FT} denotes the set of node n’s
descendants within FT generations. The problem is how to select proper FT. It is obvious that
increasing FTwill not only improve the quality of solution, but will also increase computation
time. Thus, the quality of solution and run time can be balanced by properly selecting FT.
The performance of the proposed RHHwith different FT settings will be tested by numerical
experiments in the next section.

(3) Look-Backward Strategy

At step 2 for given node n at stage t and initial inventory sm = d0,m − d0,a(n), if stage t(m) is
smaller than t, it is likely sm − dn = d0,m − d0,n < 0 and in such cases step 2 can be skipped. For
the same reason, if t − t(m) is larger than a certain value, we can expect sm = d0,m − d0,a(n) < 0
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and this iteration for sm can be skipped too. Look-backward strategy with parameter BF
(backward time stage) can be stated as follows:

if t − t(m) > BF, then skip this iteration for sm;

else if t − t(m) = BF, skip step2 and set H(n) = HP (n, sm) at step 3,
(3.16)

where BF depends on the distribution of demand. We will set proper BF based on
distribution of demand by numerical experiments in the next section.

In the above strategies, the major modification comes from the iteration for sm and
calculation of HP (n) at step 1 for given node n. In order to give a brief characterization of
the above heuristic rules and analyze its computational complexity, we give the following
lemma.

Lemma 3.2. For each node n ∈ N \ {0}, the rolling horizon heuristic with FT and BT only needs to
evaluate the following values:

{
H
(
n, d0,m − d0,a(n)

)
: d0,m − d0,a(n) ≥ 0, m ∈ RHFT,BT (n)

}
, (3.17)

where RHFT,BT (n) = ∪m∈P(0,a(n)),t(n)−t(m)≤FT+BTDFT (m).

Proof. This lemma is proven by induction from nodes at stage t = 1 to leaf nodes at stage T .
Since positive ordermust bemade at node 0 due to the zero initial inventory assumption, thus
for node n at stage t(n) = 2 by (3.15) possible initial inventory sa(n) at node n could only be a
certain value in set {d0,m−d0,a(n) : d0,m−d0,a(n) ≥ 0, m ∈ RHFT,BT(n)} = {d0,m−d0,0 : d0,m−d0,0 ≥
0, m ∈ DFT(0)}. Suppose the lemma holds for node a(n) at stage t, where 2 ≤ t ≤ T , that is,
the set of initial inventory for node a(n) is given by {d0,m − d0,a(a(n)) : d0,m − d0,a(a(n)) ≥ 0, m ∈
RHFT,BT(a(n))}.

Now consider the possible initial inventory at node n.
Case 1. If a positive order has been made at node a(n), by (3.15) in the look-forward

strategy, the set of initial inventory at nodes n is given by {d0,m −d0,a(n) : d0,m −d0,a(n) ≥ 0, m ∈
DFT (a(n))}.

Case 2. if no order has been made at node a(n), the set of possible initial inventory
at node n is given by {d0,m − d0,a(n) : d0,m − d0,a(n) ≥ 0, m ∈ RHFT,BT(a(n))}. However, note
that by look-backward strategy (3.16) we skip the calculation of HNP(a(n), d0,m − d0,a(n)) for
those m such that t(a(n)) − t(m) = BF; thus, in this case we only need to consider initial
inventory value in set {d0,m − d0,a(n) ≥ 0, m ∈ ∪{DFT(m) : m ∈ P(0, a(a(n))), t(a(n)) − t(m) ≤
FT + BT − 1}} = {d0,m − d0,a(n) ≥ 0, m ∈ ∪{DFT(m) : m ∈ P(0, a(a(n))), t(n) − t(m) ≤ FT + BT}}
at node n.

Combine the above two cases, the conclusion holds for node n.

Figure 1 gives an intuitive example of a balanced scenario tree with C = 2 at each node.
For the rolling horizon heuristic with FT = 2 and BT = 1, given RHH2,1(a(n)) for node a(n),
consider the initial inventory set for node n. If a positive order has been made at node a(n),
{d0,j − d0,a(n) : d0,j − d0,a(n) ≥ 0, j ∈ DFT(a(n)) and t(j) = t(n) + FT − 1} will be introduced
by (3.15). By the look-backward strategy (3.16), we do not need to calculate H(n, sm), where
t(m) = t(n) − BT − 1. Other values will be inherited if no order has been made at node a(n).
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a(m)

m

a(n)

n

j

Stage 1

Stage t

a(j)

0

a(a(n))

...

...

...

. . . . . . . . .

...

...

RH (a(n))

Stage t− BT −1

RH (n)

Stage t− BT Stage t+ FT −1

Figure 1: Example of RHH with FT = 2 and BT = 1.

Note that | RHFT,BT(n) | is no more than (FT + BT)CFT where we assume that | C(n) |= C for
all n ∈ N.

By summarizing the above analysis, the rolling horizon heuristic is given as in
Algorithm 2.

Next the computation complexity of RHH is analyzed. For given node n at stage t,
there exist at most | RHFT,BT(n) | possible initial inventories sm. For each given sm, it takes
O(Kn | C(n) | | DFT(n) |) time to complete calculation of HP(n, sm) at step 1. Step 2 and step
3 will be completed inO(C(n)) time. Thus the total run time can be estimated as (assume that
Kn = K for all n ∈ N)

∑

n∈N
{KC|RHFT,BT(n)||DFT(n)|} ≤ KC(FT + BT)CFT

∑

n∈N
{|DFT(n)|}

= KC(FT + BT)CFT CFT+1 − 1
C − 1

|D(0)|
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For each stage t = 1 to T
For each node n at stage t

For each initial inventory sm ∈ {d0,m − d0,a(n) ≥ 0 : m ∈ RHFT,BT(n)}
SetHP (n, sm) = HNP (n, sm) = +∞; (if t = 1, set sm = 0)

step 1: If m ∈ D(n) \ {n}, go to step 3; otherwise calculateHP (n, sm)
by (3.15)

step 2: If t − t(m) = BF or d0,n − d0,m < 0, goto step 3; otherwise
calculate HNP (n, sm) by (3.12)

step 3: Calculate H(n) by (3.13)
End For Iteration (sm)

End For Iteration (n)
End For Iteration (t)

Algorithm 2: Rolling horizon heuristic (FT, BT).

= K(FT + BT)
CFT+1

C − 1

{
CFT+1 − 1

}
|D(0)|

≤ K(FT + BT)C2(FT+1)|D(0)|.
(3.18)

Proposition 3.3. For any instance of SULS-IDQ, the rolling horizon heuristic with parameter FT
and BT runs in O(K (FT + BT) C2(FT+1) | D(0) |) time.

The above analysis can be applied to the dynamic programming algorithm, thus the
total run time for DP is given by

∑

n∈N
{KC|D(0)||D(n)|} = KC|D(0)|

∑

n∈N
{|D(n)|}

= KC|D(0)|
T∑

t=1

Ct−1
{
1 + C1 + · · · + CT−t

}

= K |D(0)| C
C − 1

{

TCT − CT − 1
C − 1

}

.

(3.19)

By comparison of computational complexity in (3.18) and (3.19), we observe that RHHworks
more efficiently for large T . Effective parameters settings of RHH will be further explored by
numerical experiments in the next section.

4. Computational Experiment

In this section, the computational results on both DP and RHH are reported. In the
computational analysis, we first concentrate on identifying proper settings of parameters FT
and BT for RHH by comparison of its relative error gap and run timewith DP’s. Then, DP and
RHH are compared with the CPLEX solver and other heuristics for the lot-sizing problems
with fixed charge.
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Table 1: Problem instances.

Instance C T N Int. Cont.
G1 2 10 1023 3069 7161
G2 2 11 2047 6141 8188
G3 2 12 4095 12285 16380
G4 3 7 1093 3279 4372
G5 3 8 3280 9840 13120
G6 3 9 9841 29523 39564
G7 4 6 1365 4095 5460
G8 4 7 5461 16383 21844

Table 2: Problem parameters.

Parameter Distribution
hn,k Uniform (1, 2)
pn,1 Uniform (1, 2)
cn,1 Uniform (3, 5)
Qn,k Uniform (5, 15)
dn,k Truncated normal (8, σ2)

4.1. Problem Instance

In order to evaluate performance of the proposed DP and RHH, and explore the proper
parameters settings of FT and BT for RHH, 8 groups of problem instances are generated
by varying the number of stages from 5 to 12 and the number of branches from 2 to 4. The
number of incremental quantity discount intervals is fixed to 3. Table 1 gives the number
of branches C, the number of stages T , the number of nodes N, and the number of integer
and continuous variables in formulation ESP2 for each group of problem instances. Other
parameters are generated randomly and we assume that they are a sequence of i.i.d. random
variables which are subject to truncated normal distribution or uniform distribution. We
report in Table 2 part of the problem parameters and the variance of dn,k will be further
defined by σ = 8 ∗ cv (coefficient of variation) in the following subsection. Due to decreasing
unit order price assumption, the unit order price and setup cost at node n is generated by
pn,k = (1 − α)pn,k−1 and cn,k = cn,k−1 + αpn,k−1Qn,k−1, where α is the discount factor and we set
α = 0.05. Our experiments are conducted on a workstation clocked at 2.33GHz and equipped
with 11.9GB of core memory.

4.2. Numerical Results

In order to evaluate the performance of the proposed RHHmethodwith different parameters,
we define two different implementations of RHH and the problem parameter cv varies from
0.05 to 0.25 for each group of problems. RHH1 with parameters FT = �T/3 and BT = 1 has
been designed to obtain good enough solution in a short time, while RHH2 with parameters
FT = �T/2 and BT = 2 has been designed to obtain better solutions, where �x denotes the
smallest integer larger than x. Table 3 gives the optimal objective function values and CPU
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Table 3: Performance of RHH with different (FT, BT).

Instance cv RHH1 RHH2 DP
RE (%) CPU (sec) RE (%) CPU (sec) Value CPU (sec)

G1 − 1 0.05 0.289 0.016 0.0 0.094 12968.28 0.100
G1 − 2 0.15 0.168 0.015 0.0 0.110 12991.93 0.985
G1 − 3 0.25 0.135 0.015 0.0 0.110 13082.23 0.969
G2 − 1 0.05 0.039 0.079 0.0 0.219 25694.23 4.672
G2 − 2 0.15 0.015 0.079 0.0 0.219 26111.22 4.672
G2 − 3 0.25 0.005 0.078 0.0 0.218 26447.11 4.703
G3 − 1 0.05 0.009 0.172 0.0 1.109 51470.76 22.047
G3 − 2 0.15 0.008 0.172 0.0 1.109 51722.50 22.109
G3 − 3 0.25 0.006 0.156 0.0 1.110 52772.90 22.172
G4 − 1 0.05 2.431 0.047 0.509 0.156 8322.42 0.656
G4 − 2 0.15 1.529 0.031 0.195 0.125 8998.02 0.641
G4 − 3 0.25 1.391 0.047 0.158 0.125 9126.63 0.640
G5 − 1 0.05 2.877 0.140 0.635 0.516 24898.40 7.344
G5 − 2 0.15 1.869 0.125 0.409 0.516 26456.16 7.359
G5 − 3 0.25 1.212 0.141 0.190 0.500 27716.36 7.375
G6 − 1 0.05 2.950 0.438 0.214 5.937 74120.22 81.484
G6 − 2 0.15 1.879 0.453 0.064 5.969 79096.31 81.563
G6 − 3 0.25 1.434 0.453 0.054 6.047 82641.24 81.844
G7 − 1 0.05 7.894 0.031 1.270 0.093 7814.61 0.828
G7 − 2 0.15 5.590 0.016 0.783 0.093 8551.74 0.813
G7 − 3 0.25 4.350 0.015 0.435 0.094 9024.62 0.812
G8 − 1 0.05 1.697 0.437 0.247 2.219 30614.77 16.969
G8 − 2 0.15 1.001 0.453 0.075 2.234 33982.89 16.938
G8 − 3 0.25 0.597 0.437 0.053 2.234 36099.06 17.032

time in seconds for DP, and the percentage relative error (RE(%)) and CPU time for RHH1

and RHH2, where

RE =
Value of RHH − Value of DP

Value of DP
× 100%. (4.1)

For RHH1, the computational results show that RHH1 is able to solve all the instances in the
shortest timewith nomore than 3% relative error except, for instance,G7. The solution quality
and run time are further improvedwhen the number of stages T becomes larger and theworst
results of G7 can be interpreted as the look-forward time horizon being too small to obtain
near optimal solution. For RHH2, the relative error has been further decreased compared
with RHH1. Although the run time has been increased, RHH2 still has advantage in run time
compared with DP especially for large problem instances. We also note that as the coefficient
of variation increases, the solutions quality and run time have been constantly improved for
all problem instances.

Then in the second experiment, we concentrate on the comparison of solution quality
and computation time with standard MIP solver CPLEX (version 11.1) and another heuristic
dynamic slope scaling procedure (DSSP). DSSP proposed by Kim and Pardalos [17] is a
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Table 4: Comparison with DSSP and CPLEX.

Instance RHH DSSP CPLEX DP
RE (%) CPU (sec) RE (%) CPU (sec) RE (%) CPU (sec) Value CPU (sec)

G1 − 1 0.0 0.094 2.225 1.062 11.881 5.110 11452.16 0.985
G1 − 2 0.0 0.109 2.299 0.907 10.441 5.063 11653.62 0.984
G1 − 3 0.0 0.094 2.581 1.062 9.555 5.015 11685.286 0.984
G2 − 1 0.0 0.516 1.986 2.172 0.619 25.750 22602.25 4.719
G2 − 2 0.0 0.516 2.583 2.438 3.800 24.093 23408.59 4.719
G2 − 3 0.0 0.500 3.040 2.094 6.103 24.110 23259.73 4.719
G3 − 1 0.0 1.140 1.947 4.578 0.645 111.891 45820.49 22.187
G3 − 2 0.0 1.125 2.845 4.250 1.162 114.657 46665.20 22.172
G3 − 3 0.0 1.125 3.104 4.406 0.858 113.641 47492.82 22.218
G4 − 1 0.704 0.140 0.721 1.015 3.744 3.391 7285.71 0.656
G4 − 2 0.110 0.140 0.893 0.828 15.302 3.375 7916.02 0.656
G4 − 3 0.035 0.140 1.089 0.735 13.440 3.297 8279.95 0.641
G5 − 1 0.867 0.515 0.484 3.313 3.334 37.516 21619.82 7.453
G5 − 2 0.174 0.500 0.632 2.796 1.199 38.265 23767.47 7.422
G5 − 3 0.198 0.516 1.163 3.110 0.814 37.703 24543.10 7.438
G6 − 1 0.202 6.063 0.401 8.781 0.800 414.046 65133.43 82.640
G6 − 2 0.068 6.109 0.747 11.453 1.879 412.860 70243.82 82.375
G6 − 3 0.022 6.110 1.034 11.157 0.843 419.937 74203.32 82.563
G7 − 1 0.201 0.360 0.716 1.078 4.300 4.250 6681.52 0.828
G7 − 2 0.0 0.359 0.889 0.859 1.742 4.172 7480.93 0.812
G7 − 3 0.0 0.344 1.368 1.188 1.188 4.2347 7980.60 0.828
G8 − 1 0.367 2.204 0.429 4.578 3.918 86.125 26885.65 17.265
G8 − 2 0.082 2.172 0.579 4.812 0.741 87.125 30213.60 17.234
G8 − 3 0.0 2.171 1.060 5.594 1.111 89.468 32503.12 17.157

newly developed effective heuristic algorithm that provides good-quality solution to the
concave piecewise linear optimization problem and among the heuristics it works well in
practice [18] The initial solutions and updating schemes are implemented in accordance with
the recommendations in [18] and the stopping criterion is given as follows: if ‖xk − xk−1‖ ≤ ε
or the iteration reaches MaxIteration, then it stops, where MaxIteration = 20. To compare
the solution quality for given time limit, we set the time limit of CPLEX solver to 5 time of
the total run time of DP. We report in Table 4 the percentage relative error and CPU time of
RHH (its parameters are set according to RHH2), DSSP and CPLEX and the optimal objective
function value and CPU time of DP. Table 4 shows that the proposed RHH outperforms the
DSSP in both the quality of solution and run time for almost all the test instances, and the
CPLEX solver fails to find optimal solution within the given time.

In summary, the proposed DP can solve the SULP-IQD efficiently compared with the
standard CPLEX solver and by properly setting the parameters, we obtain effective RHH
which outperforms the DSSP heuristic for the tested instances. The computational results
also show that RHH performs better for problem instances with a larger number of stages
and high coefficient of variation.
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5. Conclusion

In this paper, we study the stochastic uncapacitated lot-sizing problems with incremental
quantity discount where the uncertain parameters are supposed to evolve as discrete time
stochastic processes. First, we establish the original stochastic formulation by scenario
analysis approach. Another two formulations are built by introducing auxiliary variables
and relaxing certain constraints. Then, it is proven that under the decreasing unit order
price assumption, the relaxed formulation is equivalent to the original one. Based on this
reformulation, the extended production-path property is presented for the SULP-IQD and
it enhances the ability to further refine the desired optimal solution by providing a more
accurate characterization.

To obtain the exact optimal solution, a dynamic programming algorithm is developed.
Although the dynamic programming algorithm has the polynomial-time computational
complexity in terms of the number of nodes, it runs exponentially in terms of the number
of stages. Thus, a new rolling horizon heuristic is further designed which contains three
types of strategies to reduce the computational time. The nonproduction strategy is designed
based on the accurate characterization of the optimal solution, and the look-forward and
look-backward strategy is developed to overcome the complete enumeration calculations in
the production and nonproduction value function. Numerical experiments are carried out to
identify proper parameters settings of the proposed RHH and to evaluate the performance
of the proposed algorithms by comparison with the CPLEX solver and DSSP heuristic. The
computational results of a large group of problem instances with different parameters setting
suggest that DP outperforms the CPLEX solver in run time required for obtaining optimal
solution and the proposed RHH demonstrates satisfactory run time and solution quality
compared with DSSP heuristic; moreover, as the computational complexity analysis suggests,
the performance of RHH is better for problems with a greater number of stages.

Since the main difficulties for the stochastic lot-sizing problems stem from the setup
cost and uncertain parameters, it will be an area of future research to analyze the properties
of the problem and present effective algorithms for the stochastic lot-sizing problems with
complex setup requirements, such as setup carryovers by Buschkühl et al. [14] and sequence-
dependent setup costs by Beraldi et al. [1].
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