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We investigate the determinantal representation by exploiting the limiting expression for the
generalized inverse A(2)

T,S. We show the equivalent relationship between the existence and limiting

expression of A(2)
T,S and some limiting processes of matrices and deduce the new determinantal

representations of A(2)
T,S, based on some analog of the classical adjoint matrix. Using the analog of

the classical adjoint matrix, we present Cramer rules for the restricted matrix equation AXB =
D, R(X) ⊂ T, N(X) ⊃ ˜S.

1. Introduction

Throughout this paper C
m×n denotes the set ofm× nmatrices over the complex number field

C, and C
m×n
r denotes its subset in which every matrix has rank r. I stands for the identity

matrix of appropriate order (dimension).
Let A ∈ C

m×n, and let M and N be Hermitian positive definite matrices of orders m
and n, respectively. Consider the following equations:

AXA = A, (1)

XAX = A, (2)

(AX)∗ = AX, (3)
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(MAX)∗ = MAX, (3M)

(XA)∗ = XA, (4)

(NXA)∗ = NXA. (4N)

X is called a {2}- (or outer) inverse of A if it satisfies (2) and denoted by A(2). X is called the
Moore-Penrose inverse of A if it satisfies (1), (2), (3), and (5) and denoted by A†. X is called
the weighted Moore-Penrose inverse of A (with respect to M,N) if it satisfies (1), (2), (4),
and (6) and denoted by A+

MN (see, e.g., [1, 2]).
Let A ∈ C

n×n. Then a matrix X satisfying

AkXA = Ak, (1k)

XAX = X, (2∗)

AX = XA, (5)

where k is some positive integer, is called the Drazin inverse of A and denoted by Ad. The
smallest positive integer k such that X and A satisfy (7), (8), and (9), then it is called the
Drazin index and denoted by k = Ind(A). It is clear that Ind(A) is the smallest positive
integer k satisfying rank(Ak) = rank(Ak+1) (see [3]). If k = 1, then X is called the group
inverse of A and denoted by Ag . As is well known, Ag exists if and only if rankA = rankA2.
The generalized inverses, and in particular Moore-Penrose, group and Drazin inverses, have
also been studied in the context of semigroups, rings of Banach and C∗ algebras (see [4–8]).

In addition, if a matrix X satisfies (1) and (5), then it is called a {1, 5}-inverse ofA and
is denoted by A(1,5).

Let A ∈ C
m×n,W ∈ C

n×m. Then the matrix X ∈ C
m×n satisfying

(AW)k+1XW = (AW)k, (1kW)

XWAWX = X, (2W)

AWX = XWA, (5W)

where k is some nonnegative integer, is called the W-weighted Drazin inverse of A, and is
denoted by X = Ad,W (see [9]). It is obvious that when m = n and W = In, X is called the
Drazin inverse of A.

Lemma 1.1 (see [1, Theorem 2.14]). Let A ∈ C
m×n
r , and let T and S be subspaces of C

n and C
m,

respectively, with dim T = dimS⊥ = t ≤ r. Then A has a {2}-inverse X such that R(X) = T and
N(X) = S if and only if

AT ⊕ S = C
m (1.1)

in which case X is unique and denoted by A(2)
T,S.
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If A(2)
T,S exists and there exists a matrix G such that R(G) = T and N(G) = S, then

GAA
(2)
T,S = G and A

(2)
T,SAG = G.

It is well known that several important generalized inverses, such as the Moore-
Penrose inverse A†, the weighted Moore-Penrose inverse A+

M,N , the Drazin inverse Ad, and

the group inverse Ag , are outer inverses A(2)
T,S for some specific choice of T and S, are all the

generalized inverse A
(2)
T,S, {2}- (or outer) inverse of A with the prescribed range T and null

space S (see [2, 10] in the context of complex matrices and [11] in the context of semigroups).
Determinantal representation of the generalized inverse A

(2)
T,S was studied in [12, 13].

We will investigate further such representation by exploiting the limiting expression forA(2)
T,S.

The paper is organized as follows. In Section 2, we investigate the equivalent relationship
between the existence of A(2)

T,S and the limiting process of matrices limλ→ 0G(AG + λI)−1 or

limλ→ 0(GA + λI)−1G and deduce the new determinantal representations of A(2)
T,S, based on

some analog of the classical adjoint matrix, by exploiting limiting expression. In Section 3,
using the analog of the classical adjoint matrix in Section 2, we present Cramer rules for
the restricted matrix equation AXB = D, R(X) ⊂ T, N(X) ⊃ ˜S. In Section 4, we give an
example for solving the solution of the restricted matrix equation by using our expression.
We introduce the following notations.

For 1 ≤ k ≤ n, the symbol Qk,n denotes the set {α : α = (α1, . . . , αk), 1 ≤ α1 < · · · <
αk ≤ n, where αi, i = 1, . . . , k, are integers}. And Qk,n{j} := {β : β ∈ Qk,n, j ∈ β}, where
j ∈ {1, . . . , n}.

Let A = (aij) ∈ C
m×n. The symbols a.j and ai. stand for the jth column and the ith row

of A, respectively. In the same way, denote by a∗
.j and a∗

i. the jth column and the ith row of
Hermitian adjoint matrixA∗. The symbolA.j(b) (orAj.(b)) denotes the matrix obtained from
A by replacing its jth column (or row) with some vector b (or bT ). We write the range of A
by R(A) = {Ax : x ∈ C

n} and the null space of A by N(A) = {x ∈ C
n : Ax = 0}. Let B ∈ C

p×q.
We define the range of a pair of A and B as R(A,B) = {AWB : W ∈ C

n×p}.
Let α ∈ Qk,m and β ∈ Qk,n, where 1 ≤ k ≤ min{m,n}. Then |Aα

β
| denotes a minor of A

determined by the row indexed by α and the columns indexed by β. Whenm = n, the cofactor
of aij in A is denoted by ∂|A|/∂aij .

2. Analogs of the Adjugate Matrix for A
(2)
T,S

We start with the following theoremwhich reveals the intrinsic relation between the existence
ofA(2)

T,S and of limλ→ 0G(AG+λI)−1 or limλ→ 0(GA+λI)−1G. Here λ → 0means λ → 0 through
any neighborhood of 0 in C which excludes the nonzero eigenvalues of a square matrix. In
[14], Wei pointed out that the existence of A(2)

T,S implies the existence of limλ→ 0G(AG + λI)−1

or limλ→ 0(GA + λI)−1G. The following result will show that the converse is true under some
condition.

Theorem 2.1. LetA ∈ C
m×n
r , and let T and S be subspaces of C

n and C
m, respectively, with dim T =

dimS⊥ = t ≤ r. Let G ∈ C
n×m
r with R(G) = T and N(G) = S. Then the following statements are

equivalent:

(i) A(2)
T,S exists;

(ii) limλ→ 0G(AG + λI)−1 exists and rank(AG) = rank(G);

(iii) limλ→ 0(GA + λI)−1G exists and rank(GA) = rank(G).
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In this case,

A
(2)
T,S = lim

λ→ 0
(GA + λI)−1G = lim

λ→ 0
G(AG + λI)−1. (2.1)

Proof. (i)⇔(ii) Assume that A(2)
T,S exists. By [14, Theorem 2.4], limλ→ 0G(AG + λI)−1 exists.

Since G = A
(2)
T,SAG, rank(AG) = rank(G).

Conversely, assume that limλ→ 0G(AG + λI)−1 exists and rank(AG) = rank(G). So

lim
λ→ 0

(AG + λI)−1AG = lim
λ→ 0

AG(AG + λI)−1 (2.2)

exists. By [15, Theorem], (AG)g exists. So (AG)(1,5) exists, and then, by [13, Theorem 2], A(2)
T,S

exists.
Similarly, we can show that (i)⇔(iii). Equation (2.1) comes from [14, equation (2.16)].

Lemma 2.2. Let A = (aij) ∈ C
m×n and G = (gij) ∈ C

n×m
t . Then rank(GA).i(g.j) ≤ t, where

1 ≤ i ≤ n, 1 ≤ j ≤ m, and rank(AG)i.(gj.) ≤ t, where 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Proof. Let Pik(a) be an n × nmatrix with a in the (i, k) entry, 1 in all diagonal entries, and 0 in
others. It is an elementary matrix and

(GA).i
(

g.j
)
∏

k /= i

Pik

(−ajk

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∑

k /= j

g1kak1 · · · g1j · · ·
∑

k /= j

g1kakn

...
...

...
...

...
∑

k /= j

gnkak1 · · · gnj · · ·
∑

k /= j

gnkakn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

ith

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

g11 · · · g1j · · · g1m
...

...
...

...
...

gi1 · · · gij · · · gim
...

...
...

...
...

gn1 · · · gnj · · · gnm

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a11 · · · 0 · · · a1n
...

...
...

...
...

0 · · · 1 · · · 0
...

...
...

...
...

am1 · · · 0 · · · amm

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

jth.

ith

(2.3)

It follows from the invertibility of Pik(a), i /= k, that rank(GA).i(g.j) ≤ t.
Analogously, the inequation rank(AG)i.(gj.) ≤ t can be proved. So the proof is

complete.

Recall that if fA(λ) = det(λI + A) = λn + d1λ
n−1 · · · + dn−1λ + dn is the characteristic

polynomial of an n × nmatrix—A over C, then di is the sum of all i × i principal minors of A,
where i = 1, . . . , n (see, e.g., [16]).
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Theorem 2.3. Let A, T, S, and G be the same as in Theorem 2.1. Write G = (gij). Suppose that the
generalized inverse A(2)

T,S of A exists. Then A
(2)
T,S can be represented as follows:

A
(2)
T,S =

(

xij

dt(GA)

)

n×m
, (2.4)

where

xij =
∑

β∈Qt,n{i}

∣

∣

∣

(

(GA).i(g.j)
)β

β

∣

∣

∣, dt(GA) =
∑

β∈Qt,n

∣

∣

∣(GA)ββ
∣

∣

∣, (2.5)

or

A
(2)
T,S =

(

yij

dt(AG)

)

n×m
, (2.6)

where

yij =
∑

α∈Qt,m{j}

∣

∣

∣

(

(AG)j.(gi.)
)α

α

∣

∣

∣, dt(AG) =
∑

α∈Qt,m

∣

∣(AG)αα
∣

∣. (2.7)

Proof. Wewill only show the representation (2.5) since the proof of (2.7) is similar. If −λ is not
the eigenvalue of GA, then the matrix λI +GA is invertible, and

(λI +GA)−1 =
1

det(λI +GA)

⎛

⎜

⎜

⎜

⎝

X11 X21 · · · Xn1

X12 X22 · · · Xn2
...

...
...

...
X1n X2n · · · Xnn

⎞

⎟

⎟

⎟

⎠

, (2.8)

where Xij , i, j = 1, . . . , n, are cofactors of λI +GA. It is easy to see that

n
∑

l=1

Xilglj = det (λI +GA).i
(

g.j
)

. (2.9)

So, by (2.1),

A
(2)
T,S = lim

λ→ 0

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

det (λI +GA).1
(

g.1
)

det(λI +GA)
· · · det (λI +GA).1

(

g.m
)

det(λI +GA)
...

...
...

det (λI +GA).n
(

g.1
)

det(λI +GA)
· · · det (λI +GA).n

(

g.m
)

det(λI +GA)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2.10)

We have the characteristic polynomial of GA

fGA(λ) = det(λI +GA) = λn + d1λ
n−1 + d2λ

n−2 + · · · + dn, (2.11)
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where di (1 ≤ i ≤ n) is a sum of i × i principal minors of GA. Since rank(GA) ≤ rank(G) = t,
dn = dn−1 = · · · = dt+1 = 0 and

det(λI +GA) = λn + d1λ
n−1 + d2λ

n−2 + · · · + dtλ
n−t. (2.12)

Expanding det (λI +GA).i(g.j), we have

det (λI +GA).i
(

g.j
)

= x
(ij)
1 λn−1 + x

(ij)
2 λn−2 + · · · + x

(ij)
n , (2.13)

where x(ij)
k

=
∑

β∈Qk,n{i} |((GA).i(g.j))
β

β
|, 1 ≤ k ≤ n, for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

By Lemma 2.2, rank (GA).i(g.j) ≤ t and so |((GA).i(g.j))
β

β| = 0, k > t and β ∈ Qk,n{i}, for
all i, j. Therefore, x(ij)

k
= 0, k ≤ n, for all i, j. Consequently,

det (λI +GA).i
(

g.j
)

= x
(ij)
1 λn−1 + x

(ij)
2 λn−2 + · · · + x

(ij)
t λn−t. (2.14)

Substituting (2.12) and (2.14) into (2.10) yields

A
(2)
T,S = lim

λ→ 0

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x
(11)
1 λn−1 + · · · + x

(11)
t λn−t

λn + d1λn−1 + · · · + dtλn−t
· · · x

(1m)
1 λn−1 + · · · + x

(1m)
t λn−t

λn + d1λn−1 + · · · + dtλn−t
...

...
...

x
(n1)
1 λn−1 + · · · + x

(n1)
t λn−t

λn + d1λn−1 + · · · + dtλn−t
· · · x

(nm)
1 λn−1 + · · · + x

(nm)
t λn−t

λn + d1λn−1 + · · · + dtλn−t

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x
(11)
t

dt
· · · x

(1m)
t

dt
...

...
...

x
(n1)
t

dt
· · · x

(nm)
t

dt

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(2.15)

Substituting xij for x
(ij)
t in the above equation, we reach (2.5).

Remark 2.4. The proofs of Lemma 2.2 and Theorem 2.3 are based on the general techniques
and methods obtained previously by [17], respectively.

Remark 2.5. (i) By using (2.5), we can obtain (2.17) in [12, Theorem 2.3]. In fact, u = dt(GA)
and, by the Binet-Cauchy formula,

xij =
∑

β∈Qt,n{i}

∣

∣

∣

(

(GA).i(g.j)
)β

β

∣

∣

∣ =
∑

β∈Qt,n{i}

∑

k

gkj
∂
∣

∣

∣(GA)ββ
∣

∣

∣

∂ski
=

∑

β∈Qt,n,α∈Qt,m

∑

k

gkj
∂
∣

∣

∣Gα
β

∣

∣

∣

∂gkj

∂
∣

∣

∣A
β
α

∣

∣

∣

∂aji

=
∑

α∈Qt,m,β∈Qt,n

det
(

Gα
β

)∂
∣

∣

∣A
β
α

∣

∣

∣

∂aji
,

(2.16)
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where skj = (GA)kj . Note that ∂|Aβ
α|/∂aij = 0 if i /∈ α or j /∈ β. In addition, using the symbols

in [13], we can rewrite (2.5) as [13, equation (13)] over C.
(ii) This method is especially efficient when GA or AG is given (comparing with [12,

Theorem 2]).

Observing the particular case from Theorem 2.3, G = (gij) = N−1A∗M, where M and
N are Hermitian positive definite matrices, we obtain the following corollary in which the
symbols g.j := (g).j and gi. := (g)i..

Corollary 2.6. Let A ∈ C
m×n
r and G = N−1A∗M, where M and N are Hermitian positive definite

matrices of orderm and n, respectively, Then

A†
MN =

(

xij

dr(GA)

)

n×m
, (2.17)

where

xij =
∑

β∈Qr,n{i}

∣

∣

∣

(

(GA).i(g.j)
)β

β

∣

∣

∣, dr(GA) =
∑

β∈Qr,n

∣

∣

∣(GA)ββ
∣

∣

∣, (2.18)

or

A†
MN =

(

yij

dr(AG)

)

n×m
, (2.19)

where

yij =
∑

α∈Qr,m{j}

∣

∣

∣

(

(AG)j.(gi.)
)α

α

∣

∣

∣, dr(AG) =
∑

α∈Qr,m

∣

∣(AG)αα
∣

∣. (2.20)

IfM and N are identity matrices, then we can obtain the following result.

Corollary 2.7 (see [17, Theorem 2.2]). The Moore-Penrose inverse A† of A = (aij) ∈ C
m×n
r can be

represented as follows:

A† =
(

xij

dr(A∗A)

)

n×m
, (2.21)

where

xij =
∑

β∈Qr,n{i}

∣

∣

∣

∣

(

(A∗A).i
(

a∗
.j

))β

β

∣

∣

∣

∣

, dr(A∗A) =
∑

β∈Qr,n

∣

∣

∣(A∗A)ββ
∣

∣

∣, (2.22)

or

A† =
(

yij

dr(AA∗)

)

n×m
, (2.23)
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where

yij =
∑

α∈Qr,m{j}

∣

∣

∣

(

(AA∗)j.(a
∗
i.)
)α

α

∣

∣

∣, dr(AA∗) =
∑

α∈Qr,m

∣

∣(AA∗)αα
∣

∣. (2.24)

Note that Ad,W = (WAW)(2)R((AW)kA), N((AW)kA)
. Therefore, when G = (AW)kA in

Theorem 2.3, we have the following corollary.

Corollary 2.8. Let A ∈ C
m×n, W ∈ C

n×m, and k = max{Ind(AW), Ind(WA)}. If rank (AW)k =
t, rank (WA)k = r, and (AW)kA = (cij)m×n, then

Ad,W =

⎛

⎜

⎝

xij

dt

(

(AW)k+2
)

⎞

⎟

⎠

m×n

, (2.25)

where

xij =
∑

β∈Qt,m{i}

∣

∣

∣

∣

((

(AW)k+2
)

.i

(

c.j
)

)β

β

∣

∣

∣

∣

, dt

(

(WA)k+2
)

=
∑

β∈Qt,m

∣

∣

∣

∣

(

(AW)k+2
)β

β

∣

∣

∣

∣

, (2.26)

or

Ad,W =

⎛

⎜

⎝

yij

dr

(

(WA)k+2
)

⎞

⎟

⎠

m×n

, (2.27)

where

yij =
∑

α∈Qr,n{j}

∣

∣

∣

∣

(

(

(WA)k+2
)

j.
(ci.)
)α

α

∣

∣

∣

∣

, dr

(

(WA)k+2
)

=
∑

α∈Qr,n

∣

∣

∣

(

(WA)k+2
)α

α

∣

∣

∣. (2.28)

When G = Ak with k = Ind(A) in Theorem 2.3, we have the following corollary.

Corollary 2.9 (see [17, Theorem 3.3]). Let A ∈ C
n×n with IndA = k and rankAk = r, and

Ak = (a(k)
ij )

n×n. Then

Ad =

(

xij

dr

(

Ak+1
)

)

n×n
, (2.29)

where

dij =
∑

β∈Qr,n{i}

∣

∣

∣

∣

((

Ak+1
.i

)(

a
(k)
.j

))β

β

∣

∣

∣

∣

, dr

(

Ak+1
)

=
∑

β∈Qr,n

∣

∣

∣

∣

(

Ak+1
)β

β

∣

∣

∣

∣

. (2.30)
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Finally, we turn our attention to the two projectors A
(2)
T,SA and AA

(2)
T,S. The limiting

expressions for A(2)
T,S in (2.1) bring us the following:

A
(2)
T,SA = lim

λ→ 0
(GA + λI)−1GA,

AA
(2)
T,S = lim

λ→ 0
AG(AG + λI)−1.

(2.31)

Corollary 2.10. LetA, T, S, andG be the same as in Theorem 2.1. WriteGA = (sij) andAG = (hij).
Suppose that A(2)

T,S exists. Then A
(2)
T,SA of AA

(2)
T,S can be represented as follows:

A
(2)
T,SA =

(

xij

dt(GA)

)

n×n
, (2.32)

where

xij =
∑

β∈Qt,n{i}

∣

∣

∣

(

(GA).i
(

s.j
))β

β

∣

∣

∣, dt(GA) =
∑

β∈Qt,n

∣

∣

∣(GA)ββ
∣

∣

∣,

AA
(2)
T,S =

(

yij

dt(AG)

)

m×m
,

(2.33)

where

yij =
∑

α∈Qt,m{j}

∣

∣

∣

(

(AG)j.(hi.)
)α

α

∣

∣

∣, dt(AG) =
∑

α∈Qt,m

∣

∣(AG)αα
∣

∣. (2.34)

3. Cramer Rules for the Solution of the Restricted Matrix Equation

The restricted matrix equation problem is mainly to find solution of a matrix equation or a
system of matrix equations in a set of matrices which satisfy some constraint conditions. Such
problems play an important role in applications in structural design, system identification,
principal component analysis, exploration, remote sensing, biology, electricity, molecular
spectroscopy, automatics control theory, vibration theory, finite elements, circuit theory, linear
optimal, and so on. For example, the finite-element static model correction problem can be
transformed to solve some constraint condition solution and its best approximation of the
matrix equation AX = B. The undamped finite-element dynamic model correction problem
can be attributed to solve some constraint condition solution and its best approximation of
the matrix equationATXA = B. These motivate the gradual development of theory in respect
of the solution to the restricted matrix equation in recent years (see [18–27]).

In this section, we consider the restricted matrix equation

AXB = D, R(X) ⊂ T, N(X) ⊃ ˜S, (3.1)
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where A ∈ C
m×n
r , B ∈ C

p×q
r̃

, D ∈ C
m×q, T ⊂ C

n, S ⊂ C
m, ˜T ⊂ C

q and ˜S ⊂ C
p, satisfy

dim(T) = dim
(

S⊥
)

= t ≤ r, dim
(

˜T
)

= dim
(

˜S⊥
)

= ˜t ≤ r̃. (3.2)

Assume that there exist matrices G ∈ C
n×m and ˜G ∈ C

q×p satisfying

R(G) = T, N(G) = S, R
(

˜G
)

= ˜T, N
(

˜G
)

= ˜S. (3.3)

If A(2)
T,S and B

(2)
˜T, ˜S

exist and D ∈ R(AG, ˜GB), then the restricted matrix equation (3.1) has the
unique solution

X = A
(2)
T,SDB

(2)
˜T, ˜S

(3.4)

(see [2, Theorem 3.3.3] for the proof).
In particular, when D is a vector b and B = ˜G = I1, the restricted matrix equation (3.1)

becomes the restricted linear equation

Ax = b, x ∈ T. (3.5)

If b ∈ AR(G), then x = A
(2)
T,Sb is the unique solution of the restricted linear equation (3.5) (see

also [10, Theorem 2.1]).

Theorem 3.1. Given A,B,D = (dij), G = (gij), ˜G = (g̃ij), T, S, ˜T , and ˜S as above. If A(2)
T,S and

B
(2)
˜T, ˜S

exist and D ∈ R(AG, ˜GB), then X = A
(2)
T,SDB

(2)
˜T, ˜S

is the unique solution of the restricted matrix
equation (3.1) and it can be represented as

xij =

∑m
k=1
∑

β∈Qt,n{i},α∈Q˜t,p{j}
∣

∣

∣

(

(GA).i
(

g.k
))β

β

∣

∣

∣

∣

∣

∣

∣

(

(

B ˜G
)

j.

(

˜fk.
)

)α

α

∣

∣

∣

∣

dt(GA) d
˜t

(

B ˜G
)

(3.6)

or

xij =

∑q

k=1

∑

β∈Qt,n{i},α∈Q˜t,p{j}
∣

∣

∣

(

(GA).i(f.k)
)β

β

∣

∣

∣

∣

∣

∣

∣

(

(

B ˜G
)

j.
(g̃k.)

)α

α

∣

∣

∣

∣

dt(GA) d
˜t

(

B ˜G
) , (3.7)

where ˜fk. = dk.
˜G and f.k = Gd.k, i = 1, . . . , n, and j = 1, . . . , p.
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Proof. By the argument above, we have X = A
(2)
T,SDB

(2)
˜T, ˜S

is the unique solution of the restricted

matrix equation (3.1). Setting Y = DB
(2)
˜T, ˜S

and using (2.7), we get that

ykj =
q
∑

h=1

dkh

(

B
(2)
˜T, ˜S

)

hj
=

q
∑

h=1

dkh

∑

α∈Q
˜t,p{j}

∣

∣

∣

∣

(

(

B ˜G
)

j.

(

g̃h.
)

)α

α

∣

∣

∣

∣

d
˜t

(

B ˜G
)

=

∑

α∈Q
˜t,p{j}

∣

∣

∣

∣

(

(

B ˜G
)

j.

(

∑q

h=1 dkhg̃h.
)

)α

α

∣

∣

∣

∣

d
˜t

(

B ˜G
) =

∑

α∈Q
˜t,p{j}

∣

∣

∣

∣

(

(

B ˜G
)

j.

(

˜fk.
)

)α

α

∣

∣

∣

∣

d
˜t

(

B ˜G
) ,

(3.8)

where ˜fk. = dk.
˜G. Since X = A

(2)
T,SY , by (2.5),

xij =
m
∑

k=1

(

A
(2)
T,S

)

ik
ykj =

m
∑

k=1

∑

β∈Qt,n{i}
∣

∣

∣

(

(GA).i
(

g.k
))β

β

∣

∣

∣

dt(GA)

∑

α∈Q
˜t,p{j}

∣

∣

∣

∣

(

(

B ˜G
)

j.

(

˜fk.
)

)α

α

∣

∣

∣

∣

d
˜t

(

B ˜G
) . (3.9)

Hence, we have (3.6).
We can obtain (3.7) in the same way.

In particular, when D is a vector b and B = ˜G = I1 in the above theorem, we have the
following result from (3.7).

Theorem 3.2. Given A,G, T , and S as above. If b ∈ AR(G), then x = A
(2)
T,Sb is the unique solution

of the restricted linear equation Ax = b, x ∈ T , and it can be represented as

xi =

∑

β∈Qt,n{i}
∣

∣

∣

(

(GA).i
(

f
))β

β

∣

∣

∣

dt(GA)
, j = 1, . . . , n, (3.10)

where f = Gb.

Remark 3.3. Using the symbols in [13], we can rewrite (3.10) as [13, equation (27)].
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4. Example

Let

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 2 2 2
0 2 1 1
0 0 4 2
0 0 2 1
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, B =

⎛

⎝

2 1
1 0
0 1

⎞

⎠, D =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1
−1 0
0 0
0 0
0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, G =

⎛

⎜

⎜

⎝

1 −1 2 0 0
0 2 1 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎠

,

˜G =
(

1 0 0
0 2 0

)

.

(4.1)

Obviously, rankA = 3, dimAT = dim T = 2, and

T = R(G) ⊂ C
4, S = N(G) ⊂ C

5, ˜T = R
(

˜G
)

⊂ C
2, ˜S = N

(

˜G
)

⊂ C
3. (4.2)

It is easy to verify that AT ⊕ S = C
5 and B ˜T ⊕ ˜S = C

3. Thus, A(2)
T,S and B

(2)
˜T, ˜S

exist by Lemma 1.1.
Now consider the restricted matrix equation

AXB = D, R(X) ⊂ T, N(X) ⊃ ˜S. (4.3)

Clearly,

AG =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 3 4 0 0
0 4 2 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, ˜GB =
(

2 1
2 0

)

, (4.4)

and it is easy to verify that R(D) ⊂ R(AG) and N(D) ⊃ N( ˜GB) hold.
Note that R(D) ⊂ R(AG) and N(D) ⊃ N( ˜GB) if and only if D ∈ R(AG, ˜GB). So, by

Theorem 3.1, the unique solution of (4.3) exists.
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Table 1

yik i = 1 i = 2 i = 3 i = 4

k = 1 4 −2 0 0
k = 2 4 0 0 0

Table 2

zkj j = 1 j = 2 j = 3

k = 1 0 −2 0
k = 2 −2 4 0

Computing

GA =

⎛

⎜

⎜

⎝

1 0 9 5
0 4 6 4
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

, B ˜G =

⎛

⎝

2 2 0
1 0 0
0 2 0

⎞

⎠,

d2(GA) =
∣

∣

∣

∣

1 0
0 4

∣

∣

∣

∣

+
∣

∣

∣

∣

1 9
0 0

∣

∣

∣

∣

+
∣

∣

∣

∣

1 5
0 0

∣

∣

∣

∣

+
∣

∣

∣

∣

4 6
0 0

∣

∣

∣

∣

+
∣

∣

∣

∣

4 4
0 0

∣

∣

∣

∣

+
∣

∣

∣

∣

0 0
0 0

∣

∣

∣

∣

= 4,

d2

(

B ˜G
)

=
∣

∣

∣

∣

2 2
1 0

∣

∣

∣

∣

+
∣

∣

∣

∣

2 0
0 0

∣

∣

∣

∣

+
∣

∣

∣

∣

0 0
2 0

∣

∣

∣

∣

= −2,

˜f =

⎛

⎜

⎜

⎝

1 −1 2 0 0
0 2 1 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1
−1 0
0 0
0 0
0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1 1
−2 0
0 0
0 0

⎞

⎟

⎟

⎠

,

(4.5)

and setting yik =
∑

β∈Qt,n{i} |((GA).i( ˜f.k))
β

β|, we have Table 1.

Similarly, setting zkj =
∑

α∈Q
˜t,p{j} |((B ˜G)j.(g̃k.))

α

α
|, we have Table 2.

So, by (3.7), we have

X =
(

xij

)

=

⎛

⎜

⎜

⎜

⎜

⎝

1 −1 0

0 −1
2

0

0 0 0
0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

. (4.6)
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