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This paper investigated study of dynamics of nonlinear electrical circuit by means of modern
nonlinear techniques and the control of a class of chaotic system by using backstepping method
based on Lyapunov function. The behavior of such nonlinear system when they are under the
influence of external sinusoidal disturbances with unknown amplitudes has been considered. The
objective is to analyze the performance of this system at different amplitudes of disturbances. We
illustrate the proposed approach for controlling duffing oscillator problem to stabilize this system
at the equilibrium point. Also Genetic Algorithm method (GA) for computing the parameters of
controller has been used. GA can be successfully applied to achieve a better controller. Simulation
results have shown the effectiveness of the proposed method.

1. Introduction

During the past years, many people have assigned a lot of endeavor in both theoretical
research and implementation techniques fields to study nonlinear control problems. The
chaotic dynamic systems can be observed in many nonlinear circuits and mechanical systems.
Recently, more knowledge is obtained about the nature of chaos and number of possible
applications of chaotic system increases, and scientific interests are directed to problem
of controlling a chaotic system [1, 2]. Control of the chaotic dynamical systems has been
a significant research topic in physics, mathematics, and engineering communities [3–8];
however, some of them cannot gain desirable control performance, and some of them need
consumedly complex design methods.
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Figure 1: The electric circuit obeying to the Duffing equation.

The backstepping method is a technique for stabilizing control of a special class of
nonlinear dynamical systems that has been developed in 1990 by Petar V. Kokotovie and
others. Lyapunov techniques have been proven to be the most efficient for investigating
stability of equilibrium point. Asymptotic stability can be also used to show boundedness
of the solutions even when the system has no equilibrium point. In this paper, a combination
of the backstepping method and Lyapunov-based techniques is presented to yield a flexible
controller.

In recent years, an optimization method called Genetic Algorithm has been intro-
duced, due to the flexibility, versatility, and robustness in solving optimization problems.
The main advantages of Genetic Algorithm are (i) fast convergence to near global optimum,
(ii) super global searching capability in complicated search space, and (iii) applicability even
when gradient information is not readily achievable [9]. In this work the Genetic Algorithms
are applied to determine the optimal values of the parameters of the controller.

The organization of paper is as follows: in Section 2, the mathematical model of
Duffing oscillator is presented. In Section 3, a flexible controller is designed that can be
tailored to serve slightly target. In Section 4, Genetic Algorithm is used to give the best
controller’s parameters that need to be carefully chosen for obtaining the best performance.
Finally, conclusions are presented in Section 5.

2. Mathematical Model of Electrical Circuit

A nonlinear electric circuit is shown in Figure 1 derived by a sinusoidal voltage source.
The Duffing electrical oscillator consists of the linear resistor, in series with a sinusoidal
source, and both of them are connected in parallel with a capacitor and a nonlinear inductor.
According to [10] the nonlinear inductor has ferromagnetic core, which can be modeled, if
an abstraction of the hysteresis phenomenon is made, by using i-ϕ nonlinear characteristic.
Nonlinear inductance characteristics described by the following relation:

i = a1ϕ + a3ϕ
3, (2.1)

where a1 and a3 are constants that depend on the type of the inductor [11], and ϕ is the flux
over inductor. The nonlinear differential equation of the circuit is given by

VR + VL = E cosωτ,

iR = i + ic,
(2.2)
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where ir and ic are, respectively, the currents of the resistor and capacitor, and the voltage of
the resistance and the inductor VR and VL is:

VR = Rir,

VL =
dϕ

dτ
,

ic = C
dϕ

dτ
.

(2.3)

By substituting (2.1) and (2.3) in (2.2), the following differential equation can be obtained:

d2ϕ

dτ2
+

1
RC

dϕ

dτ
+
a1

C
ϕ +

a3

C
ϕ3 =

E0

RC
cosωτ. (2.4)

By setting t = ωeτ , ϕ = ϕ0x, ε = 1/RCωe, ω2
e = a1/C, b2 = a3ϕ

2
0/Cωe, u = E0/Ra1ϕ0 cosωt,

electrical circuit is described by the following equation:

d2ϕ

dt2
+ ε

dϕ

dt
+ ϕ + bϕ3 = u. (2.5)

The following control law, u = f(x1, x2) is proposed, where f is a nonlinear function that shall
be found to stabilize the closed-loop system. The state space formulation is as follows:

[
x1

x2

]
=
[
ϕ
ϕ̇

]
=⇒

[
ẋ1

ẋ2

]
=

[
x2

g(x1, x2) + u

]
,

g(x1, x2) = −εx2 − x1 − b2x3
1.

(2.6)

And equilibrium points are, x1 = 0, 1/b and x2 = 0.
The system dynamics near equilibrium points by using linearization techniques [12]

are given by

[
ẋ1

ẋ2

]
∼=
[

0 1
−1 − 3bx2

1 −ε
][

x1

x2

]
+
[

0
1

]
u,

Ẋ ∼= AX + BU.

(2.7)

Eigenvalue of resulting A is

λ =
1
2

(
−ε ±

√
ε2 − 4 − 12bx2

1

)
. (2.8)

Since ε < 2, the origin equilibrium point will have complex conjugate eigenvalue with
negative real parts indicating stable focus.

The objective of this paper is to design a control law such that the origin is a globally
stable equilibrium point and to force the system to approach the origin from any initial
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condition while exhibiting a satisfactory transient performance. In the following section, we
introduce a strategy to design a nonlinear recursive control law.

3. Controller Design

3.1. Preliminary Controller Design

In this paper, the backstepping method is used such that the closed-loop system is stabilized
in the origin. The second state of the system (2.6) x2 is used as a virtual control signal for
the system output x1. The following nonlinear dynamics will be considered for the desired
virtual control signal [13]:

x2d = −C1x1 − C2x
3
2, (3.1)

where C1 and C2 are design parameters that must be carefully selected such that closed-loop
system is stable. The nonlinear term C2 introduces a nonlinear spring-like action. It should
be chosen such that little effect for small output deviation, and a considerable effect when the
deviation from the origin is large. The signal x2d acts as a reference model for the system state
x2, the difference between them will be derived to zero in a finite time. The virtual error is
given by

e = x2 − x2d = x2 + x2

(
C1 + C2x

2
2

)
. (3.2)

By substituting (3.1) and (3.2) in (2.6), new state-space presentation of system will be

[
ẋ1

ė

]
=
[

e − C1x1 − C3x
3
1

ẋ2 + x2
(
C1 + C2x

2
1

)
]
=
[

e − C1x1 − C3x
3
1

g(x1, x2) + u + x2
(
C1 + C2x

2
1

)
]
. (3.3)

The stability is investigated by using the Lyapunov second method. By introducing the
following positive definite Lyapunov function as

V =
1
2
x2

1 +
1
2
e2, (3.4)

results

V̇ = x1ẋ1 + eė = −C1x
2
1 − C2x

4
1 + e

{
x1 + g(x1, x2) + u + x2

(
C1 + C2x

2
1

)}
. (3.5)

If we have

C3e = −
{
x1 + g(x1, x2) + u + x2

(
C1 + C2x

2
1

)}
, (3.6)

the result is

V̇ = −C1x
2
1 − C2x

4
1 − C3e

2, (3.7)
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where C3 is a design parameter, and the control law u is selected such that V̇ is ensured to be
negative definite. By using (3.2) and (3.7), we have

x1 + g(x1, x2) + u + x2

(
C1 + C2x

2
1

)
= −C3

(
x2 + C1x1 + C2x

3
1

)
. (3.8)

This can be rewritten in the following form:

g(x1, x2) + u = −x1(1 + C1C3) − x2(C1 + C3) − x2
1C2(3x2 + C3x1) = W(x1, x2). (3.9)

The following control law is chosen

u(x1, x2) = W(x1, x2) − g(x1, x2). (3.10)

Because of the special dynamical structure of the system, the designed control u is causal and
can be easily executed by careful choose of the design parameters.

The resulting closed-loop system by using this controller is given by

[
ẏ
ė

]
=
[[−C1 − C2y

2

−1

]
1

−C3

][
y
e

]
. (3.11)

By substituting e = ẏ + C1y + C2y
3, ė = −y − C3e in (3.11), the output dynamics is

ÿ + ẏ(C1 + C3) + y(1 + C1C3) + C2

(
3y2ẏ + C3y

3
)
= 0. (3.12)

3.2. Choosing the Controller Parameters

With reference to (3.12), there are no constraints on choosing the proposed design parameters
Ci > 0, i = 1, 2, and 3. This lets us more flexibile in design criteria in transient behavior of the
system for satisfying a certain performance criterion for the closed-loop system. However,
when choosing the best values for the parameters, we should also consider the nonlinearities
of the system that has been studied and the maximum control effort that can be used to avoid
having a poor performance. To show this idea, a linear reference model is used by letting
C2 = 0 (the closed-loop system can be made linear, but this will be on the expense of losing
the useful cubic nonlinearity in (3.1)), which can be made a standard linear second-order
system whose performance is characterized by two parameters: damping ratio ξ and natural
damping frequency ωn. So we have

C2 = 0 =⇒ ÿ + ẏ(C1 + C3) + y(1 + C1C3) = ÿd + 2ζωnẏd +ω2
ny = 0,

ζ =
C1 + C3

2
√

1 + C1C3
, ωn =

√
1 + C1C3.

(3.13)

Hence, there are more constraints on the choice of the remaining control parameters, C1 and
C3, depending on the required values of both ξ and ωn.
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Figure 2: (a) Phase portrait, (b) states without input.

Practical and simple solution to this problem is to try to pattern the behavior of the
well-known PID controllers. Since the required equilibrium point is the origin, a PD controller
is sufficient. By using (2.6), (3.7), and (3.10), an explicit form for the control law is given by

u = {x1(−C1C3) + x2(−C1 − C3 + ε)} +
{
b2x3

1 − C2C3x
3
1 − 3C2x2x

2
1

}
= uPD + uNL, (3.14)

where uPD is the linear PD controller with KP = x1(−C1C3), and KD = (−C1 − C3 + ε). uNL,
is the nonlinear term that has a little effect provided that ‖xi‖ ≤ 1, i = 1 and 2. For a given
region of initial conditions, the control parameters can be chosen such that uPD will always
dominate uNL, thus ensuring a self-corrective action that will add robustness to the control
law design when the system dynamics are partially known. This will indeed be the case
when the system operates near the origin, and the control law is smooth enough so not to
inject sharp incursions in the system states [13].

3.3. Simulation Results

In this section, we depict some simulation results by using different type of controllers in
different disturbance conditions.

Figure 2 illustrates Duffing system without any disturbance. The origin has stable
focus and the states after about 50 second converge to the zero with 2% tolerance. Now
disturbance is applied to the system with amplitude 0.01, which is shown in Figure 3.
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Figure 3: (a) Phase portrait, (b) states. disturbance with amplitude 0.01.
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Figure 4: (a) Phase portrait, (b) states, and disturbance with amplitude 0.1.
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Figure 5: The effects of linear, nonlinear, and disturbance with amplitude 0.1 (a) phase portrait, (b) states.

Phase portrait shows that the origin is stable focus, but the states have tolerance 4%. Then
amplitude of disturbance increases to 0.1. Phase portrait has a little change to limit cycle, and
we have periodical response, which is shown in Figure 4 (simulations have been done for
ε = 0.18, b = 1, initial conditions = (1, 0)).

Our controller has two sections, linear and nonlinear parts. The effect of disturbance
and controller (uPD, uNL) is shown in Figure 5 for disturbance 0.1 when the controller
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Figure 6: The effects of linear, nonlinear, and disturbance with amplitude 1 (a) phase portrait, (b) states.

parameters are C1 = 4, C2 = 0, C3 = 2. Figures 5(a-1) and 5(b-1) show the states without
disturbance and controller. Figures 5(a-2) and 5(b-2) show the states with disturbance that
causes increasing tolerance, and we have periodic response. Figures 5(a-3) and 5(b-2) show
the states with nonlinear control. Unfortunately, it is seen that the nonlinear controller cannot
decrease tolerance well, but it can decrease amplitude of tolerance. Figures 5(a-4) and 5(b-2)



10 Mathematical Problems in Engineering

(a-2), dis. = 1, uncontrolled

(a-3), dis. = 1, nonlinear controller (a-4), dis. = 1, nonlinear and linear controller

−0.6 −0.2 0.60.2 1 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1.2
−1

−0.8
−0.6
−0.4
−0.2

0
0.2

X1

X
2

−1

−0.5

0

0.5

1

X
2

−0.8 −0.4 0 0.4 0.8

X1

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5

X1

X
2

−1.5

−1

−0.5

0

0.5

1

X
2

−1 −0.5 0 0.5 1

X1

0 10 20 30 40 50 60 70

Time

−1.5

−1

−0.5

0

0.5

1

X
1,
X

2

−1.5

−1

−0.5

0

0.5

1

X
1,
X

2

1.5

0 10 20 30 40 50 60 70

Time

−1

−0.5

0

0.5

1

X
1,
X

2

0 10 20 30 40 50 60 70

Time

−1.5

−1

−0.5

0

0.5

1

X
1,
X

2

0 10 20 30 40 50 60 70

Time

X1

X2

X1

X2

(b-2), dis. = 1, uncontrolled

(b-3), dis. = 1, nonlinear controller (b-4), dis. = 1, nonlinear and linear controller

(a)

(b)

(b-1), without disturbance

(a-1), without disturbance

Figure 7: The effects of linear, nonlinear, and disturbance with amplitude 1 (a) phase portrait, (b) states.



Mathematical Problems in Engineering 11

8750

8760

8770

8740

8790

8800

8810

8820

8830

8780

2 31 5 64 8 97 10

Figure 8: Cost function after 10 iteration.

show the effects of nonlinear and linear controllers. Tolerance, settling time, rise time, and
error have been decreased.

Now, the amplitude of disturbance increases to 1, and the previous parameters of
controller are applied to the system. This result is shown in Figure 6. This controller cannot
force system’s states to converge to origin and decrease tolerance. The result shows that the
controller does not have a good ability to control disturbance with this parameters. We choose
another parameters such that C1 = 4, C2 = 1, C3 = 2. The result has been improved but is not
satisfactory yet. This is shown in Figure 7. In the next section, we will see that the Genetic
Algorithm can be employed for choosing appropriate parameters.

4. Genetic Algorithm

In this section, we propose a Genetic Algorithm optimization search to find the best
parameters of controller. The terminology adopted in GAs contains many terms extracted
from biology, suitably redefined to fit the algorithm context. Thus, GAs act on a set of
(artificial) chromosomes, which are string of numbers, generally sequences of binary digits
0 and 1. If the objective function of the optimization has many arguments (typically called
control factors or decision variables), each string is partitioned in as many substrings
of assigned lengths, one for each argument and correspondingly, we say that each
chromosome is partitioned in (artificial) genes. The genes constitute the so-called genotype
of chromosome, and the substrings, when decoded in real numbers, constitute its phenotype.
When the objective function is evaluated in a set of values of the control factors of
chromosome, its value is called the fitness of chromosome. Thus, each chromosome gives rise
to an exam solution to the problem in a set of values of its control factors. The GA search is
done by constructing a consecutive of populations of chromosomes. The individuals of each
population are the children of the previous population and the parents of the consecutive
population.

The initial population is generated by randomly sampling the bits of all string. At each
step, the new population gets by manipulating the strings of the old population in order
to arrive at afresh population characterized by an increased mean fitness. This sequence
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1.
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continues until termination criterion is achieved. As for the natural selection, the string
manipulation consists in selecting and mating pair of chromosomes in order to groom chro-
mosomes of next population. This is done by repeatedly performing on the strings of the four
fundamental operations of reproduction, crossover, replacement, and mutation, all based on
random sampling [14].

In this work, parameters of controller have been found by a Genetic Algorithm con-
siders a population of 100 chromosomes. Each chromosome of the three genes, each coding
one of the three parameters C1, C2, C3 is made, and the fitness function is

f = 800 sum
(

error2
)
. (4.1)

After optimization, the parameters of controller will be found as C1 = 7.5209, C2 = 1.6764,
C3 = 8.4173. Figure 8 shows the cost function after 10 iteration. Figure 9 shows that the results
have been improved, and these parameters are the best one which there are to receive the
goals.

5. Conclusion

Nonlinear control strategy was used for a nonlinear system which describes the dynamics
of resistively Duffing oscillator. The study shows the effectiveness of the proposed technique
for different amplitude of disturbance. The designed controller has two goals: first stabilizing
the system and second decreasing the error. Usually a contradiction occurs if these two goals
are to be achieved at the same time, but the designed controller resolves such contradiction
by introducing a flexible set of controller parameters that adds more freedom in the design.

In absence of disturbance, the phase portrait is focus, then the amplitude of disturb-
ance is increased, the phase portrait is converted to limit cycle, and the responses are periodic.

The controller includes two parts: linear and nonlinear. Pay attention that the nonlin-
ear effect is weaker than linear effect, and when controller is used, there is tolerance 2%, and
it runs to stability soon.
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