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We study the bifurcation of traveling wave solutions for a two-component generalized θ-equation.
We show all the explicit bifurcation parametric conditions and all possible phase portraits of the
system. Especially, the explicit conditions, under which there exist kink (or antikink) solutions, are
given. Additionally, not only solitons and kink (antikink) solutions, but also peakons and periodic
cusp waves with explicit expressions, are obtained.

1. Introduction

In 2008, Liu [1] introduced a class of nonlocal dispersive models, that is, θ-equations, as
follows:

ut − uxxt + uux = (1 − θ)uxuxx + θuuxxx, x ∈ R, t > 0, (1.1)

where u(x, t) denotes the velocity field at time t in the spatial x direction.
Recently, Ni [2] further investigated the cauchy problem for the following two-

component generalized θ-equations:

ut − uxxt + uux − (1 − θ)uxuxx − θuuxxx + σρρx = 0, x ∈ R, t > 0,

ρt + θρxu + (1 − 2θ)ρux = 0, x ∈ R, t > 0,
(1.2)

where σ takes 1 or −1. This system includes two components u(x, t) and ρ(x, t). The first one
describes the horizontal velocity of the fluid, while the other one describes the horizontal
deviation of the surface from equilibrium, both are measured in dimensionless units.
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In this paper, we study the bifurcation of traveling wave solutions for the following
system:

ut − uxxt + uux − 3
5
uxuxx − 2

5
uuxxx + ρρx = 0, x ∈ R, t > 0,

ρt +
2
5
ρxu +

1
5
ρux = 0, x ∈ R, t > 0,

(1.3)

which is a special form of system (1.2) through taking θ = 2/5 and σ = 1, by employing the
bifurcationmethod and qualitative theory of dynamical systems [3–7]. We give all the explicit
bifurcation parametric conditions for various solutions and all possible phase portraints of
the system, from which not only solitons and kink (antikink) solutions, but also peakons and
periodic cusp waves are obtained.

2. Bifurcation of Phase Portraits

For given constant c, multiplying both sides of the second equation of system (1.3) by ρ(x, t)
and substituting u(x, t) = ϕ(ξ), ρ = ψ(ξ) with ξ = x − ct into system (1.3), it follows that

−cϕ′ + cϕ′′′ + ϕϕ′ − 3
5
ϕ′ϕ′′ − 2

5
ϕϕ′′′ + ψψ ′ = 0,

−cψψ ′ +
2
5
ψψ ′ϕ +

1
5
ψ2ϕ′ = 0.

(2.1)

Integrating system (2.1) once leads to

−cϕ + cϕ′′ +
1
2
ϕ2 − 1

10
(
ϕ′)2 − 2

5
ϕϕ′′ +

1
2
ψ2 = g,

−c
2
ψ2 +

1
5
ψ2ϕ = G,

(2.2)

where both g and G are integral constants, respectively.
From the second equation of system (2.2), we obtain

ψ2 =
5G

ϕ − (5/2)c
. (2.3)

Substituting (2.3) into the first equation of system (2.2), it leads to

(
ϕ − 5

2
c

)2

ϕ′′ = −1
4

(
ϕ − 5

2
c

)
(
ϕ′)2 +

5
4

[(
ϕ − 5

2
c

)(
ϕ2 − 2cϕ − 2g

)
+ 5G

]
. (2.4)
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By setting ϕ = φ + (3/2)c, (2.4) becomes

(
φ − c)2φ′′ = −1

4
(
φ − c)(φ′)2 +

5
4

[
(
φ − c)

((
φ − 3

2
c

)2

− 2c
(
φ − 3

2
c

)
− 2g

)

+ 5G

]

= −1
4
(
φ − c)(φ′)2 +

5
4

[
φ3 −

(
7
4
c2 + 2g

)
φ +

3
4
c3 + 5G + 2cg

]
.

(2.5)

Letting y = ϕ′, we obtain a planar system

dφ
dξ

= y,

dy
dξ

=
−(1/4)(φ − c)y2 + (5/4)

[
φ3 − ((7/4)c2 + 2g

)
φ + (3/4)c3 + 5G + 2cg

]

(
φ − c)2

,

(2.6)

with first integral

H
(
φ, y
)
=

1
2

√
φ − cy2 − 4

(
φ − c)3 + 20c

(
φ − c)2 + (25c2 − 40g

)(
φ − c) − 100G

8
√
φ − c ,

for φ > c,

(2.7)

or

H
(
φ, y
)
=

1
2

√
c − φy2 − 4

(
c − φ)3 − 20c

(
c − φ)2 + (25c2 − 40g

)(
c − φ) + 100G

8
√
c − φ ,

for φ < c.

(2.8)

Note that when G = 0, systems (2.6), (2.7), and (2.8) become, respectively,

dφ
dξ

= y,

dy
dξ

=
−(1/4)y2 + (5/4)

(
φ2 + cφ − (7/4)c2 − 2g

)

φ − c ,

(2.9)

H
(
φ, y
)
=

1
2

√
φ − cy2 − 1

8

(
4
(
φ − c)5/2 + 20c

(
φ − c)3/2 +

(
25c2 − 40g

)(
φ − c)1/2

)
,

for φ > c,
(2.10)

H
(
φ, y
)
=

1
2

√
c − φy2 − 1

8

(
4
(
c − φ)5/2 − 20c

(
c − φ)3/2 +

(
25c2 − 40g

)(
c − φ)1/2

)
,

for φ < c.
(2.11)
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Transformed by dξ = (φ − c)2dτ , system (2.6) becomes a Hamiltonion system

dφ
dτ

=
(
φ − c)2y,

dy
dτ

= −1
4
(
φ − c)y2 +

5
4

[
φ3 −

(
7
4
c2 + 2g

)
φ +

3
4
c3 + 5G + 2cg

]
.

(2.12)

Since the first integral of system (2.6) is the same as that of the Hamiltonian system
(2.12), system (2.6) should have the same topological phase portraits as system (2.12) except
the straight line l : φ = c. Therefore, we should be able to obtain the topological phase
portraits of system (2.6) from those of system (2.12).

Let

f
(
φ
)
= φ3 −

(
7
4
c2 + 2g

)
φ +

3
4
c3 + 5G + 2cg. (2.13)

It is easy to obtain the two extreme points of f(φ) as follows:

φ∗
± = ±

√
7c2 + 8g

12
, for g > −7

8
c2, (2.14)

from which we can obtain a critical curve for g as follows:

g0(c) = −7
8
c2. (2.15)

We obtain two bifurcation curves:

G1 = − 1
180

[
72cg + 27c3 +

(
8g + 7c2

)√
21c2 + 24g

]
,

G2 = − 1
180

[
72cg + 27c3 −

(
8g + 7c2

)√
21c2 + 24g

]
,

(2.16)

from f(φ∗
−) = 0 and f(φ∗

+) = 0, respectively. Note that when g < g0(c), obviously G1 < G2. For
convenience, we assume that g ∝ c2 in this paper, then we have G1 ∝ c3 and G2 ∝ c3.

Further, from G1 = 0 or G2 = 0, we can obtain another two critical curves for g, that is,

g1(c) = −1
2
c2, (2.17)

g2(c) =
5
8
c2. (2.18)

Note that (2.18) can also be obtained by letting φ∗
+ = c, c > 0 or φ∗

− = c, c < 0.
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φ = c

φ∗
− φ∗

+

φ1

f(φ) φ = c

φ∗
+

φ2

f(φ)

φ1 = φ∗
−

φ = c

φ∗
−

φ∗
+φ2φ1

φ3

f(φ)
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+
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Figure 1: The graphics of f(φ) when g > g2(c).

Let (φ∗, 0) be one of the singular points of system (2.12), then the characteristic values
of the linearized system of system (2.12) at the singular point (φ∗, 0) are

λ± = ±1
2

√
5
(
φ∗ − c)2f ′(φ∗). (2.19)

From the qualitative theory of dynamical systems, we can determine the property of
singular point (φ∗, 0) by the sign of f ′(φ∗) and whether φ∗ equals to c or not. However, we
also know thatH(c, y) = ∞ from (2.7) and (2.8). Therefore, φ = c is an isolated orbit, dividing
(φ, y)-plane into two parts.

Based on the above analysis, we give the property of the singular points for system
(2.12) and their relationship with φ∗

−, φ
∗
+ and c in the following lemma.

Lemma 2.1. For g > g2(c), one has G1 < 0 < G2 and the singular points of system (2.12) can be
described as follows.

(a) If G < G1, then there is only one singular point denoted as S1(φ1, 0) (φ∗
− < c < φ

∗
+ < φ1).

S1 is a saddle point.

(b) If G = G1, then there are two singular points denoted as S1(φ1, 0) and S2(φ2, 0) (φ1 =
φ∗
− < c < φ

∗
+ < φ2), respectively. S1 is a degenerate saddle point and S2 is a saddle point.

(c) If G1 < G < 0, then there are three singular points denoted as S1(φ1, 0), S2(φ2, 0), and
S3(φ3, 0) (φ1 < φ

∗
− < φ2 < c < φ

∗
+ < φ3), respectively. S1 and S3 are saddle points and S2

is a center.

(d) If 0 < G < G2, then there are three singular points denoted as S1(φ1, 0), S2(φ2, 0), and
S3(φ3, 0) (φ1 < φ

∗
− < c < φ2 < φ

∗
+ < φ3), respectively. S1 and S3 are saddle points and S2

is a center.

(e) If G = G2, then there are two singular points denoted as S1(φ1, 0) and S2(φ2, 0) (φ1 <
φ∗
− < c < φ

∗
+ = φ2), respectively. S1 is a saddle point and S2 is a degenerate saddle point.

(f) If G > G2, then there is only one singular point denoted as S1(φ1, 0) (φ1 < φ
∗
− < c < φ

∗
+).

S1 is a saddle point.

Proof. Lemma 2.1 follows easily from the graphics of the function f(φ)which can be obtained
directly and shown in Figure 1.
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For the other cases, the similar analysis can be taken to make the conclusions. We just
omit these processes for the ease of simplicity. However, it is worth mentioning that, when
g0(c) < g < g2(c) andG1 < G < G2 (G/= 0), there exist two saddle points and one center lie on
the same side of singular line φ = c. Hence, there may exist heteroclinic orbits for system (2.6).
We will show the existence of heteroclinic orbits for system (2.6) in the following analysis.

If G1 < G < G2, we set three solutions of f(φ) = 0 be φs, φm, and φb (φs < φm < φb),
respectively. Through simple calculation, we can express φs and φb as the function of φm, that
is,

φs =
−φm −

√
8g + 7c2 − 3φ2

m

2
,

φb =
−φm +

√
8g + 7c2 − 3φ2

m

2
.

(2.20)

It follows from φs < φm < φb that φm must satisfy condition

φ2
m <

8g + 7c2

12
. (2.21)

FromH(φs, 0) = H(φb, 0), we obtain the expression of G as the function of φm,

G =
1
100

[
9c3 + 24cg −

(
8g + 15c2

)
φm − 8cφ2

m + 4φ3
m

+
(
2c2 − 16g − 4cφm

)√
4φ2

m − 8g + 4cφm − 3c3
]
.

(2.22)

Substituting (2.22) into f(φm) = 0, we obtain the expression of φm from f(φm) = 0 as
follows:

φm1 =
1
6

(
5c − 2

√
c2 − 6g

)
, (2.23)

φm2 =
1
6

(
5c + 2

√
c2 − 6g

)
, (2.24)

φm3 = −
√

7c2 + 8g
3

, (2.25)

φm4 =

√
7c2 + 8g

3
, (2.26)

φm5 =
1
2

(
−c − 2

√
c2 + 2g

)
, (2.27)

φm6 =
1
2

(
−c + 2

√
c2 + 2g

)
, (2.28)
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Note that from (2.23)–(2.28), we obtain three critical curves for g, that is, g0(c), in
(2.12), g1(c) in (2.15), and

g3(c) =
1
6
c2. (2.29)

We then check the condition φ2
m < (8g + 7c2)/12 (i.e., (2.21)) for the above φms one by

one and give the results in the following lemma.

Lemma 2.2. Starting from interval (−(7/8)c2, (5/8)c2), one has the following.
(1) For g ∈ (−(7/8)c2, (1/6)c2) ⊂ (−(7/8)c2, (5/8)c2) and c > 0, φm = (1/6)(5c −

2
√
c2 − 6g) (i.e., (2.23)) satisfies (2.21).

(2) For g ∈ (−(7/8)c2, (1/6)c2) ⊂ (−(7/8)c2, (5/8)c2) and c < 0, φm = (1/6)(5c +

2
√
c2 − 6g) (i.e., (2.24)) satisfies (2.21).

(3) For any g ∈ (−(7/8)c2, (5/8)c2), (2.25) does not satisfy (2.21).
(4) For any g ∈ (−(7/8)c2, (5/8)c2), (2.26) does not satisfy (2.21).
(5) For g ∈ (−(1/2)c2, (5/8)c2) ⊂ (−(7/8)c2, (5/8)c2) and c < 0, φm = (1/2)(−c −

2
√
c2 + 2g) (i.e., (2.27)) satisfies (2.21).

(6) For g ∈ (−(1/2)c2, (5/8)c2) ⊂ (−(7/8)c2, (5/8)c2) and c > 0, φm = (1/2)(−c +

2
√
c2 + 2g) (i.e., (2.28)) satisfies (2.21).

Proof. Lemma 2.2 follows easily from the definitional domain of the φms and general logical
reasoning.

From Lemma 2.2, substituting (2.23) and (2.24) into f(φm) = 0, respectively, we obtain
another two bifurcation curves (denoted by G∗

1 and G
∗
2) for G as follows:

G∗
1 =

4
135

(
−c3 + 9cg +

(
c2 − 6g

)√
c2 − 6g

)
, for g0(c) < g < g3(c), c > 0,

G∗
2 =

4
135

(
−c3 + 9cg −

(
c2 − 6g

)√
c2 − 6g

)
, for g0(c) < g < g3(c), c < 0.

(2.30)

Similarly, substituting (2.27) and (2.28) into f(φm) = 0, we have

G∗ = 0, for g1(c) < g < g3(c), c < 0
(
or g1(c) < g < g3(c), c > 0

)
. (2.31)

Note that we have indicated that when g0(c) < g < g2(c) and G1 < G < G2 (G/= 0),
there exist two saddle points and one center lying on the same side of singular line φ = c.
Therefore, we obtain the fifth critical curve for g from G∗

1 = 0 (c > 0) or G∗
2 = 0 (c < 0),

g4(c) = 0. (2.32)
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φ = c

φ = c

G2

φ

G

cG1

φ

φ = c
φ

G1

φ = c
φ

φ = c
φ

φ
φ = c

φ = c

φ

G2

o

Figure 2: The phase portraits of system (2.6) when g > g2(c).
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Figure 3: The phase portraits of system (2.6) when g = g2(c).

Lemma 2.3. (1) For g ∈ (g0(c), g4(c))∪ (g4(c), g3(c)), and G = G∗
1, c > 0 (or G = G∗

2, c < 0), there
exist heteroclinic orbits for system (2.6).

(2) For any g /∈ (g0(c), g4(c))∪ (g4(c), g3(c)) or G/=G∗
1, c > 0 and G/=G∗

2, c < 0, there exist
no heteroclinic orbits for system (2.6).

Proof. Lemma 2.3 follows easily from the above analysis.

Therefore, based on the above analysis, we obtain the bifurcation of phase portraits of
system (2.6) in Figures 2, 3, 4, 5, 6, 7, 8, and 9 under corresponding conditions.

3. Main Results and the Theoretic Derivations of Main Results

In this section, we state our results about solitons, kink (antikink) solutions, peakons, and
periodic cusp waves for the first component of system (1.3). To relate conveniently, we omit
ϕ = φ + (2/3)c and the expression of the second component of system (1.3) in the following
theorems.
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Theorem 3.1. For constant wave speed c, integral constants g and G, one has the following.

(1) If c, g, G satisfy one of the following conditions:

(i) g > g2(c), G1 < G < 0 and c /= 0;

(ii) g1(c) < g ≤ g2(c), G1 < G < 0 and c > 0;

(iii) g1(c) ≤ g < g4(c), g4(c) < g < g3(c), 0 < G < G∗
1 and c > 0;

(iv) g0(c) < g < g1(c), G1 < G < G∗
1 and c > 0;

then there exist smooth solitons for system (1.3), which can be implicitly expressed as

√(
c − φ)/(φ∗

1 − φ
) − 1

√(
c − φ)/(φ∗

1 − φ
)
+ 1

·

(√
(c − φ)/(φ∗

1 − φ) +
√
α
)α

(√
(c − φ)/(φ∗

1 − φ) −
√
α
)α = e|ξ|, (3.1)

where

α =
c − φ1

φ∗
1 − φ1

. (3.2)

(2) If c, g, G satisfy one of the following conditions:

(v) g > g2(c), 0 < G < G2 and c /= 0;

(vi) g1(c) < g ≤ g4(c), 0 < G < G2 and c < 0;

(vii) g1(c) ≤ g < g4(c), g4(c) < g < g3(c), G∗
2 < G < 0 and c < 0;

(viii) g0(c) < g < g1(c), G∗
2 < G < G2 and c < 0;

then there exist smooth solitons for system (1.3), which can be implicitly expressed as

√(
φ − c)/(φ − φ∗

2

) − 1
√(

φ − c)/(φ − φ∗
2

)
+ 1

·

(√
(φ − c)/(φ − φ∗

2) +
√
β
)β

(√
(φ − c)/(φ − φ∗

2) −
√
β
)β = e|ξ|, (3.3)

where

β =
φ2 − c
φ2 − φ∗

2
. (3.4)

(3) If c, g, G satisfy one of the following conditions:

(ix) g3(c) ≤ g < g2(c), G1 < G < 0 and c < 0;

(x) g0(c) < g < g3(c), G1 < G < G∗
2 and c < 0;
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then there exist smooth solitons for system (1.3), which can be implicitly expressed as

g1

(∫u1

0
du − φ3 − c

φ3 − φ∗
31

∫u1

0

d n2u

1 − γ21 sn2u
d u

)

= e|ξ|, (3.5)

where

g1 =
2

√
φ∗
32 − c

,

γ21 = k21
φ∗
32 − φ3

φ∗
31 − φ3

,

k21 =
φ∗
31 − c
φ∗
32 − c

,

snu1 = sinφ.

(3.6)

(4) If c, g, G satisfy one of the following conditions:

(xi) g3(c) ≤ g < g2(c), 0 < G < G2 and c > 0;
(xii) g0(c) < g < g3(c), G∗

1 < G < G2 and c > 0;
then there exist smooth solitons for system (1.3), which can be implicitly expressed as:

g2

(∫u2

0
du − c − φ4

φ∗
41 − φ4

∫u2

0

d n2u

1 − γ22 sn2u
du

)

= e|ξ|, (3.7)

where

g2 =
2

√
c − φ∗

42

,

γ22 = k22
φ4 − φ∗

42

φ4 − φ∗
41
,

k22 =
c − φ∗

41

c − φ∗
42
,

snu2 = sinφ.

(3.8)

Proof. (1) From the phase portraits in Figures 2–9, we see that when c, g, G satisfy one of the
conditions, that is, (i), (ii), (iii), or (iv), there exist homoclinic orbits as showed individually
in Figures 10(a) and 10(b). The expressions of the homoclinic orbits can be given as follows:

y = ±(φ − φ1
)
√
φ∗
1 − φ
c − φ , φ1 ≤ φ ≤ φ∗

1 < c, (3.9)

where φ1 and φ∗
1 can be obtained from (2.8).
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Figure 4: The phase portraits of system (2.6) when g3(c) ≤ g < g2(c).
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Figure 5: The phase portraits of system (2.6) when g4(c) < g < g3(c).

Substituting (3.9) into the first equation of system (2.6), and integrating along the
homoclinic orbits, it follows that

∫φ∗
1

φ

√
c − sds

(
s − φ1

)√
φ∗
1 − s

= |ξ|. (3.10)

From (3.10), we obtain the solitons (3.1) along with (3.2).
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Figure 6: The phase portraits of system (2.6) when g = g4(c).
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Figure 7: The phase portraits of system (2.6) when g1(c) < g < g4(c).

(2) When c, g, G satisfy one of the conditions, that is, (v), (vi), (vii), or (viii), there
exist homoclinic orbits as showed individually in Figures 8(c) and 8(d). The expressions of
the homoclinic orbits can be given as follows:

y = ±(φ2 − φ
)
√
φ − φ∗

2

φ − c , c < φ∗
2 ≤ φ ≤ φ2, (3.11)

where φ2 and φ∗
2 can be obtained from (2.7).
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Figure 8: The phase portraits of system (2.6) when g = g1(c).
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φ∗
1

φ

φ = c

φ1

(a)

φφ∗
1

φ = c

φ1

(b)

φ

φ = c

φ2φ∗
2

(c)

φ = c

φ
φ2

φ∗
2

(d)

φ = c

φ∗
31

φ∗
32φ3

φ

(e)

φ = c

φ∗
41φ∗

42
φ4 φ

(f)

Figure 10: The different kinds of homoclinic orbits for system (2.6).
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Substituting (3.11) into the first equation of system (2.6), and integrating along the
homoclinic orbits, it follows that

∫φ

φ∗
2

√
s − cds

(
φ2 − s

)√
s − φ∗

2

= |ξ|. (3.12)

From (3.12), we obtain the solitons (3.3) along with (3.4).
(3)When c, g, G satisfy one of the conditions, that is, (ix) or (x), there exist homoclinic

orbits as showed individually in Figure 8(e). The expressions of the homoclinic orbits can be
given as follows:

y = ±(φ − φ3
)
√(

φ∗
31 − φ

)(
φ∗
32 − φ

)

φ − c , c < φ3 ≤ φ ≤ φ∗
31 < φ

∗
32, (3.13)

where φ3, φ∗
31 and φ

∗
32 can be obtained from (2.7).

Substituting (3.13) into the first equation of system (2.6), and integrating along the
homoclinic orbits, it follows that

∫φ∗
31

φ

√
s − cds

(
s − φ3

)√(
φ∗
31 − s

)(
φ∗
32 − s

) = |ξ|. (3.14)

From (3.14) [8], we obtain the solitons (3.5) along with (3.6).
(4)When c, g,G satisfy one of the conditions, that is, (xi) or (xii), there exist homoclinic

orbits as showed individually in Figure 8(f). The expressions of the homoclinic orbits can be
given as follows:

y = ±(φ4 − φ
)
√(

φ − φ∗
41

)(
φ − φ∗

42

)

c − φ , φ∗
42 < φ

∗
41 ≤ φ ≤ φ4 < c, (3.15)

where φ4, φ∗
41, and φ

∗
42 can be obtained from (2.8).

Substituting (3.15) into the first equation of system (2.6), and integrating along the
homoclinic orbits, it follows that

∫φ

φ∗
41

√
c − sds

(
φ4 − s

)√(
s − φ∗

41

)(
s − φ∗

42

) = |ξ|. (3.16)

From (3.16) [8], we obtain the solitons (3.7) along with (3.8).

Theorem 3.2. If constant wave speed c, integral constants g and G satisfy g0(c) < g < g4(c) or
g4(c) < g < g3(c), and G = G∗

1 (c > 0) or G = G∗
2 (c < 0), then there exist kink (antikink) solutions

for system (1.3).
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Proof. We have showed that, when g0(c) < g < g4(c) or g4(c) < g < g3(c), and G = G∗
1 (c > 0)

or G = G∗
2 (c < 0), there exist heteroclinic orbits for system (2.6). The heteroclinic orbits can

be expressed as

y = ±
(
φ − φs

)(
φb − φ

)

√
c − φ , for c > 0, (3.17)

where

φs =
1
12

⎛

⎝−5c + 2
√
c2 − 6g −

√

15
(
11c2 + 4c

√
c2 − 6g + 24g

)
⎞

⎠,

φb =
1
12

⎛

⎝−5c + 2
√
c2 − 6g +

√

15
(
11c2 + 4c

√
c2 − 6g + 24g

)
⎞

⎠,

(3.18)

which can be obtained by substituting (2.23) into (2.20).
Substituting (3.17) into the first equation of system (2.6), and integrating along the

heteroclinic orbits, it follows that

∫φ

φ0

√
c − sds

(
s − φs

)(
φb − s

) = ±ξ, (3.19)

where φ0 ∈ (φs, φb) is the initial value.
From (3.19), we have

(√
c − φs −

√
c − φ

)√c−φs/(φb−φs)

(√
c − φs +

√
c − φ

)√c−φs/(φb−φs)
·

(√
c − φ +

√
c − φb

)√c−φb/(φb−φs)

(√
c − φ −√c − φb

)√c−φb/(φb−φs)

=

(√
c − φs −

√
c − φ0

)√c−φs/(φb−φs)

(√
c − φs +

√
c − φ0

)√c−φs/(φb−φs)
·

(√
c − φ0 +

√
c − φb

)√c−φb/(φb−φs)

(√
c − φ0 −

√
c − φb

)√c−φb/(φb−φs)
e±ξ.

(3.20)

The case when c < 0, can be analyzed similarly. We omit it here for the ease of simplicity.

Theorem 3.3. (1) If g = g4(c), G = 0 and c /= 0, then there exist peakons for system (1.3), which can
be explicitly expressed as

φ =
5
2
ce−|x−ct| − 3

2
c. (3.21)
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(2) If g4(c) ≤ g < g2(c), G = 0 and c /= 0, then system (1.3) has periodic cusp waves

u(x, t) = φ(ξ − 2iT) +
3
2
c, (3.22)

where i = 0,±1,±2, . . . , ξ = x − ct ∈ [(2i − 1)T, (2i + 1)T], and

φ(ξ) =
1
4

(
5c −

√
25c2 − 40g

)
e|x−ct| +

1
4

(
5c +

√
25c2 − 40g

)
e−|x−ct| − 3

2
c, (3.23)

with

T = ln

⎛

⎜
⎝

5c +
√
25c2 − 40g

2
√
10g

⎞

⎟
⎠. (3.24)

Proof. (1) When g = g4(c), G = 0 and c /= 0, from Figure 6, we see that there is a triangle orbit,
which can be expressed as

y = ±
(
φ +

3
2
c

)
, for − 3

2
c ≤ φ ≤ c (c > 0), (3.25)

φ = c, for
∣∣y
∣∣ ≤

√
5
2
c (c > 0). (3.26)

Substituting (3.25) into the first equation of system (2.6), and integrating along the
triangle orbits, it follows that

∫ c

φ

dt
t + (3/2)c

= |ξ|. (3.27)

From (3.27), we obtain peakons (3.21).
(2) When g4(c) ≤ g < g2(c), G = 0 and c /= 0, from Figures 4 and 5, we see that there is

a semiellipse orbit, which can be expressed as

y = ±
√

φ2 + 3cφ +
9
4
c2 − 10g, for

1
2

(
−3c + 2

√
10g
)

≤ φ ≤ c (c > 0), (3.28)

φ = c, for
∣∣y
∣∣ ≤

√
5
(
c2 − 8g

)

2
(c > 0). (3.29)

Substituting (3.28) into the first equation of system (2.6), and integrating along the
semiellipse orbits, it follows that

∫ c

φ

dt
√
t2 + 3ct + (9/4)c2 − 10g

= |ξ|. (3.30)
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From (3.30), we obtain periodic cusp waves (3.22) along with (3.23) and (3.24).
Note that we only show the case when c > 0, in fact, we can analyze the case when

c < 0 following the same procedure. We just omit it here.

4. Conclusions

In this paper, by employing the bifurcation method and qualitative theory of dynamical
systems, we study the bifurcation of traveling wave solutions for a two-component
generalized θ-equation (1.3), show all the explicit parametric conditions and all the phase
portraits of system (1.3) determinately. Through the phase portraits, we can investigate
various kinds of solutions. Specifically, the implicit expressions of the solitons, kink (antikink)
solutions for system (1.3) are given. Besides, we also obtain peakons and periodic cusp waves
with explicit expressions for system (1.3).
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