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A thorough theory of detection problem using active time reversal has been investigated in several
recent papers. Although active time reversal method is theoretically superior to the others, its
practical implementation for target detection is far more difficult. This paper investigates the
detection problem using passive decomposition of the time reversal operator (DORT) method.
Provided that the signal components can be modeled as a linear combination of basis vectors with
an unknown signal subspace, the generalized likelihood ratio test (GLRT) is derived based on
Neyman-Person lemma with the unknown signal subspace replaced by its maximum likelihood
estimation. The test statistics is one of the dominant eigenvalues of the time reversal operator for
a point-like scatterer. Finally, the performance of the DORT detector is investigated with acoustic
data collected from a waveguide tank. The experimental results show that the DORT detector can
provide, respectively, 1.4 dB, 1.1 dB, and 0.8 dB performance gains over the energy detector given
false alarms rate of 0.0001, 0.001, and 0.01.

1. Introduction

It is acoustically difficult to detect a target in shallow water environment, for instance, the
performances of the traditional detectors such as the matched filter are severely degraded
because the echo of active sonar undergoes distortion during two-way propagation and
reflection from the target. One of the approaches to improve the detection performance is
the model-based matched filter that takes advantage of the physical model to enhance signal
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processing [1]. Another compromising solution is the one to model the channel distortion,
such as the segmented replica correlation detector and the replica correlation integration
detector [2, 3].

Time-reversal approaches provide an alternative approach to this kind of problem [4–
7]. The unique feature of time reversal is that it provides a robust set of waves without any
signal analysis, which compensates for the distortion induced by spatial inhomogeneities in
the propagation medium [4]. Two time-reversal approaches, the iterative time-reversal, and
the decomposition of the time reversal operator (DORT) can be employed for detection and
localization of target [6–9].

Time reversal has been intensively studied in ultrasound acoustics and electromagnet-
ics. There have been several recent studies devoted to the detection problem from the statistic
signal processing perspective [10–15]. Reference [12] investigates the detection problem
using the active time reversal of DORT method and the iterative time reversal method in
the context of acoustic wave processing in ocean, while [10, 11] studies the active iterative
time reversal method in the context of electromagnetic wave processing in air.

Although active time reversal method is theoretically superior to the others, its
practical implementation for target detection is far more difficult. As an alternative, this paper
investigates the detection problem using passive DORT method in acoustic wave processing
in ocean. Compared to electromagnetic wave propagation in air, sound propagation in ocean
is more environmentally involved. The terms “active” and “passive” refer to the source-
receiver arrays (SRA): “active” array works when a SRA attempts to focus on a target
by retransmitting an environmentally dependent excitation vector, while “passive” array
functions when a SRA simply transmits signals from individual source elements followed
by processing of the returned time series [16]. Moreover, the performances of the derived
detectors in [12] are only evaluated by numerical simulations. This paper tests the detector
with real acoustic data from waveguide experiments.

The rest of the paper is organized as follows. The mathematical model of binary
hypothesis is derived, and the generalized likelihood ratio test (GLRT) of the DORT approach
is developed in Section 2. The proposed detectors are validated by laboratory waveguide
experiments in Section 3. The conclusions and summary are drawn in Section 4.

2. Theory and Method

2.1. Notations

We denote scalars by lowercase letters, vector quantities by boldface lowercase letters, and
matrices by uppercase boldface. (·)H stands for conjugate transpose; R(A) and I(A) are the
real and the imaginary parts of matrix A, respectively; tr(A) is the sum of the diagonal
elements of A; IN is the identity matrix of size N.

2.2. DORT Measurement

According to the theory of DORT, a SRA of N sensors collects data and then generates a
response matrix with N × N dimension. The matrix is formed by sequentially transmitting
signals from individual source elements of the SRA or orthogonal beams and recording the
backscattered echo on each receiver element [8, 9, 17].
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Provided that a normalized narrow-band signal is transmitted (the angular frequency
ω is thus omitted in the formulas below), the received signals in time are first transformed
into frequency domain. They can be modeled as a sum of interferences and possible signals
whose presence we are trying to detect as follows:

yj = sj + vj , j = 1, 2, . . . ,N, (2.1)

where sj is the signal term and vj is the interference-plus-noise term for jth transmission.
The signal vector sj is assumed to be deterministic but unknown. We model them as

sj = Hθj , which are a linear combination of basis vectors with an unknown signal subspace
H with known rank-p (corresponding to p propagation modes of a scatterer). Considering
that the target is not definitely a point-like scatterer for the application of DORT method,
the signal subspace has dimension p. In practical implementation, H is a N × p matrix, and
each column hi is the Green’s function of the channel between the SRA and one aspect of the
scatterer.

Although the interference vj is the sum of the receiver noise and the reverberation
signal, the DORT method has the ability to separate the echo of a target from reverberation
[18]. We assume that both the receiver noise and the residual reverberation signal can be
modeled as zero-mean white Gaussian random processes [2], that is,

vj ∼ CN
(
0, σ2

vIN
)
. (2.2)

The real and imaginary components of vj are R(vj) ∼ N(0, (σ2
v/2)IN) and I(vj) ∼

N(0, (σ2
v/2)IN), respectively. Although the assumption of Gaussian reverberation may not

always be true, it is often made to facilitate mathematical analysis.
After all the transmission are finished, the total received data can be arranged as a

matrix by [19]

Y =
[
y1
... · · · ...yj

... · · · ...yN
]
. (2.3)

Similarly, the signal matrix can be written as S = [s1
... · · · ...sj

... · · · ...sN].
The detection problem then becomes to choose one of the following two hypotheses:

H0 : Y = V versus H1 : Y = S +V. (2.4)

2.3. The DORT Detector

As shown in [10, 12], the suboptimal detector using GLRT in the Neyman-Pearson sense
is derived as an energy detector in conventional approaches when the Green’s function
of unknown channel is replaced by its maximum likelihood estimation. In this paper a
suboptimal detector using the GLRT approach is derived for the time reversal approach,
which is named the DORT detector.
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The probability density functions (PDF) p(Y | H1) and p(Y | H0) under condition of
H1 andH0 are, respectively,

p(Y | H1) =
1

πNN
(
σ2
v

)NN
etr(−[(Y−S)(Y−S)

H]/σ2
v),

p(Y | H0) =
1

πNN
(
σ2
v

)NN
etr(−[YY

H]/σ2
v).

(2.5)

Recall that the generalized likelihood ratio is defined by the ratio of the likelihood
functions under each hypothesis, but it is maximized over the unknown nuisance parameter
space [20], that is,

max
Θ

p(Y | H1,Θ)
p(Y | H0)

, (2.6)

where Θ denotes the nuisance parameter set, for example, the unknown signal subspace H.
It is assumed that the statistical characterization of the noise is completely known

a priori in this paper. Then the detection problem becomes finding a maximum likelihood
estimate of the signal subspace H, or equivalently, its orthogonal subspace A = [ap+1 · · · aN]
under condition ofH1 [21]. The log-likelihood function of Y underH1 is (ignoring constants)

L = ln p(Y | H1) = − 1
σ2
v

tr
[
(Y − S)H(Y − S)

]
. (2.7)

A maximum likelihood principle to identify the orthogonal subspace A can form a Lagran-
gian for minimizing −2σ2

vL in (2.7) under the constraints aHi S = [0 · · · 0]:

� = tr
[
(Y − S)H(Y − S)

]
+ 2 tr

(
AHSΞ

)
, (2.8)

where Ξ is an (N − p) ×N matrix, it contains the Lagrangians ξij .
Firstly, we can estimate the signal matrix S assuming that the orthogonal subspace A

is known, and then we further maximize likelihood with respect to A (cf. [21] for detailed
derivations). The estimate of signal matrix is

Ŝ = (I − PA)Y, (2.9)

where PA is the projection PA = A(AHA)−1AH .
Substitute (2.9) into (2.7), we obtain

L = − 1
σ2
v

tr
[
PAYYH

]
. (2.10)
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In practice, Y is the measurement of the transfer matrix, and R = YYH is the time reversal
operator. As the subspace A is unknown, we must further maximize likelihood with respect
to it.

Let the time reversal operator have the orthogonal decomposition below

R = UΛ2UT ,

U =
[
u1 · · ·up+1 · · ·uN

]
,

Λ2 = diag
{
λ21 · · ·λ2p+1 · · ·λ2N

}
,

(2.11)

where the eigenvalue matrix Λ2 is sorted in descending order, and the matrix U is composed
of the corresponding eigenvectors. It is then straightforward proved that L is bounded as
follows:

L ≤ − 1
σ2
v

N∑
i=p+1

λ2i (2.12)

for any rank-N − p projector PA.
If Â = [up+1 · · ·uN], the bound is achieved for a projector PA onto the subspace 〈Â〉:

PA = ÂÂH. (2.13)

Clearly, the dominant p eigenvectors form a rank-p signal subspace, and the rest of the
eigenvectors builds a rank-N − p orthogonal subspace A. The estimate of the signal subspace
is

Ĥ =
[
u1 · · ·up

]
. (2.14)

Substituting (2.5), (2.9), and (2.13) into (2.6), and taking the logarithm operation with
constants neglected yields

LDORT = − 1
σ2
v

tr
[
(Y − S)H(Y − S)

]
+

1
σ2
v

tr
[
YHY

]

= − 1
σ2
v

N∑
i=p+1

λ2i +
1
σ2
v

N∑
i=1

λ2i =
1
σ2
v

p∑
i=1

λ2i .

(2.15)

Recall that only a single target is considered, that is, p = 1. That means

LDORT =
1
σ2
v

λ21. (2.16)

Therefore the test statistic is one of the dominant eigenvalues of the time reversal
operator if the signal components are assumed deterministic unknown and modeled as
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a linear combination of basis vectors with an unknown signal subspace. The test statistic
with minimal signal analysis is similar as that obtained in [19], which is 1 + λ21. We call it
DORT detector. Due to its simple procedure of signal processing and no knowledge about
the environment and the array configuration required, the DORT detector can be used to
coarsely search the suspicious objects as a preliminary detector. In next section, we compare
the detection performance of DORT detector with energy detector that is based on the same
detection theory.

3. Experimental Results of Detector Performance

Since it is difficult to theoretically analyze the receiver-operating characteristics (ROC) of
the DORT detector, we study the ROC by Monte Carlo simulation. This section presents
the study on the detection performance of the DORT detector and the performance gain of
DORT detector over the energy detector with a mix of real acoustic data from waveguide
experiments and simulated noise.

3.1. Experimental Setup

The experimental setup is shown in Figure 1. The experiment was performed in a waveguide
tank using a vertical SRA of 32 elements equally spaced at 0.04m apart. The waver tank
can simulate a stationary shallow water environment with multipath propagations, mainly
including direct path, sea surface-reflected path, and sea bottom-reflected path. Each of the
32 elements is individually controlled and amplified during transmission and reception. The
waveguide tank is 14m in length, 1.2m in width, and 1.4m in height. Its three of four vertical
walls are covered with anechoic tiles, the other one is a steel sheet located 12m away from
the SRA. The bottom is a sandstone basement covered with sand of 0.22m thickness.

The transmitted signal is a 0.5ms PCW signal centered at 18 kHz. The wavelength
is about 0.08m. The first source transducer is excited by the transmitted signal. The
backscattered waves received on the N channels of the SRA are stored. This operation is
repeated for all the transducers. Finally a data matrix Y is generated. The target was an air-
filled steel cylinder of 0.21m (2.6λ) in diameter and 0.51m (6.2λ) in length suspended at a
range of 8.2m and a depth of 0.84m. This means that the range of target to SRA is about 100λ
and suspended at depth of 10.5λ.

The water column has a sound of equal speed profile. The bottom is modeled as a
0.22m sand sediment layer above a sandstone basement. The environmental parameters are
following: in the water column, wave speed c1 = 1480m/s; in the bottom layer, sand density
ρ2 = 1800 kg/m3, sand speed c2 = 1650m/s, and attenuation α2 = 0.67 dB per wavelength;
in the basement layer, density ρ3 = 1800 kg/m3, speed c3 = 1580m/s, and attenuation α3 =
0.8 dB per wavelength.

3.2. Signal Processing

In order to obtain high SNR, the time reversal operator is built from short timewindows. That
is, the matrix Y(ω, r) is the Fourier transform Y(t) (the measurement of transfer matrix K(t)
between time t and t + Δt, where t is related to the distance r through the equation t = 2r/c;
c is the sound speed; Δt is the window length [18]. Especially, r0 corresponds to the distance
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Figure 1: Experimental setup and model for the acoustic environment.

of the target. In order to obtain the test statistic in (2.16) using DORT observation matrix
YHY, the range of the target is firstly estimated. The matrix containing the target echo is then
transformed into frequency domain. Finally the test statistic is got by the SVD decomposition
of the matrix. A detailed illustration is shown in this section.

To estimate the distance of the target, aΔt = 0.5ms time windows is shifted by steps of
0.25ms. The selection of the windows length will be illustrated later on. For each distancer,
the matrices Y(r) are calculated at center frequency 18 kHz. After SVD decomposition,
the first eigenvalues are normalized. In the approach of the energy detector, the average
energy of the array at center frequency for each transmission is firstly calculated and
then is accumulated to obtain the total average energy for the all transmissions. There is
another simple method to calculate the energy is to summarize all eigenvalues after SVD
decomposition.

Figure 2 depicts the first normalized eigenvalues and the normalized energies as a
function of distance from 0 to 20m. It can be seen that a peak value appears, respectively, at
the distance of 8.3m for DORT detector and 8.4m for the energy detector, which tells that
both detectors can correctly detect the target (the other peak at the distance of 12m is caused
by the steel sheet).

It is worth noting that the target cannot be simply treated as a point-like scatterer
compared to the wavelength. It has been shown that the diagonalization of the time-reversal
operator permits the various elastic components of the scattered field to be extracted, and
more than one eigenvalue is associated to the scatterer [7]. However, it has been also shown
the strong specular echo can be separated from the Lamb wave by selecting temporally with
a proper time window in the same reference.

Since the distance of the target has been determined, the corresponding time window
Y(ω, r0)which contains the target echo can also be determined. This time-windowed segment
of echo data is used for the following signal analysis and detection performance investigation.
Figure 3 shows eigenvalues of the time-reversal operator at the central frequency for the
windows of increasing duration of Δt = 0.5, 1, 1.5, and 2ms. With the window duration
increasing, all eigenvalues except the first one which is normalized are becoming larger and
larger. It is possible that other propagation modes from the target or reverberation from other
objects contribute to the signals in the time windows for long durations. Hence by choosing
Δt = 0.5ms as the window duration and selecting the time window associated to the strong
specular echo, we still use the first eigenvalue as the test statistic for the DORT detector.

The backpropagation of the first eigenvector is calculated for the center frequency
using KRAKEN [22]. The code KRAKEN is a normal mode propagation model developed
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Figure 2: Target at 8.2m: the first normalized eigenvalues (solid line) and the normalized energies (dashed
line) as a function of distance from 0m to 20m.
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at SACLANT Undersea Research Centre (now Nato Undersea Research Centre). It has been
widely used for modeling ocean environments that are range independent, range dependent,
or fully 3-dimensional. The image is displayed in the range from 1m to 12m on the whole
height of the waveguide. As shown in Figure 4, the peak position in the ambiguity surface is
at a range of 8.47m and a depth of 0.85m. The image provides information about the location
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Figure 4: Numerical backpropagation of the first eigenvector using KRAKEN.

of the target, in almost agreement with the true position (8.2m in range and 0.84m in depth).
The slight discrepancy is possibly caused by inexact environmental parameters in Figure 1.

3.3. Detection Performance

As mentioned in [23, 24], no analytical expression is available for the probability distribution
of the first eigenvalue. Therefore, it is difficult to analytically express detection probability of
DORT detector. The detection performance of DORT detector is numerically evaluated using
Monte Carlo method.

The initial SNR is calculated by the ratio of the signal energy of the target cell to the
energy of the time window near the target cell, which is about 8.2 dB. Note that the initial
SNR is high, we considered that the corresponding time window Y(ω, r0) only contains the
target echo; that is, the signal matrix is replaced by Y(ω, r0) containing noise in practice. To
obtain noisy backscatter at different SNR, we added numerically generated zero-mean white
Gaussian noise to the real data of acoustic backscatter [10]. The SNR is defined as

SNR =
E
{
‖S‖2

}

E
{
‖V‖2

} =

∑N
j=1

∥∥sj
∥∥2

Nσ2
v

. (3.1)

For the practical signal processing, we set σv = 1 and scale the total signal energy to
meet different SNR level. We then further modified the SNR levels in (3.1) according to the
initial SNR to obtain values close to the actual ones.

To study the performance, we evaluated the detection probability PD as a function of
the SNR for a fixed probability of false alarm PFA. In order to obtain the detection threshold,
we, respectively, generated 10000 independent noise realizations and computed the test
statistics given by (2.16) for DORT detector; the resulting 10000 test statistics are, respectively,
sorted in ascending order; the thresholds are then selected so that PFA = 0.0001, PFA = 0.001,
or PFA = 0.01. To compute PD, a new set of 5000 independent noise is generated and added
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acoustic data from laboratory waveguide experiment and simulated noise; analysis (dashed line) versus
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to the actual acoustic data. The test statistics are, respectively, computed and compared to
the corresponding thresholds. The percentage of the number of times that the test statistic
exceeds the threshold is used as an estimate of the detection probability.

Figure 5 shows the results of simulation versus the ones of the energy detector for
PFA = 0.01 developed in [12]. Figure 5 indicates that the simulation result of the energy
detector is in excellent agreement with the theoretical analysis, thus it validated the proposed
design of simulation experiment with a mix of real acoustic data from laboratory waveguide
experiment and simulated noise. Figure 6 shows the detection performance of DORT detector
and that of the energy detector. It can be seen that DORT detector provides detection gain
with respect to the energy detector, except that the energy detector performs better in the
case that the detection probabilities for both detectors is lower than 0.2 for extremely low
SNR. For instance, we measured the performance gains by the relative SNR required to
achieve detection probabilities of 0.5 given false alarm rates of 0.0001, 0.001, and 0.01. The
performance gains of the DORT detector with respect to the energy detector are respectively
about, 1.4 dB, 1.1 dB, and 0.8 dB. It should be pointed out that no knowledge and modeling
of the propagation medium are needed for the design of DORT detector.

The reason that the DORT detector has performance gain over energy detector can be
explained as follows. In fact, the test statistic of the energy detector can also be expressed as
the summarization of all eigenvalues λ21 + λ22 + · · ·λ2N after SVD decomposition, instead of λ21
for the DORT detector. The increment of the first eigenvalue is relatively larger than that of
the others with SNR increasing, which can be implied in Figure 3. With the window duration
increasing, the others are being more and more small compared to the first eigenvalue due to
more noises are contained in the observation matrix.

4. Conclusion
In this paper, the target detection using passive DORT method is presented and discussed.
The mathematical models of detection problem are developed using a sequence of collected
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data from typical DORT transmission. It is proved that the DORT detector can be derived
with the unknown signal subspace replaced by its maximum likelihood estimate, if the signal
components are assumed deterministic unknown and modeled as a linear combination of
basis vectors with an unknown signal subspace; in addition, one of the dominant eigenvalue
of the time reversal operator is the test statistic for point-like scatterer. Finally, the DORT
detector and the energy detector are tested with the real acoustic data collected in the
laboratory waveguide experiment.

The detection experiments using DORTmethod are conductedwith the datameasured
from a 32 elements vertical SRA. A target has been detected and correctly located within the
water depth. The experimental results show that the DORT detector can provide, respectively,
1.4 dB, 1.1 dB, and 0.8 dB performance gains over the energy detector given false alarms rate
of 0.0001, 0.001, and 0.01. It should be pointed out that this paper only focuses on the passive
time reversal method in which the SRA simply transmits conventional signals followed by
processing of the returned time data series. Therefore, the detection gain is mainly provided
by the decomposition that can separate the target echo from other contributions, but not
by the adaption, say, the transmitted wavefront matched to the channel as the active time
reversal methods. For future work, the detection problems for p independent point-like
scatterers or in unstationary ocean environments using DORT method should be further
investigated.
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