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The wagon flow scheduling plays a very important role in transportation activities in railway
bureau. However, it is difficult to implement in the actual decision-making process of wagon flow
scheduling that compiled under certain environment, because of the interferences of uncertain
information, such as train arrival time, train classify time, train assemble time, and flexible train-
size limitation. Based on existing research results, considering the stochasticity of all kinds of train
operation time and fuzziness of train-size limitation of the departure train, aimed at maximizing
the satisfaction of departure train-size limitation and minimizing the wagon residence time at
railway station, a stochastic chance-constrained fuzzy multiobjective model for flexible wagon
flow scheduling problem is established in this paper. Moreover, a hybrid intelligent algorithm
based on ant colony optimization (ACO) and genetic algorithm (GA) is also provided to solve
this model. Finally, the rationality and effectiveness of the model and algorithm are verified
through a numerical example, and the results prove that the accuracy of the train work plan
could be improved by the model and algorithm; consequently, it has a good robustness and
operability.

1. Introduction

The train work plan is the core of the daily work plan and the data hub of types of scheduling
work in railway bureau. It plays an important role as the whole link between Railway
Ministry of China and railway stations and depots. The main purpose of train work plan is
to allocate wagons to departure trains. And the wagon flow has to match the time limitation
of wagon operations on marshalling stations and the wagon flow direction and train-size
limitation. Besides, the train work plan has to meet the demand of wagon loading plan and
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empty wagon reposition plan. All these train operations could be classified as wagon flow
scheduling problem. The optimization objective of wagon flow scheduling is to accelerate the
rolling stock turnover, to reduce the wagon residence time at railway stations, and to reduce
the empty wagon running distance.

For railway wagon flow scheduling problem, many scholars have done a lot of
beneficial researches, especially for wagon flow scheduling in railway marshalling stations.
Gulbroden studied the railway scheduling in marshalling station by using operations
research [1]. Yager and his partner developed an efficient sequencing model for humping
in railway marshalling stations [2]. Carey and Carville developed scheduling heuristics
analogous to those successfully adopted by train planners using “manual” methods [3].
Lentink et al. discussed how to use network flow method to establish mathematical model
to solve train scheduling problem [4]. The robust optimization in railway transportation is
discussed by Marton et al. in 2007 [5].

In China, many railway transportation organization methods are fundamentally
different from other countries. Wang presented a concept of “price” and used some techniques
to transform the wagon flow allocating problem into a transportation problem model in
operations research; the objective of the model is to minimize the total price so that the
satisfactory solution can be attained by using the calculating method on table [6]. It is worthy
of mentioning that the literature [7] is one of the most important literatures in this research
field, and many successive studies derive from this. He et al. developed a fuzzy dispatching
model for wagon flow scheduling in railway marshalling station and designed a genetic
algorithm to obtain the satisfactory solution [8]. And He et al. developed an integrated
dispatching model for railway station operations and a computer-aided decision support
system [9]. Liu et al. developed a chance-constrained programming model which aimed to
reduce the residence time of wagons in the marshalling station and the average delay time of
departure trains and designed an improved genetic algorithm to solve the problem [10]. Li et
al. addressed the problem of optimizing the marshalling station stage plan with the random
train arrival time and developed a dependent-chance programming model and designed a
hybrid intelligent algorithm based on stochastic simulation and tabu search [11]. And Li et
al. put forwarded a brief survey of stage plans under certain and uncertain environments
and with computer-aided dispatching methods and systems. He pointed out the existing
and unresolved problems in application of the current theories and methods. What is more,
he investigated the direction of future research of railway marshalling stations stage plan
[12].

In recent years, with the wide use of Train Dispatch andManagement System (TDMS)
and Synthetically Automatic Marshalling (SAM) station system in China, the wagon flow
information between railway bureau and railway stations are shared completely, so we put
forward a new transportation organization concept that is “integralization of railway bureau
and railway stations.” Thus the wagon flow scheduling in railway bureau can replace the
railway station wagon flow scheduling in great extent, and the accuracy of the wagon
flow scheduling plan and the overall transportation organization efficiency can be improved
dramatically.

Based on above literatures and practical situation in China, considering all kinds of
uncertain factors in wagon flow scheduling, such as the stochastic train arrival time and
fuzzy train-size limitation of the departure trains, a stochastic chance-constrained fuzzy
multiobjective model for the flexible wagon flow scheduling problem is set up. And a hybrid
intelligent algorithm based on ant colony optimization (ACO) and genetic algorithm (GA) is
also given in this paper.
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2. Stochastic Chance-Constrained Fuzzy Programming Model

In this section, we aim at maximizing the satisfaction of departure train-size limitation
and minimizing the wagon residence time at railway station to establish the multiobjective
optimization model for wagon flow scheduling problem in railway bureau. First, we analyze
and formulate the constraints of wagon flow scheduling by considering the some uncertain
factor. Then we will summarize and formulate the objective function.

2.1. Start Time Constraints to Classify a Train

The train arrival time is stochastic. The lag between train actual and planed arrival time is a
random variable with normal distribution, denoted by εi. Let Ti′′ be the planed arrival time
of train i, so the actual arrival time of train i is Ti

′ = Ti
′′ + εi, Ti the earliest time after the

inspection of train i, Ti = T ′
i + ai, where ai is the inspection time of train i. Assume that a train

classifying process is in a time segment k. Let tk be the start time to classify a train in the
kth time segment, Jik a boolean variable whose value is 1 if train i is classified in the kth time
segment, otherwise the value is 0; let n be the total number of arriving trains in the stage [8].
So the start time constraints to classify a train are as follows:

Pr

(
tk −

n∑
i=1

TiJ
i
k ≥ 0

)
≥ α1, k = 1, 2, . . . , n. (2.1)

Expression (2.1) denotes that the start time to classify train i in the kth time segment
must be after the end time of inspection train i. Because of the stochasticity of train arrival
time, the end time of train inspection is also stochastic. The expression (2.1) is chance
constrained, and the probability of expression (2.1)’s holding is more than or equal to α1,
where α1 is the given confidence level.

2.2. Start Time Constraints to Assemble a Train

Assume that a train assemble process is in a time segment k′. Let bj be the process time of
assemble train j; it is a random variable with normal distribution. Let n′ be the total number
of departure trains in the stage.

Let t′
k′ be the start time to assemble a departure train in the kth time segment, Pjk′

ik
be a

boolean variable whose value is 1 if train iwhich is classified in the kth time segment delivers
wagons to departure train j which is assembled in the k′th time segment, otherwise the value
is 0 [7]. So the start time constraints to assemble a departure train are as follows:

Pr

⎛
⎝tk +

n∑
i=1

jiJ
i
k − t′k′ ≤ M

⎛
⎝1 −

n∑
i=1

n′∑
j=1

P
jk′

ik

⎞
⎠
⎞
⎠ ≥ α2, k = 1, 2, . . . , n; k′ = 1, 2, . . . , n′, (2.2)

where ji is the random classifying time of train i with normal distribution. And M is an
extremely big positive number. Expression (2.2) denotes that the start time to assemble train
j in the k′th time segment must be after the end time to classify train i if inbound train i
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delivers wagons to departure train j. And the probability of expression (2.2)’s holding is
more than or equal to α2, where α2 is the given confidence level.

2.3. Wagon Flow Delivers Relationship Constraints

Letmir be the arrival wagon number in classified train iwhose destination is direction r. And
vj is the train-size limitation of departure train j, q is total number of destination direction in
arrival train, xj

ir is decision variable which means the departure train j wagon number whose
destination direction is r and from arrival train i, and Ω(j) is the total destination direction
number of departure train j. Qj is a boolean variable, its value is 1 if the jth scheduled
departure line is occupied by the train, otherwise the value is 0 [7]. So wagon flow delivers
relationship constraints that are as follows:

n′∑
j=1

x
j

ir = mir, i = 1, 2, . . . , n; r = 1, 2, . . . q, (2.3)

n∑
i=1

q∑
r=1

x
j

ir = vj •Qj, j = 1, 2, . . . , n′. (2.4)

Expression (2.3) denotes that the wagon to direction r from arrival train i can be
delivered to different departure train with the same direction. Expression (2.4) denotes the
departure train-size limitation which will be further discussed in Section 2.6.

2.4. Train Departure Time Constraints

Let d′
j be the scheduled departure time of train j in train timetable, hj the inspection time of

departure train j, z the convoy time needed of the departure train from classification yard
to departure yard, dj the latest time of the assembling of train j that should be completed,
dj = d′

j − hj − z, Bj

k′ a boolean variable whose value is 1 if train j is assembled in the kth time
segment, otherwise the value is 0, and d∗

j the lag between train j scheduled departure time
and actual departure time [9]. So train departure time constraints are as follows:

Pr
(
t′k′ + bjB

j

k′ − dj ≤ M
(
1 − B

j

k′

))
≥ α3, k′ = 1, 2, . . . , n′; j = 1, 2, . . . , n′. (2.5)

Expression (2.5) denotes that the completed time to assemble train j must not exceed
the latest time that is determined by the train timetable so that train j will depart on time.
As the classifying time of a train is stochastic, the probability of expression (2.5)’s holding is
more than or equal to α3, where α3 is the given confidence level. And M is an extremely big
positive number.
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2.5. Logic Constraints

In order to guarantee the logical relationships among variables in the model, the following
logic constraints have to conform [8]:

n∑
i=1

Jik = 1, k = 1, 2, . . . , n,

n∑
k=1

Jik = 1, i = 1, 2 . . . , n.

(2.6)

Expression (2.6) denotes only one train can be classified in each time segment; one
train can be classified only once:

n′∑
j=1

B
j

k′ = 1, k′ = 1, 2 . . . , n′,

n′∑
k′=1

B
j

k′ = 1, j = 1, 2 . . . , n′.

(2.7)

Expression (2.7) denotes only one train can be assembled in each time segment; one
train can be assembled only once:

n′∑
j=1

n′∑
k′=1

P
jk′

ik ≤ M · Jik, i = 1, 2, . . . , n; k = 1, 2, . . . , n. (2.8)

Expression (2.8) denotes if the arrival train delivers wagons to departure train j; train
imust be classified, where M is an extremely big positive number:

n∑
i=1

n∑
k=1

P
jk′

ik ≤ M · Bj

k′ , j = 1, 2, . . . , n′; k′ = 1, 2 . . . , n′. (2.9)

Expression (2.9) denotes if the departure train jwill be assembled; it must have arrival
trains deliver their wagons to the departure train j, where M is an extremely big positive
number:

Jik ∈ {0, 1}, P
jk′

ik
∈ {0, 1},

B
j

k′ ∈ {0, 1}, Qj ∈ {0, 1},
i = 1, 2, . . . , n, j = 1, 2, . . . n′,

k = 1, 2, . . . , n, j = 1, 2, . . . n′.

(2.10)
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2.6. Objective Function

Let Te be the end time of the wagon flow scheduling stage, then the objective function is as
follows [8]:

maxZ1 =
n′∑
j=1

(
n∑
i=1

x
j

i

(
Te − d′

j − d∗
j

))
. (2.11)

Let λj(xj) be the satisfactory function of the actual train size xj compared to the
expected train-size vj ; it is a trapezoidal form fuzzy number as follows [8]:

λj
(
xj

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, xj < v1
j ;

xj − v1
j

v1
j − v1

j

, v1
j ≤ xj < v1

j ;

1, v1
j ≤ xj ≤ v2

j ;
v2
j − xj

v2
j − v2

j

, v2
j < xj ≤ v2

j ;

0, xj > v2
j ,

(2.12)

where v1
j is the minimum number, v2

j is the maximum number, and [v1
j , v

2
j ] is the expected

interval of numbers.
Considering the fuzzy train-size limitation of departure train, we formulated the

second objective function:

maxZ2 =
n′∑
j=1

λj

(
n∑
i=1

x
j

i

)
. (2.13)

3. Chance Constraint Conversion

For a chance constraint Pr{g(x, ξ) ≤ 0} ≥ α, where ξ is a random variable with distribution
function Φ, if function g(x, ξ) has the form g(x, ξ) = h(x) − ξ, then Pr{g(x, ξ) ≤ 0} ≥ α if and
only if h(x) ≤ Kα, whereKα = sup{K | K = Φ−1(1 − α)}. So the deterministic equivalent form
of Pr{g(x, ξ) ≤ 0} ≥ α is as follows [13]:

h(x) ≤ Kα, Kα = sup
{
K | K = Φ−1(1 − α)

}
. (3.1)

The same goes for Pr{g(x, ξ) ≥ 0} ≥ α; the deterministic equivalent form is as follows
[13]:

h(x) ≥ Kα, Kα = inf
{
K | K = Φ−1(α)

}
. (3.2)
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We can convert all the chance constraints in the model above into deterministic
equivalent form by expressions (3.1) and (3.2). LetΦJ be the probability distribution function
of ji, ΦD the probability distribution function of εi, and ΦB the probability distribution
function of bj , and then we have the following deterministic equivalent form.

Equivalence formula for expression (2.1) is

tk −
(
T ′′
i + ai + Φ−1

D (α1)
)
·

n∑
i=1

Jik ≥ 0, k = 1, 2, . . . , n. (3.3)

Equivalence formula for expression (2.2) is

M

⎛
⎝1 −

n∑
i=1

n′∑
j=1

P
jk′

ik

⎞
⎠ + t′k − tk −Φ−1

J (α2) ·
n∑
i=1

Jik ≥ 0, k = 1, 2, . . . , n; k′ = 1, 2, . . . , n′. (3.4)

Equivalence formula for expression (2.5) is

M
(
1 − B

j

k′

)
− t′k′ −Φ−1

B (α3) · Bj

k′ + dj ≥ 0, k′ = 1, 2, . . . , n′; j = 1, 2, . . . , n′. (3.5)

4. A Hybrid Algorithm Based on ACO and GA

The wagon flow scheduling problem is an NP-complete problem proved by Dahlhaus et
al. [14]. In this section, we focus on the hybrid algorithm design based on ant colony
optimization (ACO) and genetic algorithm (GA). ACO algorithms are the most successful
and widely recognized algorithmic techniques based on ant behaviors, initially proposed
by Dorigo in 1992 in his Ph.D. thesis [15]. Genetic algorithms are developed by Holland in
1975. It is a powerful and broadly applicable stochastic search and optimization techniques,
inspired by natural evolution, such as inheritance, crossover, mutation, and selection [16].
In this paper, the hybrid algorithm is mainly based on ACO; the crossover and mutation
operator of GA is used to avoid the “premature” or “stagnation” of ACO.

Let the arrival train set be DD whose element is dd1, dd2, . . . , ddm ordered by the
train arrival time, and let the departure train set be CF whose element is cf1, cf2, . . . , cfn

ordered by the train departure time in this stage. These two sets are denoted by DD =
{dd1, dd2, . . . , ddm} and CF = {cf1, cf2, . . . , cfn}, respectively. The train makeup destination
direction is a set denoted by Ω = {r1, r2, . . . , rq} [6].

From Section 2.1, we know that T ′
i = T ′′

i + εi, Ti = T ′
i + ai is the earliest start time

to classify train i, so the actual classifying time cannot be earlier than Ti. Let tk be actual
start time to classify train i in the time segment k. Assume that the departure train sequence
is j1, j2 . . . jm′ in which arrival train can deliver wagons to them and their departure time is
d′
j1, d

′
j2, . . . d

′
jm′ . From the train operating process, it is known that if the end time to classify

the arrival train is later than d′
jn − hj − z − bj (where 1 ≤ n ≤ m′), then the arrival train cannot

deliver wagons to the departure train.
Define the classifying time window [Ei,Di] for train i, where Ei is the earliest start

time and Di the latest end time to classify train i. Thus the actual classifying time should be
between Ei and Di. Let ωi be the penalty factor for the delay to classify train i, and in this
paper ωi is the wagon number of arrival train i.



8 Mathematical Problems in Engineering

4.1. Initialization

A classifying sequence of arrival trains can be regarded as an ant’s travel path. For example,
(3, 1, 5, . . . , i) represents the trains classified by the order 3, 1, 5, . . . i, and there are n nodes
on the path which represents the arrive trains, respectively. If the ith ant passing node is j,
it means putting the arrival train j in the position i to classify. In the process of ants travel,
the passed nodes make up the train collection and it is the taboo list tabuk, so the every
completion of ant’s travel makes a new solution.

4.2. Transition Probability

Let L = {(i1, i2) | i1, i2 ∈ DD}, and we set up a network G = (DD,L), the purpose about this
network is to search path that mostly satisfies the constraints of the departure train, such as
train-size limitation, punctuality, and inviolate wagon flow direction. At first the pheromone
on each edge is equal. And then every ant must make a choice to move to next node; it means
that train will be classified in next step.

Suppose that, at time t, the probability of ants s to transfer from train i1 to train i2 is
[15, 17]

Ps
i1,i2(t) =

⎧⎪⎪⎨
⎪⎪⎩

[τi1,i2]α ·
[
ηi1,i2

]β
∑

z/∈tabuk [τi1,z]
α · [ηi1,z]β , i2 /∈ tabuk

0, i2 ∈ tabuk,

(4.1)

in which ηi1,i2 is the heuristic information

ηi1,i2 =
1

di + ξ1[ωi max(0, Ci −Di)] + ξ2
(
(Di − Ei)/bj

) . (4.2)

The tabuk is the tabu list that stands for the set of arrival train which has already been
classified; Ci is the end time for the actual classifying time of train i; ξ1 and ξ2 are the weight
coefficients; bj is the time of classifying operation; α and β are the parameters used to control
the relative importance of pheromone and heuristic information.

4.3. Selection and Local Search Strategy

Let q0 be a constant, q ∈ (0, 1) is a random number, if q ≤ q0, the next node the ants transfer
to is a node that makes [τi1,i2]

α · [ηi1,i2]β has the maximum value; otherwise, the node will be
ensured upon the transition probability by taking the traditional roulette method.

If a local optimal solution is found in the early iteration of ACO, it is easier to appear
“premature” or “stagnation” phenomenon, and there is also a need to apply a local search
strategy in order to adjust the obviously inappropriate classifying order. So the crossover and
mutation strategy of GA is adopted in this paper.

When an ant completes a tour, a train classifying sequence is obtained, then static
wagon allocating method is adopted to calculate the “price” of the classifying sequence [6],
and then two of the “minimum price” classifying sequences are selected to crossover.
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The crossover strategy [18]: for chromosomes P1 and P2, randomly generating two
random numbers to determine the crossover position, exchange the classifying order between
the crossover locations P1 and P2; if the gene is repeated between and outside of the
crossover position, then delete the gene in this location, and then put the lacked gene to
the chromosome by ascending order, and then the new chromosomes P ′′

1 and P ′′
2 are obtained.

Then we calculate P ′′
1 and P ′′

2 classifying price and compare to the corresponding price of
P1 and P2. We select the minimum price chromosome P and execute mutation operation,
exchange the genes of the two positions which are determined by two random numbers, and
calculate the price. Thus the current optimal classifying sequence is represented by the path
where the price is the less one of P and P ′.

4.4. Pheromone Updating Strategy

The pheromone can be updated as follows:

τi1,i2(t + 1) =
(
1 − ρ

)
τi1,i2(t) + Δτi1,i2, (4.3)

where ρ is the parameter to control the pheromone evaporation rate between time t and t+ 1;
1 − ρ is the retention of the pheromone in the current path. At the beginning, τi1,i2 = c (c is
a constant), and Δτi1,i2(t + 1) is the residues pheromone on the passing edge. If the current
path is the optimal one, then Δτi1,i2(t + 1) = 1/P ∗, where P ∗ is the total price of the optimal
sequence; otherwise, Δτi1,i2(t + 1) = 0.

4.5. The Steps of the Algorithm

Step 1. Initialization. According to the train arrival information to calculate train the
classifying time window, and initialize wagon allocating price table. Set the same amount
of pheromone on each edge.

Step 2. Sort trains by their arrival time, and update the wagon allocating price table and
calculate the price.

Step 3. Place each ant to each node in G, and set tabu list with the corresponding node.

Step 4. Take an ant, calculate the transition probability of selecting the next node to update
the tabu list, and then calculate the transition probability, select the node, and update the tabu
list again until traverse through all the nodes.

Step 5. Calculate the pheromone that the ant left to each edge, then the ant die.

Step 6. Repeat Steps 3 and 4 until all the ants finish their tour.

Step 7. Calculate the prices of each path that ants choose.

Step 8. Choosing two of the smallest price paths (a path represents a chromosome) P1 and P2

to compare with path in Step 3, select the less one and make them crossover to obtain new
paths P ′′

1 and P ′′
2 .
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Table 1: Information of arrival trains.

Train code Arrival time Train makeup Train code Arrival time Train makeup
dd0 0 A/15, B/22, C/10, D/12 dd6 112 A/24, D/22
dd1 10 A/30, B/20 dd7 136 A/25, C/23
dd2 35 A/15, C/35 dd8 152 B/20,C/10, D/18
dd3 41 A/35, C/15 dd9 172 A/30, C/18
dd4 58 B/15, C/15, D/15 dd10 208 B/25, C/20
dd5 92 B/20, d/25 dd11 225 A/20, C/23

Step 9. Calculate paths price of P ′′
1 and P ′′

2 , compare with the prices of P1 and P2, and select
one of the smallest P .

Step 10. Execute mutation operation for P , and calculate the path price after the mutation
compared with the price of P , and then select the less one as the optimal path so far.

Step 11. Update the current optimal path, and empty the tabu list tabuk.

Step 12. Judge whether the iterations hit the predetermined number, or whether there is
stagnation. If it does, we terminate the algorithm and the output current optimal path;
otherwise, go to Step 3, execute the next loop of iteration.

5. An Illustrative Example

We take a certain wagon flow scheduling platform as example in one of the railway bureaus
in China. Assume that some technological standard operation time is as follows: convoy time
is 10min, arrival inspection time is 35min, and departure inspection time is 25min. The lag
between train actual and planed arrival time is a normal distribution variable N(0, 5), train
classify time obeysN(15, 3), and train assemble time obeysN(15, 3), and departure train-size
limitation is a fuzzy trapezoidal variable with parameters of (40, 45, 50, 52).

Since train classify and assemble time conformsN(μ, σ2), and the equivalence formula
of them can convert to inf{K | K = Φ−1(α)} by expression (3.4), so Φ−1(0.95) = 1.6449 when
the confidence level α = 95%.

The arrival train information is shown as in Table 1. In the convenience of calculating,
we set the start time stage is 0 and convert the train arrival time is an integer number which
stands for the minutes that train arrival from the stage start time [19]. And assume that there
are four train destination directions denoted by A, B, C, and D. The train 0 is a dummy train
that represents the wagon flow in the beginning of this stage.

Suppose that all the arrival train can be classified immediately. We can calculate the
initial wagon allocating price table according to static wagon allocating problem [6]. In
this paper, the Java programming language is used to implement the algorithm above with
parameters α = 1, β = 1, ξ1 = 1, ξ2 = 2, q0 = 0.6, ρ = 0.7. The satisfactory solution of wagon
flow scheduling is shown in Table 2.

From Table 2, we know that all of the departure trains meet the train-size limitation
from the point of the fuzzy constraint. And in this stage, there are 495 wagons scheduled
to the departure trains. Since we consider the stochasticity and fuzziness in the model and
algorithm, the robustness and operability of the work plan of railway bureau is prompted
greatly.
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6. Conclusions

In this paper, considering the stochasticity of train arrival time, train classify time,
and train assemble time and fuzzy train-size limitation, a stochastic chance-constrained
fuzzy multiobjective model for wagon flow scheduling is set up based on the uncertain
programming theory. By analyzing the model in detail, a hybrid intelligent algorithm based
on ACO and GA is given. Furthermore, a numerical example is also offered to verify the
rationality and effectiveness of the model and algorithm. As we know, the China railway
informatization is very fast in recent years. But the TDMS, SAM, and other management
information system are separate and not intelligent in some extent. So it needs to integrate the
related systems by optimizing the transportation business models. The model and algorithm
proposed in this paper provide the theoretical basis for integrating and optimizing the related
systems. We hope the TDMS and SAM will be more practical and intelligent by using our
model and algorithm in this paper.

In the future, we will study how to refine the basic wagon flow information, as well
as the robust theory for wagon flow scheduling, and how to use synergetic theory in wagon
flow and locomotive scheduling.
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