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We provide new preconditioners with two variable relaxation parameters for the saddle point
linear systems arising from finite element discretization of time-harmonic Maxwell equations in
mixed form. The new preconditioners are of block-triangular forms and Schur complement-free.
They are extensions of the results in Cheng et al., 2009, Grief and Schötzau, 2007, and Huang et al.,
2009. Theoretical analysis shows that all eigenvalues of the preconditioned matrices are tightly
clustered, and numerical tests confirm our analysis.

1. Introduction

We consider the preconditioning techniques for solving the saddle point linear systems
arising from finite element discretization of the following time-harmonic Maxwell equations
in mixed form [1–5]: find the vector field u and the Lagrangian multiplier p such that

∇ × ∇ × u − k2u +∇p = f in Ω,

∇ · u = 0 in Ω,

u × �n = 0 on ∂Ω,

p = 0 on ∂Ω.

(1.1)

Here, Ω ⊂ R
2 is a simply connected polyhedron domain with a connected boundary ∂Ω, and

�n denotes the outward unit normal on ∂Ω. The datum f is a given source (not necessarily
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divergence-free), and the wave number k2 = ω2εμ, where ω ≥ 0 is the frequency, and ε and μ
are positive permittivity and permeability parameters, respectively.

In recent years, there have been many techniques for solving Maxwell equations,
such as the geometry multigrid methods [6–8], algebraic multigrid methods [9], domain
decomposition methods [4, 10–13], Nodal auxiliary space preconditioning methods [14], and
the solution methods to the corresponding saddle-point linear systems [2, 3, 15]. We can also
use Uzawa-type iterative methods [16, 17] and preconditioned Krylov subspace methods
[18–24] to solve the saddle-point linear systems. Based on the previous works in [2, 3, 15],
we will further study solution methods for the saddle-point linear systems in this paper.

Using Nédélec elements of the first kind [25–27] for the approximation of the vector
field and standard nodal elements for the Lagrangian multiplier yields the following saddle-
point linear system:

Ax ≡
(
A − k2M BT

B 0

)(
u
p

)
=
(
g
0

)
≡ b, (1.2)

where u ∈ Rn and p ∈ Rm are finite arrays, and g ∈ Rn is a load vector associated with f .
The matrix A ∈ Rn×n is symmetric positive semidefinite with nullity m and corresponds to
the curl-curl operator; B ∈ Rm×n is a discrete divergence operator with full-row rank, and
M ∈ Rn×n is a vector mass matrix.

For convenience, we denote the standard Euclidean inner product of vectors by 〈·, ·〉
and the null space of a matrix by null (·). For a given positive (semi)definite matrix W and a
vector x, we define the (semi)norm:

|x|W =
√
〈Wx, x〉. (1.3)

The matrices A and B have the following stability properties [3]. Let 〈Au, u〉 = |u|2A.
Then there exists an α, 0 < α < 1, such that

|u|2A ≥ α|u|2M, u ∈ null(B), (1.4)

where α = α/(1 − α). Matrix B satisfies the discrete inf-sup condition:

inf
0/= q∈Rm

sup
0/=v∈ null(A)

〈
Bv, q

〉
|v|M

∣∣q∣∣L ≥ β > 0, (1.5)

where the inf-sup constant β > 0 is only dependent on the domain Ω.
If the wave number k2 > 0, then the (1, 1) block of (1.2) is indefinite. For difficulty

and corresponding solution methods of this problem, we refer to [18, 28]. Recently, by using
the spectral equivalent properties similar to [4], Grief and Schötzau [3] construct the block-
diagonal preconditioner:

Mk =
(
A − k2M + BTL−1B 0

0 L

)
, (1.6)

where L ∈ Rm×m is the discrete Laplace operator introduced in [3], k2 < 1, and Mk is
a symmetric positive definite block-diagonal matrix. As L is augmentation-free and Schur
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complement-free, this approach overcomes the difficulty in forming the Schur complement
in general. However, the computational work of BTL−1B may be too large. Using the fact that
the matrices A + BTL−1B and A + M are spectrally equivalent, [3] considers the following
preconditioner:

M̂k =
(
A +

(
1 − k2)M 0
0 L

)
, (1.7)

and shows that the eigenvalues of the preconditioned matrix are tightly clustered.
Based on the work of Grief and Schötzau [3], [2] gives block-triangular Schur

complement-free preconditioners for the linear system (1.2). And it is shown that all
eigenvalues of the proposed block-triangular preconditioning matrices are more tightly
clustered. Compared with the restriction k2 < 1 in [3], [2] considers the general case k2 ∈ R+.
Furthermore, [15] provides block-triangular preconditioners when k2 = 0 with two variable
relaxation parameters.

Based on the previous work [2, 3, 15], mentioned above, in this paper we are
devoted to give new preconditioners with two scaling parameters. The new block triangular
preconditioners in the general case k2 ∈ R+ contain the preconditioners discussed in [2].
Theoretical analysis shows that all eigenvalues of the preconditioned matrices are tightly
clustered. Numerical experiments demonstrate efficiency of the new method and show that
preconditioner M̂k,η,ε is more efficient than M̂k,t.

The remainder of the paper is as follows. In Section 2, we establish new block-
triangular preconditioners for the linear systems (1.2) in the general case k2 ∈ R+, and then
the corresponding spectral analysis is presented. In Section 3, we provide numerical examples
to examine our analysis. Finally, some conclusions are drawn in Section 4.

2. New Block-Triangular Preconditioners for Any k2

We consider the saddle-point linear system (1.2) arising from the discretized time-harmonic
Maxwell equations in mixed form (1.1) and assume that k2 is not an eigenvalue and k2 ∈ R+.

Grief and Schötzau [3] provide the block-diagonal Schur complement-free precondi-
tioner Mk as in (1.6). Using the fact that the matrices A + BTL−1B and A + M are spectrally
equivalent, the argumentation-free and Schur complement-free preconditioner M̂k is defined
in (1.7). Spectral analysis shows that the eigenvalues of the preconditioned saddle-point
matrices M−1

k A and M̂−1
k A are strongly clustered when k2 is small.

Reference [2] provides the block-triangular Schur complement-free preconditioners
for the linear system (1.2). In particular, they considered preconditioning matrices for the
general case k2 ∈ R+ with

Mk,t =

⎛
⎝A − k2M + tBTL−1B tBT

0
1 − t

t
L

⎞
⎠,

M̂k,t =

⎛
⎝A +

(
t − k2)M tBT

0
1 − t

t
L

⎞
⎠,

(2.1)

where 1/= t > k2.



4 Mathematical Problems in Engineering

For k2 = 0, [15] provides the block-triangular preconditioner for linear system (1.2):

Pη,ε =
(
A + ηBTL−1B

(
1 − ηε

)
BT

0 εL

)
, (2.2)

where η > 0 and ε > 0.
Based on the works in [2, 3, 15], we provide the following new block-triangular Schur

complement-free preconditioners Mk,η,ε and M̂k,η,ε:

Mk,η,ε =
(
A − k2M + ηBTL−1B

(
1 − ηε

)
BT

0 εL

)
, (2.3)

M̂k,η,ε =
(
A +

(
η − k2)M (

1 − ηε
)
BT

0 εL

)
, (2.4)

where η > k2 and ε /= 0 are scaling parameters. It is interesting to note that when parameters
η = t and ε = (1 − t)/t,Mk,η,ε and M̂k,η,ε apparently reduce to Mk,t and M̂k,t, respectively. We
also see that when k2 = 0, the preconditioner Mk,η,ε in (2.3) (ε /= 0) is different from Pη,ε in
(2.2) (ε > 0).

We stress thatMk,η,ε is not the preconditioner we eventually use in actual computation.
It is only introduced to lay theoretical basis and motivation for the preconditioner M̂k,η,ε in
(2.4), which we will use in practice. We note that the (1,1) blockA− k2M + ηBTL−1B inMk,η,ε

is symmetric positive definite for k is sufficiently small [3]. But this is not true when k is large
enough. However, this situation may not appear in the actual preconditioner M̂k,η,ε. The (1,1)
blockA+(η−k2)M in M̂k,η,ε is always symmetric positive definite when η > k2. In this paper,
we will apply the BiCGSTAB with the preconditioner M̂k,η,ε as an outer solver for the saddle-
point system (1.2). Then, the overall computational cost of solution procedure relies on how
to efficiently solve the linear systems A + τM(τ = η − k2) and L, which are called by inner
solvers. For the linear system L arising from a standard scalar elliptic problem, many efficient
solution methods exist. On the other hand, for solving the linear system A + τM, we refer to
[6, 8, 9, 14], and some detailed numerical examples are provided in [29].

For the spectral analysis, we recall some results which are contained in the following
lemma.

Lemma 2.1 (see [3]). The following relations hold:

(i) Rn = null(A) ⊕ null(B);

(ii) 〈MuA, uB〉 = 0 for any uA ∈ null(A) and any uB ∈ null(B);

(iii) 〈BTL−1BuA, uA〉 = 〈MuA, uA〉 for any uA ∈ null(A).

Theorem 2.2. Let A be the saddle-point matrix in (1.2). Then the matrix M−1
k,η,ε

A has two distinct
eigenvalues, which are given by

λ1 = 1, λ2 = − 1
ε
(
η − k2

) , (2.5)

with the algebraic multiplicities n and m, respectively.
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Proof. Suppose that λ is an eigenvalue of M−1
k,η,εA, whose eigenvector is

( v
q
)
. Then the

corresponding eigenvalue problem is

(
A − k2M BT

B 0

)(
v
q

)
= λ

(
A − k2M + ηBTL−1B

(
1 − ηε

)
BT

0 εL

)(
v
q

)
. (2.6)

From the second row we can obtain q = (1/λε)L−1Bv. By substituting it into the first
row we have

(1 − λ)
[
λ
(
A − k2M

)
v +

(
1
ε
+ λη

)
BTL−1Bv

]
= 0. (2.7)

It is straightforward to see that any vector v ∈ Rn satisfies (2.7) with λ = 1, so λ = 1
is an eigenvalue of M−1

k,η,εA. By the similar technique of linear independence considerations
from [3], we can demonstrate that the eigenvalue λ = 1 has algebraic multiplicity n.

Since there are m linearly independent null vectors of A, by Lemma 2.1,

v = vA + vB(vA /= 0), vA ∈ null(A), vB ∈ null(B). (2.8)

By Lemma 2.1 (ii) and (iii), and using the inner product in (2.7)with vA, we have

(1 − λ)
[
1
ε
+ λ

(
η − k2

)]
|vA|2M = 0. (2.9)

Since vA /= 0, from (2.9)we can obtain that λ = −1/ε(η − k2) is another eigenvalue ofM−1
k,η,ε

A,
and we claim that the eigenvalue λ = −1/ε(η − k2) has algebraic multiplicity m.

Corollary 2.3. Let −1/ε = η − k2. Then the corresponding preconditioned matrix M−1
k,η,εA has only

one eigenvalue λ = 1 of algebraic multiplicity n +m.

Proof. From Theorem 2.2, we can easily obtain the corresponding conclusion.

Remark 2.4. From Theorem 2.2, we demonstrate that the preconditioned matrix M−1
k,η,ε

A has
precisely two distinct eigenvalues. Then if Krylov subspace methods are used to solve (1.2)
withMk,η,ε as a preconditioner, the iteration will require merely two steps if round-off errors
are ignored [30]. And from Corollary 2.3, for any η, we can find a number ε which makes
the preconditioned matrixM−1

k,η,εA have only one eigenvalue. Therefore, we can demonstrate
that our preconditioners are more efficient than the block-triangular preconditioner proposed
in [2].

Remark 2.5. From (2.3)we know that if ηε = 1, the new preconditioner reduces to the diagonal
preconditioner Mk,η:

Mk,η =

⎛
⎝A − k2M + ηBTL−1B 0

0
1
η
L

⎞
⎠. (2.10)

Then we can use MINRES to solve the linear system (1.2).
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Theorem 2.6. LetA be the saddle-point matrix in (1.2). Then

λ1 = 1, λ2 = − 1
ε
(
η − k2

) (2.11)

are the eigenvalues of M̂−1
k,η,ε

A, having algebraic multiplicity m. The rest of the eigenvalues satisfy

α − k2

α + η − k2
≤ λ < 1, (2.12)

where α is defined as in (1.4).

Proof. Suppose that λ is an eigenvalue of M̂−1
k,η,ε

A, whose eigenvector is
( v
q
)
. Then the

corresponding eigenvalue problem is

(
A − k2M BT

B 0

)(
v
q

)
= λ

(
A +

(
η − k2)M (

1 − ηε
)
BT

0 εL

)(
v
q

)
. (2.13)

From the second row we can obtain q = (1/ελ)(L−1Bv). By substituting it into the first row
we have

λ
(
A − k2M

)
v +

1
ε
BTL−1Bv = λ2

(
A +

(
η − k2

)
M

)
v +

λ

ε

(
1 − ηε

)
BTL−1Bv. (2.14)

Consider the m linearly independent null vectors of A, by Lemma 2.1 (i),

v = vA + vB (vA /= 0), (2.15)

where vA ∈ null(A) and vB ∈ null(B). By Lemma 2.1 (ii) and (iii), and taking the inner product
in (2.14)with vA, we obtain

(1 − λ)
[
1
ε
+ λ

(
η − k2

)]
|vA|2M = 0. (2.16)

Since |vA|M /= 0, λ1 = 1 and λ2 = −1/(ε(η − k2)) are two eigenvalues of M̂−1
k,η,ε

A and by
the similar technique of linear independence considerations from [3], we claim that each
eigenvalue has algebraic multiplicity m.

For the rest of eigenvectors we have vB /= 0. Noting that

〈
BTL−1BvA, vB

〉
=
〈
L−1BvA, BvB

〉
= 0, (2.17)

by Lemma 2.1 (ii) and by taking the inner product in (2.14) with vB and using (2.17), we
obtain

(1 − λ)|vB|2A =
(
λ
(
η − k2

)
+ k2

)
|vB|2M. (2.18)
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It is impossible to have λ = 1, since (2.18) leads to |vB|M = 0, which contradicts with vB /= 0.
We cannot have λ > 1, since the left-hand side is negative but the right-hand side is positive
(because we assume η > k2). Thus, we claim that λ < 1.

From (1.4), we recall that for any u ∈ null(B), |u|2A ≥ α|u|2M with α = α/(1−α). Applying
this to (2.18), we have (λ(η−k2)+k2)/(1−λ) ≥ α. Since η > k2 > 0, we have α+η−k2 > 0 and

α − k2

α + η − k2
≤ λ < 1. (2.19)

Corollary 2.7. Let −1/ε = η − k2. Then the corresponding preconditioned matrix M̂k,η,εA has only
one eigenvalue λ = 1 with algebraic multiplicity 2m. The remaining eigenvalues satisfy (2.12).

Remark 2.8. From (2.4) we know that when ηε = 1, the new preconditioner reduces to the
diagonal preconditioner M̂k,η:

M̂k,η =

⎛
⎝A +

(
η − k2)M 0

0
1
η
L

⎞
⎠. (2.20)

Then we can use MINRES to solve the linear system (1.2).

Remark 2.9. From the proof of Theorem 2.6, we easily see that the new preconditioner M̂k,η,ε

is also efficient for k2 = 0. Then from (2.12), we conclude that if −1/ε = η − k2 and k2 = 0,
then the closer η is to 0 and the closer (α − k2)/(α + η − k2) = α/(α + η) is to 1; that is, the
preconditioned matrix has more tightly clustered eigenvalues. For a general case of k2 ∈ R

+,
we can only obtain similar results when α > k2. The following numerical experiments show
that the closer η is to k2, the less iteration counts we have used for a fixed k2 ∈ R

+. However,
choosing η − k2 too small may result in too large ε, then result in ill-conditioning of M̂k,η,ε. So
we choose η − k2 to be moderate size in practice.

3. Numerical Experiments

The test problem is a two-dimensional time-harmonic Maxwell equations in mixed form (1.1)
in a square domain Ω = (0 < x < 1; 0 < y < 1). We set the right-hand side function so that the
exact solution is given by

u
(
x, y

)
=
(
u1
(
x, y

)
u2
(
x, y

)
)

=
(
y
(
1 − y

)
x(1 − x)

)
(3.1)

and p ≡ 0.
We consider five uniformly refined meshes, which are constructed by subsequently

splitting each triangle into four triangles by joining the midpoints of the edges of the triangle.
Two of five mesh grids are depicted in Figures 1 and 2. The lowest order elements are used to
discretize equations. The matrix sizes on different meshes are given in Table 1.
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Table 1: Values of matrix size of the linear system for five meshes.

Mesh n m n + m
8 × 8 176 49 225
16 × 16 736 225 961
32 × 32 3008 961 3969
64 × 64 12160 3969 16129
128 × 128 48896 16129 65025

Figure 1: 8 × 8 mesh.

Figure 2: 16 × 16 mesh.
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Figure 3: The eigenvalue distribution of the preconditioned matrix M̂−1
k,η,ε

A with k2 = 2, η = 2.1 and η = 32,
respectively, and m + n = 961. The case η = 2.1 is indicated by the solid line while the case η = 32 is
indicated by the dotted line.

Our numerical experiments were performed using MATLAB. The machine is a
PC-Intel (R), Pentium(R)Dual CPU E2200 2.20GHz, 1.00G of RAM. The purpose of our
experiments is to investigate the convergence behavior of preconditioned BiCGSTAB by
choosing different parameters η and and ε in the preconditioner M̂k,η,ε. Thus, we apply
exact inner solver, and the outer iteration is used as a zero initial guess and stopped when
‖r(k)(= b −Ax(k))‖2/‖r(0)(= b)‖2 ≤ 5 × 10−10.

From Theorem 2.6 and Corollary 2.7 we know that the preconditioned matrix M̂−1
k,η,εA

has one eigenvalue λ = 1, and the remaining eigenvalues are satisfying (2.12). Figure 3 depicts
the eigenvalues of the preconditioned matrix M̂−1

k,η,ε
A with k2 = 2, where η and ε satisfy

−1/ε = η − k2, and m + n = 961. From it we observe that the eigenvalue distribution of
preconditioned matrix M̂−1

k,η,ε
A with η = k2 + 0.1 = 2.1 denoted by solid line is more tightly

clustered than with η = k2 + 30 = 32 denoted by dotted line. From Remark 2.9 we know
that the new preconditioner M̂k,η,ε is also efficient for k2 = 0. Figures 4, 5, 6, and 7 show
the eigenvalue distribution of the preconditioned matrix M̂−1

k,η,ε
A for different η with k2 = 0,

where η and ε satisfy −1/ε = η − k2, and m + n = 961. From Figures 4–7 we know that the
closer the parameter η is to 0, the more tightly clustered the eigenvalues of the preconditioned
matrix will be.

Table 2 shows the outer iteration counts for different k2 and η, applying BiCGSTAB
with the block-triangular preconditioner, where η and ε satisfy −1/ε = η − k2, and m + n =
16129. The iteration counts are denoted by Iter. We observe that for a fixed k2, the closer η is
to k2, the less iteration counts are produced. For comparison, we also give the outer iteration
counts for η = t∗ = 1 + (k2 +

√
1 + k4)/2. We refer the definition of t∗ to [2]. It shows that the

preconditioner M̂k,η,ε is more efficient than M̂k,t.
Tables 3 and 4 show the outer iteration numbers for different meshes, applying

BiCGSTABwith the preconditioner M̂k,η,ε, where η are set to be η−k2 = 0.1 and η−k2 = 6, and
−1/ε = η − k2. We observe that the outer iteration numbers of the preconditioned BiCGSTAB
are hardly sensitive to the changes in the mesh size.
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Table 2: Iteration counts for different k2 and η, using BiCGSTABwith the preconditioner M̂k,η,ε, andm+n =
16129. The iteration was stopped once ‖r(k)‖/‖r(0)‖ ≤ 5 × 10−10.

η k2 0.1 0.2 0.5 1 2 3 4 5
k2 + 0.001 Iter 2 2 2.5 2.5 3 3.5 4 4.5
k2 + 0.01 Iter 2 2 2.5 2.5 3 3.5 4 4.5
k2 + 0.1 Iter 2 2 2.5 2.5 3 3.5 4 4.5
k2 + 0.25 Iter 2.5 2.5 2.5 2.5 3.5 3.5 4 4.5
k2 + 0.5 Iter 2.5 2.5 2.5 2.5 3.5 4 4 4.5
k2 + 1 Iter 2.5 2.5 2.5 3 3.5 4 4 4.5
k2 + 1.5 Iter 2.5 2.5 3 3 3.5 4 4.5 4.5
k2 + 2 Iter 3 3 3 3.5 3.5 4 4.5 4.5
k2 + 5 Iter 3.5 3.5 3.5 4 4.5 4.5 4.5 5
k2 + 15 Iter 4.5 5 5 5 5 5.5 5.5 5.5
k2 + 30 Iter 5.5 5.5 5.5 6 6 6 6 6
t∗ = 1 + ((k2 +

√
1 + k4)/2) Iter 3 3 3 3 3.5 4 4 4.5

0.65

0

2

4

6

−6

−4

−2

×10−7

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

Figure 4: The eigenvalue distribution of the preconditioned matrix M̂−1
k,η,ε

A with k2 = 0, η = 5 andm + n =
961.

4. Conclusions

We have investigated the use of new block-triangular preconditioners with two variable
relaxation parameters for solving the mixed formulation of the time-harmonic Maxwell
equations. Our results are extensions of the work in [2, 3, 15]. The preconditioned matrices
are demonstrated to have clustering eigenvalues. We have shown experimentally that the
outer iteration numbers of BiCGSTAB with the new preconditioner are hardly any sensitive
to the changes in the mesh size.
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Table 3: Iteration counts for different meshes, using BiCGSTAB with the preconditioner M̂k,η,ε satisfying
η − k2 = 0.1 and −1/ε = η − k2. The iteration was stopped once ‖r(k)‖/‖r(0)‖ ≤ 5 × 10−10.

Mesh k2 = 0 k2 = 0.25 k2 = 0.5 k2 = 1 k2 = 3 k2 = 4 k2 = 6 k2 = 10
8 × 8 2 2.5 2.5 2.5 3.5 4 4.5 5.5
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Figure 5: The eigenvalue distribution of the preconditioned matrix M̂−1
k,η,ε

A with k2 = 0, η = 0.1 and
m + n = 961.
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Figure 6: The eigenvalue distribution of the preconditioned matrix M̂−1
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A with k2 = 0, η = 0.01 and
m + n = 961.
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Table 4: Iteration counts for different meshes, using BiCGSTAB with the preconditioner M̂k,η,ε satisfying
η − k2 = 6 and −1/ε = η − k2. The iteration was stopped once ‖r(k)‖/‖r(0)‖ ≤ 5 × 10−10.

Mesh k2 = 0 k2 = 0.25 k2 = 0.5 k2 = 1 k2 = 3 k2 = 4 k2 = 6 k2 = 10
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16 × 16 3.5 4 4 4 4.5 4.5 5.5 6.5
32 × 32 3.5 4 4 4 4.5 4.5 5.5 6
64 × 64 3.5 4 4 4 4.5 5 5.5 6
128 × 128 3.5 4 4.5 4.5 5 5 6 6.5
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k,η,ε

A with k2 = 0, η = 0.001 and
m + n = 961.

National Science Foundation Project (11161014), the Science and Technology Development
Foundation of Guangxi (Grant no. 0731018), and Innovation Project of Guangxi Graduate
Education (Grant no. ZYC0430).

References

[1] Z. Chen, Q. Du, and J. Zou, “Finite element methods with matching and nonmatching meshes for
Maxwell equations with discontinuous coefficients,” SIAM Journal on Numerical Analysis, vol. 37, no.
5, pp. 1542–1570, 2000.

[2] G.-H. Cheng, T.-Z. Huang, and S.-Q. Shen, “Block triangular preconditioners for the discretized time-
harmonic Maxwell equations in mixed form,” Computer Physics Communications, vol. 180, no. 2, pp.
192–196, 2009.

[3] C. Greif and D. Schötzau, “Preconditioners for the discretized time-harmonic Maxwell equations in
mixed form,” Numerical Linear Algebra with Applications, vol. 14, no. 4, pp. 281–297, 2007.

[4] Q.-Y. Hu and J. Zou, “Substructuring preconditioners for saddle-point problems arising from
Maxwell’s equations in three dimensions,” Mathematics of Computation, vol. 73, no. 245, pp. 35–61,
2004.
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