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The rational surfaces and their offsets are commonly used in modeling and manufacturing. The
purpose of this paper is to present relationships between rational surfaces and orientation-pre-
serving similarities of the Euclidean 3-space. A notion of a similarity surface offset is introduced
and applied to different constructions of rational generalized offsets of a rational surface. It is
shown that every rational surface possesses a rational generalized offset. Rational generalized focal
surfaces are also studied.

1. Introduction

Surfaces with a rational parametrization play an important role in computer-aided design
(CAD) and computer-aidedmanufacturing (CAM). The computation of the offset to a surface
is another significant topic in CAD/CAM applications. The offset to a rational surface, in gen-
eral, does not possess a rational parametrization. A generalization of a surface offset is pro-
posed in this paper such that a rationality of the original surface implies a rationality of the
generalized offset.

Pythagorean normal vector surfaces (PN surfaces for brevity) form a special class of
rational surfaces. These surfaces can be characterized by a rational representation of their unit
normal vector fields. In other words, the PN surfaces possess rational offsets. The notion of
a PN surface was introduced by Pottmann [1]. Later, these surfaces have been studied by
many authors (for a complete bibliography, see [2–4]). Linear normal vector surfaces form a
subset of the set of all rational surfaces possessing rational offsets. These surfaces have been
introduced by Jüttler [5] and systematically studied in a series of papers (see [6–9]). Offset-
ting quadratic surfaces is another topic which is intensively developed. Various cases of off-
sets of quadrics are considered by Maekawa [10], Patrikalakis and Maekawa [11], Bastl et al.
[9], Aigner et al. [12], and Bastl et al. [13]. NURBS surfaces form a class of piecewise ration-
al surfaces. Algorithms for offsetting NURBS surfaces are obtained by Piegl and Tiller [14],
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Ravi Kumar et al. [15], and Sun et al. [16]. Note that the offsets of NURBS surfaces are not
piecewise rational, and existing algorithms give approximations of these offsets. Algebraic
properties of the offsets are studied in [17–19]. Different constructions of generalized offset
surfaces with variable distance functions depending on principal curvatures are considered
by Hagen et al. [20], Hahmann et al. [21], and Moon [22], but a rationality of these offsets is
not discussed. The most recent investigations of offset surfaces are devoted to their practical
use (see, e.g., [2–4, 9, 23, 24]).

Any Euclidean motion of the Euclidean 3-space E
3 is an affine transformation that pre-

serves the distances. Any similarity of E
3 is an affine transformation that preserves the angles.

Therefore, the group of the similarities is the smallest extension of the Euclidean motion
group. Offset surfaces are closely related to the Euclidean motions. In fact, any Euclidean mo-
tion maps the pair formed by a regular surface and its offset of a distance d into another pair
of surfaces that are also a regular surface and its offset of the same distance d. This statement
is not valid in a case of a similarity different from a Euclideanmotion. It is well known that the
similarities preserve any pair of a PN surface and its rational offset. This property is a moti-
vation for a definition of generalized surface offsets such that offsetting becomes a closed
operation for the class of all rational surfaces. The aim of the present paper is to give construc-
tions for rational generalized offsets to an arbitrary rational surface.

The paper is organized as follows. A brief description of the orientation-preserving
similarities is given in Section 2. After that, a relationship between PN surfaces and similari-
ties is discussed. In Section 4, the notion of a similarity surface offset is introduced. Then,
a construction of a rational similarity offset corresponding to an arbitrary rational surface is
presented. Section 5 is devoted to rational generalized focal surfaces which are also similarity
offsets. The paper concludes with final remarks.

2. Preliminaries

We start with a short overview of some well-known facts and notations concerning the three-
dimensional vector algebra and orientation-preserving similarity transformations of the
Euclidean 3-space.

Let a = (a1, a2, a3)
T , b = (b1, b2, b3)

T , and c = (c1, c2, c3)
T be three arbitrary vectors

in R
3. The scalar (or dot) product of a and b can be represented by a matrix multiplication

a ·b = aTb. Then, the norm of the vector a is expressed by ‖a‖ =
√
a · a. The vector cross pro-

duct a×b is a binary operation on R
3 with the property ‖a×b‖ =

√
‖a‖2‖b‖2 − (a · b)2. The vec-

tor triple product [a b c] of three vectors a, b, and c is related to the scalar and vector cross
products and can be calculated as follows: [a b c] = (a × b) · c = a · (b × c) = det(a,b, c).

We consider the Euclidean three-dimensional space E
3 as an affine space with an asso-

ciated vector space R
3. This means that we identify the points of E

3 with their position vec-
tors.

A map Φ : E
3 −→ E

3 is called an orientation-preserving (or direct) similarity if for any
point x = (x1, x2, x3)

T ∈ E
3, the imageΦ(x) ∈ E

3 is determined by the following matrix equa-
tion:

Φ(x) = �Ax + t, (2.1)

where � > 0 is a constant, A is a fixed orthogonal 3 × 3 matrix with det(A) = 1, and t =
(t1, t2, t3)

T ∈ R
3 is a translation vector. Every direct similarity is an affine transformation of E

3
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that preserves the orientation and the angles. We denote by Sim+(E3) the group of all direct
similarities of E

3. The direct similarity Φ given by (2.1) induces a linear map Φind : R
3 −→ R

3

such that Φind(a) = �Aa for an arbitrary vector a = (a1, a2, a3)
T ∈ R

3. Since ‖Φind(a)‖ = �‖a‖,
the positive number � is called a similarity ratio. In the remaining part of the paper, we will
write Φ in place of Φind because this shorter notation could not lead to a confusion.

If the map Φ given by (2.1) is a Euclidean motion, that is, � = 1, then Φ(a × b) =
Φ(a) × Φ(b), ‖Φ(a × b)‖ = ‖Φ(a) × Φ(b)‖ = ‖a × b‖ and [Φ(a) Φ(b) Φ(c)] = [a b c] for
any vectors a, b, c ∈ R

3. In other words, both the vector cross product and the vector triple
product are compatible with Euclidean motions.

If �/= 1, then the direct similarity Φ given by (2.1) is not a Euclidean motion and

Φ(a × b) =
1
�
(Φ(a) ×Φ(b)),

‖Φ(a × b)‖ =
1
�
‖Φ(a) ×Φ(b)‖ = �‖a × b‖,

[Φ(a) Φ(b) Φ(c)] = �3[a b c].

(2.2)

Hence, both the vector cross product and the vector triple product are not invariant under of
a direct similarity different from a Euclidean motion.

Note that differential-geometric invariants of curves and surfaces with respect to the
group of direct similarities can be used for an analysis of the local shape of curves and sur-
faces (see [25, 26]).

3. Similarity Invariance of Pythagorean Normal-Vector Surfaces

3.1. Rational Unit Normal-Vector Fields and Rational Offset Surfaces

A PN surface defined on a certain domain D ⊂ R
2 is a rational surface patch S : D → E

3

which admits the so-called PN parametrization

r(u, v) =
(
x(u, v), y(u, v), z(u, v)

)T
, (u, v) ∈ D, (3.1)

with the following property: if ru = (∂/∂u)r(u, v) and rv = (∂/∂v)r(u, v), then the norm of
the normal vector field n(u, v) = ru × rv is a rational function. For such a parametrization of
the PN surface, the unit normal vector field

n1(u, v) =
1

‖ru × rv‖(ru × rv) (3.2)

has rational coordinate functions and the offset surface Sd at a certain distance d possesses a
rational parametrization

rd(u, v) = r(u, v) + dn1(u, v) = r(u, v) +
d

‖ru × rv‖(ru × rv). (3.3)

A detailed description of the PN surfaces is given in [1, 2, 4, 27].
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3.2. PN Surfaces and Direct Similarities

The purpose of this subsection is to point out that the PN surfaces in E
3 and direct similarities

are closely connected.
LetΦ : E

3 → E
3 be the direct similarity given by (2.1), and let S be a PN surface with a

PN parametrization (3.1). Since the coordinate functions x(u, v), y(u, v), z(u, v) are rational,
the tangent vector fields to isoparametric lines ru = (∂/∂u)r(u, v), rv = (∂/∂v)r(u, v) have
rational coordinate functions, and it fulfills the equality

n(u, v) · n(u, v) = (ru × rv) · (ru × rv) = σ2(u, v) (3.4)

for some rational function σ(u, v). Then, the image Φ(S) = S̃ is the rational surface given by

r̃(u, v) = �Ar(u, v) + t (3.5)

and the tangent vectors to the isoparametric lines of S̃ at the point r̃(u, v) ∈ S̃ are r̃u = �Aru
and r̃v = �Arv. From this, the well-known fact that S̃ is a PN surface with a PN paramet-
rization (3.5) follows. As a consequence, if Sd denotes a rational offset of the surface S at cer-
tain distance d, then the imageΦ(Sd) is a rational offset surface of the PN surfaceΦ(S) at dis-
tance d̃ = �d. These properties of the PN surfaces can be considered as a motivation for a con-
struction of rational generalized offset to an arbitrary rational surface.

4. A Class of Generalized Surface Offsets

Now we will study generalized surface offsets. Their parametric representations are similar
to the parametrization (3.3) of ordinary surface offsets. The difference is that the distance d is
replaced by a variable distance function.

Let S be a regular surface of class C3, and let

r(u, v) =
(
x(u, v), y(u, v), z(u, v)

)T
, (u, v) ∈ D ⊆ R

2, (4.1)

be its parametrization. This means that

(i) the coordinate functions x(u, v), y(u, v), z(u, v) are defined on the same domain
D ⊆ R

2 and have continuous derivatives up to order 3; that is, the vector function
r(u, v) possesses continuous partial derivatives ru = (∂/∂u)r(u, v), rv = (∂/∂v)
r(u, v), ruu = (∂/∂u)ru, ruv = (∂/∂v)ru, rvv = (∂/∂v)rv, ruuu = (∂/∂u)ruu, ruuv =
(∂/∂v) ruu, ruvv = (∂/∂v)ruv, and rvvv = (∂/∂v)rvv,

(ii) the tangent vectors ru and rv at any point of the surface are linearly independent,
or equivalently, the normal vector n(u, v) = ru × rv is nonzero everywhere.

Then, the coefficients of the first fundamental form of the surface

E = ru · ru, F = ru · rv, G = rv · rv, (4.2)
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the coefficients of the second fundamental form of the surface

L =
[ru rv ruu]√
EG − F2

, M =
[ru rv ruv]√
EG − F2

, N =
[ru rv rvv]√
EG − F2

, (4.3)

and the components of the unit normal vector field

n1(u, v) =
1

‖ru × rv‖ (ru × rv) =
1√

EG − F2
(ru × rv) (4.4)

are differentiable functions on the surface S.
All differentiable functions on the surface S form a real algebra, in which division by

a nonvanishing function is always possible. This algebra is denoted by F(S). Moreover, any
function f ∈ F(S) can be considered as a differentiable function of two variables, u and v,
which is defined on the domain D.

All differentiable functions on S, which can be expressed as rational functions of E,
F, G, L, M, and N, form a subalgebra of F(S). We denote this subalgebra by FI,II(S). Any
direct similarity Φ : E

3 → E
3, as a linear map, transforms the surface S into a regular surface

S̃ of class C3 defined on the same domain D. Furthermore, if Ẽ, F̃, G̃, and L̃, M̃, Ñ are the
coefficients of the first and the second fundamental forms of S̃, respectively, then there exists
an isomorphism

iΦS : FI,II(S) −→ FI,II

(
S̃
)

(4.5)

determined by iΦS (E) = Ẽ, iΦS (F) = F̃, iΦS (G) = G̃, iΦS (L) = L̃, iΦS (M) = M̃, and iΦS (N) = Ñ.

Definition 4.1. The function f ∈ FI,II(S) is called a similarity function if the following condition
is satisfied:

f̃ = iΦS
(
f
)
= �f (4.6)

for any Φ ∈ Sim+(E3) with similarity ratio �.

Let us notice basic properties of similarity functions.

Lemma 4.2. Let g1 and g2 be arbitrary similarity functions, and let g3 be a nonvanishing similarity
function. Then

(i) λ1g1 ± λ2g2 is a similarity function for any (λ1, λ2) ∈ R
2 \ {(0, 0)};

(ii) g1g2/g3 is a similarity function.

Proof. The statements follow from the equalities

iΦS
(
λ1g1 ± λ2g2

)
= �
(
λ1g1 ± λ2g2

)
, iΦS

(
g1g2
g3

)
= �

(
g1g2
g3

)
. (4.7)
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A composition of two direct similarities with similarity ratios �1 and �2 is a direct simi-
larity with a similarity ratio �1�2. Consequently, if f ∈ FI,II(S) is a similarity function, then
the function f̃ = iΦS (f) ∈ FI,II(S̃) is also a similarity function.

First, we show that the similarity functions exist.

Proposition 4.3. Let S be a surface of class C3 given by (4.1). Then, the function f0 ∈ FI,II(S) defined
by

f0(u, v) = L − 2M +N, (u, v) ∈ D, (4.8)

is a similarity function.

Proof. Suppose that an arbitrary direct similarityΦ of E
3 with a similarity ratio � is presented

by (2.1). Then, a parametrization of the surface S̃ = Φ(S) can be written in the form r̃(u, v) =
�Ar(u, v) + t, (u, v) ∈ D. For the derivatives of the vector function r̃(u, v)we have r̃u = �Aru,
r̃v = �Arv, r̃uu = �Aruu, r̃uv = �Aruv and r̃vv = �Arvv Using (2.2), (4.2), and (4.3), we obtain
that the coefficients of the second fundamental form of the surface S̃ = Φ(S) are L̃ = �L,
M̃ = �M, and Ñ = �N. Hence, f̃0(u, v) = iΦS (f0) = L̃ − 2M̃ + Ñ = �f0(u, v). Furthermore, the
product

1√
EG − F2

f0(u, v) =
[ru rv ruu] − 2[ru rv ruv] + [ru rv rvv]

EG − F2
(4.9)

is a rational function of the first and second derivatives.

Second, we introduce a special kind of generalized surface offsets.

Definition 4.4. Let S be a regular surface of class C3 given by (4.1), and let d be a nonzero real
constant. Then, for any similarity function f ∈ FI,II(S), the generalized surface offset Sdf with
a parametrization

rdf(u, v) = r(u, v) + df(u, v)n1(u, v)

= r(u, v) +
df(u, v)√
EG − F2

(ru × rv)

(4.10)

is called a similarity offset.

It is clear that the product df(u, v) in (4.10) plays the role of a variable distance fun-
ction.

Theorem 4.5. Let S be an arbitrary surface of class C3 with a rational parametrization (4.1); that is,
x(u,v), y(u,v), and z(u, v) denote rational functions, and let f ∈ FI,II(S) be a similarity function.
Then the similarity offset Sdf given by (4.10) is a rational surface. Moreover, for any direct similarity
Φ : E

3 → E
3 with similarity ratio �, the rational surface Φ(Sdf) is the similarity offset of the rational

surface S̃ = Φ(S) defined by the similarity function iΦS (f) = �f .

Proof. Since S is a rational surface, all vector functions ru, rv, ruu, ruv, rvv, and ru × rv have
rational coordinate functions. This implies that E, F, and G are also rational functions. As in
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the proof of Proposition 4.3, we can see that the functions L, M, N, E/L, E/M, E/N, F/L,
F/M, F/N, G/L, G/M, G/N are similarity functions. Let n be a positive integer, and i1, i2,
i3, j1, j2, j3, k1, k2, k3, l1, l2, l3 denote nonnegative integers such that

2(i1 + i2 + i3) + j1 + j2 + j3 = n, 2(k1 + k2 + k3) + l1 + l2 + l3 = n − 1. (4.11)

Then, using Lemma 4.2 and applying induction, we obtain that every similarity function can
be written in the form

f(u, v) =

∑
2(i1+i2+i3)+j1+j2+j3=n a

i1,i2,i3
j1,j2,j3

Ei1Fi2Gi3Lj1Mj2Nj3

∑
2(k1+k2+k3)+l1+l2+l3=n−1 b

k1,k2,k3
l1,l2,l3

Ek1Fk2Gk3Ll1Ml2Nl3
, (4.12)

where

(i) either the sum j1+ j2+ j3 is odd for each term in the numerator and the sum l1+ l2+ l3
is even for each term in the denominator, or the sum j1 + j2 + j3 is even for each term
in the numerator and the sum l1 + l2 + l3 is odd for each term in the denominator,

(ii) at least one of the coefficients ai1,i2,i3
j1,j2,j3

∈ R and at least one of the coefficients bk1,k2,k3l1,l2,l3
∈

R is not equal to zero.

From here, it follows that any similarity function can be represented as

f(u, v) =
1√

EG − F2
g(u, v), (4.13)

where g(u, v) is a rational function of u and v. Consequently, the similarity offset Sdf is a
rational surface. The second assertion is obvious.

Corollary 4.6. For any rational surface S with a parametrization (4.1), the similarity offset Sd0 given
by

rd0(u, v) = r(u, v) + df0(u, v)n1(u, v)
(4.14)

is a rational surface.

The tangent vector m = ru − rv is nonzero at any point of a regular surface S. Clearly,
the similarity function f0 can be expressed as f0 = II(m,m), where II denotes the second fun-
damental form of the surface. If S is a plane, then f0(u, v) vanishes identically and Sd0 coin-
cides with S. If the tangent vector m at any point of the surface S is not asymptotic, then
f0(u, v) = II(m,m)/= 0 for any (u, v) ∈ D, or equivalently, the surfaces S and Sd0 have no com-
mon points. As an illustrationwe consider similarity offsets of rational patches lying on quad-
ratic and cubic surfaces.
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Example 4.7. Let S be a rational bilinear Bézier patch

r(u, v) =

∑1
i=0
∑1

j=0
(
1
i

) ( 1
j

)
(1 − u)i u1-i (1 − v)j v1−j wijbij

∑1
i=0
∑1

j=0
(
1
i

) ( 1
j

)
(1 − u)i u1-i (1 − v)j v1−j wij

, u, v ∈ [0, 1], (4.15)

with control points b00 = (1, 0, 0), b01 = (0, 1, 0), b10 = (1, 0, 1), and b11 = (0, 0, 1) and weights
w00 = 1, w01 = 1, w10 = 1, and w11 = 2. This patch possesses the following rational para-
metrization:

r(u, v) =
(

1 − v

1 + uv
,
v − uv

1 + uv
,
u(1 + v)
1 + uv

)T

, u ∈ [0, 1], v ∈ [0, 1], (4.16)

and lies on the hyperboloid of one sheet y2 + xy − xz + yz + x + z − 1 = 0. Then, we calculate

n1(u, v) =

(
(−1 + u)(1 + v)√

2
√
p(u, v)

,
−1 + u(−1 + v) − v√

2
√
p(u, v)

,−
√
2 v√

p(u, v)

)T

(4.17)

and L = 0, M =
√
2 /(1 + uv)

√
p(u, v),N = 0, where

p(u, v) = 1 + u2 − 2(−1 + u)v + 3v2 + (−2 + u)uv2 > 0. (4.18)

This implies f0(u, v) = −2M < 0 for any pair (u, v) ∈ [0, 1]× [0, 1]. Assuming d = 1, we obtain
that the parametrization (4.14) of the similarity offset Sd0 is

rd0(u, v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − v)p(u, v) + 2(−1 + u)(1 + v)
(1 + uv)p(u, v)

(1 − u)vp(u, v) + 2(−1 + u(−1 + v) − v)
(1 + uv) p(u, v)

u(1 + v)p(u, v) − 4v
(1 + uv)p(u, v)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.19)

The Bézier surface patch S and its similarity offset Sd0 are plotted in Figure 1.

Example 4.8. Consider the surface patch Swith polynomial parametrization

r(u, v) =
(
uv, u − v2, v

)T
, u ∈ [0, 1], v ∈ [0.4, 1], (4.20)

lying on the cubic surface yz−x + z3 = 0 (see [28]). The unit normal vector to the surface S is

n1(u, v) =
1√

1 + v2 + (u + 2v2)2

(
1,−v,−u − 2v2

)T
, (4.21)
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Figure 1: The rational Bézier patch (blue) and its rational similarity offset (yellow).
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Figure 2: The polynomial surface patch (blue) and its rational similarity offset (green).

and the similarity function f0 corresponding to S is

f0(u, v) =
(v − 2)√

1 + v2 + (u + 2v2)2
< 0. (4.22)

Thus, for d = 1 the parametrization (4.14) of the similarity offset Sd0 can be written in the
form

(
uvq(u, v) + v − 2

q(u, v)
,

(
u − v2)q(u, v) − (v − 2)v

q(u, v)
,
vq(u, v) − (v − 2)

(
u + 2v2)

q(u, v)

)T

, (4.23)
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where u ∈ [0, 1], v ∈ [0.4, 1], and q(u, v) = 1 + v2 + (u + 2v2)2. The polynomial surface patch
S and its similarity offset Sd0 are plotted in Figure 2.

There are three reasons for considering the similarity offset Sd0. First, this generalized
offset is determined for any regular surface of class C3. Second, the computation of the simi-
larity offset Sd0 takes a bit more time than the computation of the ordinary surface offset.
Third, a rationality of the original surface S implies a rationality of Sd0. Thus, we can conclude
that every rational regular surface S of class C3 possesses a rational generalized offset Sd0.

5. Rational Generalized Focal Surfaces

Generalized surface offsets with variable distance functions depending only on the Gaussian
curvature K and the mean curvature H are presented in this section. Since K and H deter-
mine locally the surface up to a Euclidean motion, such a kind of surface offsets are closely
related to the local shape of the surface. In other words these generalized offsets can be con-
sidered as a tool for studying the local shape of the original surface.

Let S be a regular surface of classC3 given by (4.1), and let f(u, v) be a function defined
on S. A generalized surface offset Sdf with a parametrization

rdf(u, v) = r(u, v) + df(u, v)n1(u, v) (5.1)

is called a generalized focal surface if d is a nonzero constant, n1(u, v) is the unit normal-vector
field, and the variable distance function df(u, v) can be expressed as a function of the prin-
cipal curvatures k1 and k2 of the original surface S. Such a kind of generalized offsets will be
studied in this section. It is well known that the Gaussian curvatureK and themean curvature
H at any point r(u, v) of the surface S can be represented in terms of the first- and second-
order partial derivatives as follows:

K =
[ruu ru rv][rvv ru rv] − [ruv ru rv]2(

‖ru‖2‖rv‖2 − (ru · rv)2
)2 ,

H =
[ruu ru rv]‖rv‖2 + [rvv ru rv]‖ru‖2 − 2[ruv ru rv](ru · rv)

2
(
‖ru‖2‖rv‖2 − (ru · rv)2

)3/2

(5.2)

(see [29, page 405]). Recall that a point r(u, v) ∈ S at which K = 0 and H = 0, or equivalently
L = M = N = 0, is called planar. Every plane in E

3 is a surface which consists of planar
points. A point r(u, v) ∈ S is called parabolic if K = 0 and H /= 0 at this point. A developable
surface is a regular surface whose Gaussian curvature is everywhere zero. A minimal surface
is a regular surface for which the mean curvature vanishes identically. Our investigations are
limited to regular surface patches which are not a part of a plane.

Let us examine two special similarity functions.

Proposition 5.1. Let S be a regular surface of class C3, and let (4.1) be its parametrization.

(i) If S is a nondevelopable surface, then the function f1(u, v) = H/K defined on the set of all
nonplanar and nonparabolic points is a similarity function.
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(ii) If S is not a minimal surface, then the function f2(u, v) = 1/H, defined on the set of all
points at whichH /= 0, is a similarity function.

Proof. From K = (LN −M2)/(EG − F2) and H = (EN + GL − 2FM)/2(EG − F2), it follows
that f1(u, v) ∈ FI,II(S) and f2(u, v) ∈ FI,II(S). Suppose that a direct similarity Φ of E

3 with
similarity ratio � is given by (2.1). Then, the surface S̃ = Φ(S) has a parametrization r̃(u, v) =
�Ar(u, v) + t. Since S̃ = Φ(S) is also a surface of class C3, the Gaussian curvature K̃ and the
mean curvature H̃ are well defined at any point of the image surface S̃. Using (5.2), we have

K̃ =
1
�2

K, H̃ =
1
�
H . (5.3)

This means that iΦS (f1(u, v)) = �f1(u, v) and iΦS (f2(u, v)) = �f2(u, v). Hence, according to
Definition 4.1, both functions f1(u, v) = H/K and f2(u, v) = 1/H are similarity functions.

Now, we can introduce two constructions for similarity offset surfaces. Let S be a reg-
ular nondevelopable surface of class C3 given by (4.1), and let d be a nonzero constant. Then
the similarity offset surface Sd1 with a parametrization

rd1(u, v) = r(u, v) + d
f1(u, v)
‖ru × rv‖(ru × rv) (5.4)

is well defined for any parametric value (u, v) ∈ D whose corresponding point r(u, v) ∈ S
is neither planar nor parabolic. Such surfaces were introduced by Rando and Roulier [30]. If
the regular nonminimal surface S of class C3 is given by (4.1) and if d is a nonzero constant,
then the similarity offset surface Sd2 with a parametrization

rd2(u, v) = r(u, v) + d
f2(u, v)
‖ru × rv‖(ru × rv) (5.5)

is well defined for any (u, v) ∈ D such that the mean curvature H is nonzero at the point
r(u, v) ∈ S.

The similarity functions f1(u, v) and f2(u, v) can be expressed in terms of principal cur-
vatures κ1 and κ2 of the surface S, that is, f1(u, v) = (κ1+κ2)/2κ1κ2 and f2(u, v) = 2/(κ1+κ2).
Therefore, the similarity offsets Sd1 and Sd2 can be considered as generalized focal surfaces.
Other examples of generalized focal surfaces are described and studied by Hagen et al. [20]
andHahmann et al. [21]. Recently, Moon [22] investigated the so-called equivolumetric offset
surfaces with variable distance functions depending on K and H.

In the remaining part of this section, we assume that the regular surface S of class C3

has a rational parametric representation

r(u, v) =
(
p1(u, v)
q(u, v)

,
p2(u, v)
q(u, v)

,
p3(u, v)
q(u, v)

)
, (u, v) ∈ D, (5.6)

where p1(u, v), p2(u, v), p3(u, v), and q(u, v), are polynomials and q(u, v)/= 0 for any (u, v) ∈
D. The Gaussian curvature of such a surface is a rational function of u and v. But the mean
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curvature is a rational function if and only if ‖ru × rv‖2 = ‖ru‖2‖rv‖2 − (ru · rv)2 is a perfect
square of a rational function; that is, S is a PN surface with PN parametrization (5.6).

Combining Theorem 4.5 and Proposition 5.1, we immediately obtain two types of
rational generalized focal surfaces. If S is a rational surface patch (5.6) of class C3 without
planar and parabolic points, then the similarity surface offset Sd1 given by (5.4) is rational for
any nonzero real constant d. If S is a rational surface patch (5.6) with a nonzero mean curva-
ture at any of its point, then the similarity surface offset Sd2 given by (5.5) is rational for any
nonzero real constant d.

The last considerations give direct constructions for a rational generalized offset of any
rational surface. If the regular surface patch S given by (5.6) is not a part of a plane, then there
are a subdomain D1 ⊆ D such that K/= 0 on D1 and a subdomain D2 ⊆ D such that H /= 0 on
D2. Thus we may consider the exact rational generalized offsets Sd1 and Sd2, which are deter-
mined by (5.4) and (5.5), respectively. The intersecting points of the surfaces S and Sd1 are
those at whichH = 0. There are no intersecting points of the surfaces S and Sd2. The following
algorithm is based on the above observations.

Algorithm 5.2. Parametrization of rational generalized offsets Sd1 and Sd2 of a rational surface
S gave by (5.6)

(1) Calculate the first- and second-order partial derivatives ru, rv, ruu, ruv, and rvv.

(2) Find the unit normal vector field n1(u, v).

(3) Express the Gaussian curvatureK and the mean curvatureH of the surface as fun-
ctions of the parameters u and v.

(4) Determine the open subsets D1 and D2 of the domain D as follows: D1 = {(u, v) ∈
D | K(u, v)/= 0}, D2 = {(u, v) ∈ D | H(u, v)/= 0}.

(5) In the case of a nonempty setD1, define for an arbitrary nonzero real constant d the
rational generalized surface offset Sd1 by (5.4).

(6) In the case of a nonempty setD2, define for an arbitrary nonzero real constant d the
rational generalized surface offset Sd2 with a parametrization (5.5).

Example 5.3. Consider the surface S given by x2 +y2 −z2 = 1, which is a hyperboloid of revol-
ution of one sheet. This surface possesses a rational parametrization

r(u, v) =

(
2
(
1 + u2)v

2u(1 + v2)
,

(
1 + u2)(1 − v2)

2u(1 + v2)
,

(
1 − u2)(1 + v2)

2u(1 + v2)

)T

, u > 0, v ∈ R. (5.7)

Then,

n1(u, v) =

(
−√2

(
1 + u2)v√

1 + u4(1 + v2)
,

(
1 + u2)(−1 + v2)

√
2
√
1 + u4(1 + v2)

,

(
1 − u2)(1 + v2)

√
2
√
1 + u4(1 + v2)

)T

, (5.8)
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K = − 4u4/(1 + u4)2, and H = u(−1 + u2)2/
√
2(1 + u4)3/2. Hence, for d = 1, the rational

generalized offset Sd1 with a parametrization

rd1(u, v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
(
1 + u2)3v

8u3(1 + v2)

−
(
1 + u2)3(−1 + v2)

8u3(1 + v2)
(−1 + u2)((−1 + u2)2 − 4u2

)(
1 + v2)

8u3(1 + v2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.9)

is defined on the domainD = {0 < u < ∞, −∞ < v < ∞}. Similarly, for d = 1 the rational gen-
eralized offset Sd2 with a parametrization

rd2(u, v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 2
(
1 + u2)3v

2u(−1 + u2)2(1 + v2)
(
1 + u2)3(−1 + v2)

2u(−1 + u2)2(1 + v2)
(
3 − 2u2 + 3u4)(−1 + u2)(1 + v2)

2u(−1 + u2)2(1 + v2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.10)

is defined on the domain D2 = {0 < u < 1, −∞ < v < ∞}⋃{1 < u < ∞, −∞ < v < ∞}. The
three rational surfaces S, Sd1, Sd2 are well defined on the subdomain D = {1.7 < u < 3, 0 <
v < 3}. Then the original surface S is placed between Sd1 and Sd2 (see Figure 3).

Let us summarize the considerations in this section. For any nondevelopable rational
surface S, we construct a surface Sd1, and for any nonminimal rational surface S, we construct
a surface Sd2. These new rational surfaces have the following properties:

(i) both Sd1 and Sd2 are similarity surface offsets;

(ii) both Sd1 and Sd2 are generalized focal surfaces.

An additional advantage of the rational offsets Sd1 and Sd2 is that there is no need to change
the rational parametrization of the original surface S.

6. Conclusion

The class of the PN surfaces is a good illustration for the relationship between rationality and
similarity. The image of any pair of a PN surface and its rational offset under a direct simil-
arity is also a pair of a PN surface and its rational offset. The differential-geometric invariants
of such a surface as Gaussian andmean curvatures are rational functions. The notion of a sim-
ilarity offset gives another natural connection between rational surfaces and similarity trans-
formations. Every similarity offset is a rational generalized offset if the original surface is
rational. Moreover, any rational surface and its similarity offset form a pair which is invariant
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Figure 3: The hyperboloid S (blue) placed between its rational offsets S11 (green) and S12 (red).

under an arbitrary direct similarity. It is shown that there are similarity offsets which are gen-
eralized focal surfaces. Consequently, there exist rational generalized focal surfaces corres-
ponding to rational surfaces. In particular, these rational generalized focal surfaces can be
considered as an additional tool for a local shape analysis of rational surfaces.
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