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We propose a least-mean-square (LMS) receding horizon (RH) estimator for state estimation. The
proposed LMS RH estimator is obtained from the conditional expectation of the estimated state
given a finite number of inputs and outputs over the recent finite horizon. Any a priori state
information is not required, and existing artificial constraints for easy derivation are not imposed.
For a general stochastic discrete-time state space model with both system and measurement
noise, the LMS RH estimator is explicitly represented in a closed form. For numerical reliability,
the iterative form is presented with forward and backward computations. It is shown through
a numerical example that the proposed LMS RH estimator has better robust performance than
conventional Kalman estimators when uncertainties exist.

1. Introduction

Several criteria have been often employed for the design of optimal estimators. In particular,
the mean-square-error criterion is the most popular and has many applications since it offers
a simple closed-form solution as well as important geometric and physical interpretations.
It is well known that the optimal estimators based on the mean-square-error criterion
is obtained from the conditional expectation of the estimated variable given the known
measurements.

For state estimation, many trials have been conducted to obtain a receding horizon
(RH) estimator based on the mean-square-error criterion. At the current time k, the least-
mean-square (LMS) RH estimator is to estimate the state xk−h at the time k−h from the inputs
uk−· and the outputs yk−· over the recent finite horizon [k −N,k − 1], which can be written as

x̂k−h|k = E
[

xk−h | uk−N · · ·uk−1, yk−N · · ·yk−1
]

, (1.1)
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Figure 1: The structure of the receding horizon estimator (D is a unit delay component).

where h and N, that is, the lag size and the memory size are design parameters to be
determined, respectively. Available inputs and outputs are regarded as given conditions
and the corresponding conditional expectation of the state at time k − h is obtained as
its optimal estimate. Practically, inputs and outputs are known variables and hence can
be considered as conditions. The structure of the LMS RH estimator (1.1) is depicted in
Figure 1. As mentioned before, the LMS RH estimator (1.1)minimizes the mean-square-error
criterion, E[(x̂k−h|k − xk−h)

T (x̂k−h|k − xk−h) | uk−N · · ·uk−1, yk−N · · ·yk−1]. For h ≥ 2, h = 1, and
h ≤ 0, the estimators (1.1) are often called the smoothers, the filters, and the predictors,
respectively. “Receding horizon” is traced from the fact that the finite-time horizon, where
inputs and outputs necessary for estimating unknown states are available, recedes with time.
In designing the controls, receding horizon schemes have already been popular [1, 2]. If N
approaches ∞, the estimator (1.1) reduces to the well-known stationary Kalman estimator
with infinite-memory. So, the LMS RH estimator (1.1) can be also called a finite memory
estimator for the finite and fixed memory size N. It has been illustrated through numerical
simulation and analysis that the LMS RH estimators with finite memory have better robust
performance than conventional Kalman estimators with infinite memory [3, 4]. Also in
input/output models arising in signal processing area, it is acknowledged that the finite-
memory or finite-impulse-response (FIR) filters have been preferable for practical reasons [5].

In spite of the good performance and the usefulness of the LMS RH estimators, no one
has proposed a general result on the conditional expectation (1.1). Since it was difficult to
obtain the conditional expectation (1.1) for a general state space model, some assumptions
have been made to simplify the problem and then obtain a solution easily. At first, system
or measurement noise were set to zero, which offers a closed-form solution easily [6–10]. In
[11, 12], a priori information on the initial state on the horizon was assumed to be known for
obtaining a solution easily. Instead of directly obtaining a closed-form solution, the duality
of a control and the complicated scattering theory from a physical phenomenon were used
to show the feasibility of implementation for a general state space model [13, 14]. For easy
derivation, the Kalman filter was also employed with infinite covariance [4]. However, this
approach is so heuristic that the optimality is not guaranteed in the sense of the mean-
square-error criterion. Besides, the system matrix is required to be nonsingular. As in other
conventional estimators, there were also some trials that unbiased and linear constraints are
imposed to obtain the optimal estimator [3, 15–17]. However, external control inputs are not
considered [3] and the systemmatrix is required to be nonsingular [15]. Furthermore, it is not
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guaranteed that even though such constraints are removed, the optimality is still preserved.
Though computing the conditional expectation (1.1) looks like a very simple problem, there
is no result on a closed-form solution corresponding to (1.1) for a general state space model
without any artificial assumptions and requirements.

In this paper, existing artificial assumptions for obtaining a solution easily are not
made and any conditions are not required. Unlike the existing results, the system matrix is
not required to be nonsingular. Both system and measurement noise are considered together
with external control inputs. The LMS RH estimator will be directly obtained from the
conditional expectation (1.1), which automatically guarantees its optimality. It turns out that
the proposed LMS RH estimator has the deadbeat property and the linear structure with
inputs and outputs over the recent finite horizon.

The rest of this paper is organized as follows. In Section 2, the LMS RH estimator
is obtained from the conditional expectation and its iterative computation is introduced in
Section 3. A numerical simulation is carried out in Section 4 to illustrate the performance of
the proposed LMS RH estimator. Finally, conclusions are presented in Section 5.

2. LMS RH Estimator

Consider a linear discrete-time state space model with an external control input:

xi+1 = Axi + Bui +Gwi,

yi = Cxi + vi,
(2.1)

where xi ∈ �n, ui ∈ �l, and yi ∈ �q are the state, the input, and the output, respectively, and
the system noise wi ∈ �p and the measurement noise vi ∈ �q are assumed to be zero-mean
white Gaussian with

E
[[

wi

vi

]

[

wT
i vT

i

]

]

=
[

Q S
ST R

]

, Q ≥ 0, R > 0, (2.2)

where nonzero S often happens when I/O models are converted to state space models. It is
also assumed that (A,C) of the system is observable. Through this paper, the current time
is denoted by k. For mathematical tractability, the state space model (2.1) is equivalently
changed to

xi+1 = Asxi + Bui +Gws,i +GSR−1yi,

yi = Cxi + vi,
(2.3)

where As � A − GSR−1C and ws,i � wi − SR−1vi. It can be easily shown that ws,i and vi in
(2.3) are not correlated. In other words, we have

E
[[

ws,i

vi

]

[

wT
s,i vT

i

]

]

=
[

Q − SR−1ST O
O R

]

, (2.4)

where Q − SR−1ST ≥ 0. It is noted that off-diagonal blocks are filled with zeros.
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For simple representations, several variables are defined as

˜CN �

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

C
CAs

CA2
s

...
CAN−1

s

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Yk−1 �

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

yk−N
yk−N+1

yk−N+2
...

yk−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (2.5)

˜BN �

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 · · · 0 0
CB 0 · · · 0 0

CAsB CB · · · 0 0
...

...
...

...
...

CAN−2
s B CAN−3

s B · · · CB 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (2.6)

QN �

N
︷ ︸︸ ︷

Q − SR−1ST ⊕ · · · ⊕Q − SR−1ST , (2.7)

RN �
N

︷ ︸︸ ︷

R ⊕ R ⊕ · · · ⊕ R, (2.8)

where ⊕ denotes the direct sum of the matrices. Additionally, Wk−1, Vk−1, and Uk−1 are
defined by replacing y in (2.5) with ws, v, and u, respectively. ˜GN and ˜SN are also defined
by replacing B in ˜BN with G and GSR−1, respectively.

First, we consider the case of 0 ≤ h ≤ N − 1 in (1.1). A prediction problem for h ≤ −1
will be discussed later on.

By using the defined variables, the state xk−h to be estimated is represented in terms
of the initial state xk−N on the horizon, inputs, and system noise on the recent finite horizon
[k −N, k − 1] as

xk−h = AN−h
s xk−N + Lg,NWk−1 + Lb,NUk−1 + Ls,NYk−1, (2.9)

where Lg,N is given by

Lg,N �
[

AN−h−1
s G AN−h−2

s G · · · G
h

︷ ︸︸ ︷

O · · ·O

]

, (2.10)

and Lb,N and Ls,N are obtained by replacing G in Lg,N with B and GSR−1, respectively. From
(2.9), the conditional expectation E[xk−h|Uk−1, Yk−1] in (1.1) can be represented as

E[xk−h | Uk−1, Yk−1] = AN−h
s E[xk−N | Uk−1, Yk−1]

+ Lg,NE[Wk−1 | Uk−1, Yk−1] + Lb,NUk−1 + Ls,NYk−1.
(2.11)

Note that if E[xk−N | Uk−1, Yk−1] and E[Wk−1 | Uk−1, Yk−1] are known, E[xk−h | Uk−1, Yk−1] can
be obtained. In order to compute E[xk−N | Uk−1, Yk−1] and E[Wk−1 | Uk−1, Yk−1], we first try



Mathematical Problems in Engineering 5

to find the relation among xk−N , Wk−1, Uk−1, and Yk−1. For this purpose, the system (2.3) is
represented in a batch form on the recent finite horizon [k −N,k − 1] as follows:

Yk−1 = ˜CNxk−N + ˜BNUk−1 + ˜GNWk−1 + ˜SNYk−1 + Vk−1, (2.12)

from which we obtain

[

Wk−1
Vk−1

]

=

[

I 0
− ˜GN − ˜CN

]

[

Wk−1
xk−N

]

+

[

0
Yk−1 − ˜SNYk−1 − ˜BNUk−1

]

. (2.13)

We can see from (2.13) that Wk−1 and Vk−1 are linearly, more correctly affinely, dependent
on Wk−1 and xk−N . The joint probability density function of Wk−1 and xk−N , that is,
fwx(Wk−1, xk−N), can be expressed as kfwv(Wk−1, Vk−1 | Uk−1, Yk−1) = kfwv(Wk−1, Yk−1 −
˜CNxk−N − ˜BNUk−1 − ˜GNWk−1 − ˜SNYk−1) for an appropriate scaling factor k. How to choose k
will be discussed later on. By using the probability density function of Wk−1 and Vk−1 given
as

fwv(Wk−1, Vk−1) =
1

√

(2π)(p+q)N det(QN)det(RN)

× exp
(

−1
2

[

Wk−1
Vk−1

]T[
QN 0
0 RN

]−1[
Wk−1
Vk−1

]

)

,

(2.14)

E[xk−N | Uk−1, Yk−1] can be computed from

E[xk−N | Uk−1, Yk−1]

=
∫

xk−Nfwx(Wk−1, xk−N | Uk−1, Yk−1)dWk−1dxk−N

=
∫

xk−Nkfwv

(

Wk−1, Yk−1 − ˜CNxk−N − ˜BNUk−1 − ˜GNWk−1 − ˜SNYk−1
)

dWk−1dxk−N,

(2.15)

where a constant k is chosen to satisfy the following normalization condition:

∫

fwx(Wk−1, xk−N | Uk−1, Yk−1)dWk−1dxk−N

= k

∫

fwv

(

Wk−1, Yk−1 − ˜CNxk−N − ˜BNUk−1− ˜GNWk−1 − ˜SNYk−1
)

dWk−1dxk−N = 1.
(2.16)
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In the same way, E[Wk−1 | Uk−1, Yk−1] can be obtained. It is noted that fwv(Wk−1, Yk−1 −
˜CNxk−N− ˜BNUk−1− ˜GNWk−1− ˜SNYk−1) is an exponential functionwith the following exponent:

⎡

⎢

⎢

⎢

⎢

⎣

YT
k−1
(

I − ˜SN

)T

UT
k−1

xT
k−N

WT
k−1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

R−1N −R−1N ˜BN −R−1N ˜GN −R−1N ˜CN

∗ ˜BT
NR−1N ˜BN

˜BT
NR−1N ˜GN

˜BT
NR−1N ˜CN

∗ ∗ W1,1 W1,2

∗ ∗ ∗ W2,2

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

YT
k−1
(

I − ˜SN

)T

UT
k−1

xT
k−N

WT
k−1

⎤

⎥

⎥

⎥

⎥

⎦

T

, (2.17)

where ∗ denotes symmetric parts andW1,1,W1,2, and W2,2 are given by

W1,1 = ˜CT
NR−1N ˜CN,

W1,2 = ˜CT
NR−1N ˜GN,

W2,2 = ˜GT
NR−1N +Q−1N .

(2.18)

By completing the square of the terms of the exponent and recalling the integration of
Gaussian functions from −∞ to ∞, we can compute E[xk−N | Uk−1, Yk−1] and E[Wk−1 |
Uk−1, Yk−1]. To begin with, we introduce the following completion of squares:

[

a
b

]T[
α β
βT γ

][

a
b

]

=
(

b + γ−1βTa
)T

γ
(

b + γ−1βTa
)

+ aT
(

α − βγ−1βT
)

a (2.19)

to obtain

∫

b exp
(

[ a
b ]

T
[

α β

βT γ

]

[ a
b ]
)

db

∫

exp
(

[ a
b ]

T
[

α β

βT γ

]

[ a
b ]
)

db
= −γ−1βTa, (2.20)

for some vectors a and b, and some matrices α, β, and γ of appropriate dimensions. The
relation (2.20) can be easily obtained in a similar way to the mean of normal distribution.
From the following correspondences:

a←−
⎡

⎣

YT
k−1
(

I − ˜SN

)T

UT
k−1

⎤

⎦, b ←−
[

xT
k−N

WT
k−1

]

, α←−
[

R−1N −R−1N ˜BN

∗ ˜BT
NR−1N ˜BN

]

,

β ←−
[

−R−1N ˜GN −R−1N ˜CN

˜BT
NR−1N ˜GN

˜BT
NR−1N ˜CN

]

, γ ←−
[

W1,1 W1,2

∗ W2,2

]

,

(2.21)

we have

[

E[xk−N | Uk−1, Yk−1]
E[Wk−1 | Uk−1, Yk−1]

]

=

[

W1,1 W1,2

WT
1,2 W2,2

]−1[
˜CN

˜GN

]

× R−1N
((

I − ˜SN

)

Yk−1 − ˜BNUk−1
)

, (2.22)
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where W1,1, W1,2, and W2,2 are given by (2.18). It is noted that if (A,C) of the system (2.1)
is observable, W1,1 is positive definite and W2,2 − WT

1,2W
−1
1,1W1,2 is also positive definite,

which implies that the block matrix including W1,1, W1,2, and W2,2 is guaranteed to be
positive definite and hence nonsingular. Substituting (2.22) into (2.11), we can obtain E[xk−h |
Uk−1, Yk−1]. Through a long and tedious algebraic calculation, we have the covariance matrix
of the mean-square-error E[(x̂k−h|k − xk−h)(x̂k−h|k − xk−h)

T] as follows:

P = ΞN

[

W1,1 W1,2

WT
1,2 W2,2

]−1
ΞT
N, (2.23)

where ΞN is defined by

Ξj �
[

AN−h
s AN−h−1

s G AN−h−2
s G · · · G

j−N+h
︷ ︸︸ ︷

OO · · ·O

]

, (2.24)

for N − h ≤ j ≤N.
What we have done until now can be summarized in the following theorem.

Theorem 2.1. Suppose that (A,C) of the system (2.1) is observable. Then, the LMS RH estimator
(1.1) is given by

x̂k−h|k = ΞN

[

W1,1 W1,2

WT
1,2 W2,2

]−1[
˜CN

˜GN

]

R−1N
((

I − ˜SN

)

Yk−1 − ˜BNUk−1
)

+ Lb,NUk−1 + Ls,NYk−1,

(2.25)

where x̂k−h|k denotes E[xk−h | Uk−1, Yk−1] and W1,1, W1,2, and W2,2 are defined in (2.18).
The corresponding covariance matrix is given as (2.23).

It is noted that the proposed LMS RH estimator (2.25) is designed without requirements of
the removal of some noise and the nonsingular system matrix A. In previous work, those
requirements are adopted to solve the problems more easily. If constraints or assumptions
of existing results are applied to the proposed result, the latter reduces to the former. For
example, Q and ˜BN can be set to zero for comparison with the results on systems without
system noise and inputs, respectively.

As seen in (2.25), the LMS RH estimator is linear with respect to inputs and outputs
on the recent finite horizon [k −N,k − 1]. So, “finite memory” may be called “finite impulse
response” that is often used in linear signal processing systems. In addition, the deadbeat
property is guaranteed in the following theorem.

Theorem 2.2. If no noise is applied, the LMS RH estimator (2.25) is a deadbeat estimator, that is,
xk−h|k = xk−h at the fixed-lag (h ≥ 1) or the current (h = 0) time.
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Proof. The LMS RH estimator (2.25) can be rearranged in terms of Yk−1 and Uk−1, that is,
HYk−1+LUk−1 for some gain matricesH and L. Substituting Yk−1 in (2.12) intoHYk−1+LUk−1,
using (2.9), and removing all noise, we have

HYk−1 + LUk−1 =
(

H ˜CN −AN−h
s

)

xk−N + xk−h +
(

H ˜BN − Lb,N + L
)

Uk−1

+
(

H ˜SN − Ls,N

)

Yk−1.
(2.26)

It can be easily seen that H ˜CN = AN−h
s and terms associated with inputs Uk−1 and outputs

Yk−1 become zero. It follows then that we have HYk−1 + LUk−1 = xk−h. This completes the
proof.

According to the deadbeat property, the LMS RH estimator tracks down the real state exactly
if no noise is applied.

The prediction problem for h ≤ −1 can be easily solved from the previous results for
h = 0. Since xk−h is represented as

xk−h = A−hxk +
−h−1
∑

i=0

AiBuk+i +
−h−1
∑

i=0

AiGwk+i, (2.27)

we have

E[xk−h | Uk−1, Yk−1] = A−hE[xk | Uk−1, Yk−1] +
−h−1
∑

i=0

AiBuk+i, (2.28)

which means that E[xk−h | Uk−1, Yk−1] can be obtained from E[xk | Uk−1, Yk−1]. Setting h in
(2.25) to zero, we can compute E[xk | Uk−1, Yk−1] easily.

3. Iterative Computation

The LMS FM estimator (2.25) is of the compact and simple form. However, this form requires
the inverse of big matrices, which may lead to long computation time and large numerical
errors. To overcome these weak points, in this section, we provide an effective iterative form
of (2.25).

First, we represent (2.25) in another form for getting recursive equations. Recalling the
following fact:

(

˜CT
NΠ−1N ˜CN

)−1
=
(

W1,1 −W1,2W
−1
2,2W

T
1,2

)−1
,

˜CT
NΠ−1N = ˜CT

NR−1N −W1,2W
−1
2,2
˜GT
NR−1N ,

(3.1)
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we obtain

[

˜CT
NΠ−1N
0

]

+

[

˜CT
N
˜GT
N

]

R−1N

=

[

2 ˜CT
NR−1N −W1,2W

−1
2,2
˜GT
NR−1N

˜GT
NR−1N

]

=

[

2I −W1,2W
−1
2,2

0 I

][

˜CT
N
˜GT
N

]

R−1N ,

[

W1,1 + ˜CT
NΠ−1N ˜CN W2,2

WT
1,2 W2,2

]−1[
2I −W1,2W

−1
2,2

0 I

]

=

⎧

⎨

⎩

⎡

⎣

1
2
I

1
2
W1,2W

−1
2,2

0 I

⎤

⎦

[

W1,1 + ˜CT
NΠ−1N ˜CN W1,2

WT
1,2 W2,2

]

⎫

⎬

⎭

−1

=

[

W1,1 W1,2

WT
1,2 W2,2

]−1
.

(3.2)

Note that nonsingularity of ˜CT
NΠ−1N ˜CN is guaranteed for the observability of (A,C). From

(3.2), it can be easily seen that the LMS RH (2.25) can be represented as

x̂k−h|k = ΞN

[

W1,1 + ˜CT
NΠ−1N ˜CN W1,2

WT
1,2 W2,2

]−1

×
([

˜CT
NΠ−1N

((

I − ˜SN

)

Yk−1 − ˜BNUk−1
)

0

]

+

[

˜CT
N
˜GT
N

]

R−1N
((

I − ˜SN

)

Yk−1 − ˜BNUk−1
)

)

+ Ls,NYk−1 + Lb,NUk−1.
(3.3)

Now,we consider two recursive equations for the batch form (3.3). One is for obtaining
˜CT
NΠ−1N ˜CN and ˜CT

NΠ−1N ((I − ˜SN)Yk−1 − ˜BNUk−1). The other is for (3.3) given ˜CT
NΠ−1N ˜CN and

˜CT
NΠ−1N ((I − ˜SN)Yk−1 − ˜BNUk−1). The first one is computed in a backward time and the second

one in a forward time. Next subsections deal with each recursive equation.

3.1. Recursive Equation for Backward Computation

Here, how to obtain ˜CT
NΠ−1N ˜CN and ˜CT

NΠ−1N ((I − ˜SN)Yk−1 − ˜BNUk−1) in (3.3)will be discussed.
These values will be computed in a backward time. ( ˜CT

NΠ−1N ˜CN)−1 ˜CT
NΠ−1N ((I − ˜SN)Yk−1 −

˜BNUk−1) and ( ˜CT
NΠ−1N ˜CN)−1 will be denoted by β0|k and P0, respectively, for consistency with

the next section. The following theorem provides the main result.

Theorem 3.1. P0 = ( ˜CT
NΠ−1N ˜CN)−1 and β0|k = P0 ˜C

T
NΠ−1N ((I − ˜SN)Yk−1 − ˜BNUk−1) can be computed

recursively as follows:

P0 =
(

CTR−1C + ̂PN

)−1
, (3.4)

β0|k = P0

(

CTR−1yk−N + αN|k
)

, (3.5)
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where ̂PN and αN|k are obtained from

̂Pj+1 = AT
sC

TR−1CAs +AT
s
̂PjAs −AT

s

(

CTR−1C + ̂Pj

)

G

×
{

Q−1s +GT
(

CTR−1C + ̂Pj

)

G
}−1

GT
(

CTR−1C + ̂Pj

)

As,
(3.6)

αj+1|k =
{

AT
s −AT

s

(

CTR−1C + ̂Pj

)

G
{

Q−1s +GT
(

CTR−1C + ̂Pj

)

G
}−1

GT

}

×
{

αj|k + CTR−1yk−j −
(

̂Pj + CTR−1C
)(

Buk−j−1 +GSR−1yk−j−1
)}

,

(3.7)

for 1 ≤ j ≤N − 1,Qs = Q − SR−1ST , and ̂P1 and α1|k are zero matrices with appropriate dimensions.

Proof. Before going into a main proof, we introduce some variables ̂Cj , ̂Nj , ̂Πj , and ̂Pj as

̂Cj �

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

CAs

...
CA

j−3
s

CA
j−2
s

CA
j−1
s

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

[

C
̂Cj−1

]

A, (3.8)

̂Nj �

⎡

⎢

⎢

⎢

⎢

⎣

CG 0 · · · 0
CAsG CG · · · 0

...
...

...
...

CA
j−2
s G CA

j−3
s G · · · CG

⎤

⎥

⎥

⎥

⎥

⎦

=

[

CG 0

̂Cj−1G ̂Nj−1

]

, (3.9)

̂Πj � ̂NjQj−1̂NT
j + Rj−1 ∈ �q(j−1)×q(j−1), (3.10)

̂Pj � ̂CT
j
̂Π−1j ̂Cj, (3.11)

for 2 ≤ j ≤N. In terms of ̂Πj in (3.10) and ̂Pj in (3.11), β0|k and P0 can be represented as

β0|k = P0

(

CTR−1yk−N + ̂CT
N
̂Π−1N
((

Io − ˜So
N

)

̂YN − ˜Bo
N
̂UN

))

= P0

(

CTR−1yk−N + αN|k
)

,

P0 =
(

CTR−1C + ̂PN

)−1
,

(3.12)

where Io, ˜So
j , and ˜Bo

j are obtained by removing the first row blocks of I, ˜Sj , and ˜Bj ,

respectively, and ̂Yj , ̂Uj , and αj|k are given by

̂Yj �
[

yT
k−j · · · yT

k−1
]T
, ̂Uj �

[

uT
k−j · · · uT

k−1
]T
, (3.13)

αj|k � ̂CT
j
̂Π−1j
((

Io − ˜So
j

)

̂Yj − ˜Bo
j
̂Uj

)

, (3.14)
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for 2 ≤ j ≤ N. In order to obtain P0 and β0|k, we have only to know ̂PN and αN|k. Now, in
order to get ̂PN and αN|k, we try to find recursive equations for ̂Pj and αj|k on 1 ≤ j ≤ N. By
using recursions in (3.8) and (3.9), we have the following equality:

̂Π−1j+1 = ̂Δ
−1
j − ̂Δ−1j

[

C
̂Cj

]

G

⎧

⎨

⎩

Q−1s +GT

[

C
̂Cj

]T

̂Δ−1j

[

C
̂Cj

]

G

⎫

⎬

⎭

−1

×GT

[

C
̂Cj

]T

̂Δ−1j , (3.15)

where ̂Δj is given by

̂Δj �
[

R 0
0 ̂Πj

]

. (3.16)

Pre- and postmultiplying (3.15) by

̂CT
j+1 = AT

s

[

C
̂Cj

]T

, ̂Cj+1 =

[

C
̂Cj

]

As, (3.17)

respectively, we have (3.6). Pre- and postmultiplying (3.15) by

̂CT
j+1 = AT

s

[

C
̂Cj

]T

, (3.18)

(

Io − ˜So
j+1

)

̂Yj+1 − ˜Bo
j+1
̂Uj+1 =

[

yk−j
(

Io − ˜So
j

)

̂Yj − ˜Bo
j
̂Uj

]

−
[

C
̂Cj

]

(

Buk−j−1 +GSR−1yk−j−1
)

, (3.19)

respectively, we have (3.7). Note that (3.6) and (3.7) hold for i ≥ 2. From (3.11) and (3.14), ̂P2

and α2|k can be written as

̂P2 = ̂CT
2
̂Π−12 ̂C2 = AT

sC
T
(

CGQsG
TCT + R

)−1
CAT

s , (3.20)

α2|k = ̂CT
2
̂Π−12
((

Io − ˜So
2

)

̂Y2 − ˜Bo
2
̂U2

)

= AT
sC

T
(

CGQsG
TCT + R

)−1(
yk−1 − CGSR−1yk−2 − CBuk−2

)

.
(3.21)

If ̂P1 and α1|k are set to zero matrices with appropriate dimensions, ̂P2 in (3.20) and α2|k in
(3.21) can be calculated from (3.6) and (3.7). Thus, we can say that (3.6) and (3.7) hold for
i ≥ 1 and are initiated with ̂P1 = 0 and α1|k = 0. After obtaining ̂PN from (3.6), we can calculate
P0 from (3.4). β0|k in (3.5) can be obtained from αN|k that comes from (3.7).

This completes the proof.
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3.2. Recursive Equation for Forward Computation

Here, the recursive equation for (3.3) on the horizon is derived under the assumption that
P0 = ( ˜CT

NΠ−1N ˜CN)−1 and β0|k = P0 ˜C
T
NΠ−1N ((I − ˜SN)Yk−1 − ˜BNUk−1) are given. P0 and β0|k in

Section 3.1 are computed in a backward time while variables introduced in this section are
computed in a forward time. Before proceeding to a main result, we introduce some variables
and the necessary lemma.

LG,i,Mi, and Ni are defined as

LG,i �
[

Ai
s Ai−1

s G Ai−2
s G · · · AsG G

]

, (3.22)

Mi �
[

˜CT
i R
−1
i
˜Ci + P−10

˜CT
i R
−1
i
˜Go
i

˜GoT
i R−1i ˜Ci

˜GoT
i R−1i ˜G

o
i +Q−1i−1

]

, (3.23)

Ni �
[

Mi 0
0 Q−1s

]

=

[

˜CT
i R
−1
i
˜Ci + P−10

˜CT
i R
−1
i
˜Gi

˜GT
i R
−1
i
˜Ci

˜GT
i R
−1
i
˜Gi +Q−1i

]

, (3.24)

where 2 ≤ i ≤ N and ˜Go
i is the matrix obtained by removing the last zero column block from

˜Gi, that is, ˜Gi =
[

˜Go
i 0
]

. In particular, LG,1,M1, andN1 are defined as
[

As G
]

,CTR−1C+P−10

andM1 ⊕Q−1s . The following lemma shows how variables LG,i,Ni, andMi are related to one
another.

Lemma 3.2. The following relation is satisfied:

Ni + LT
G,iC

TR−1CLG,i = Mi+1, (3.25)

where LG,i, Ni, and Mi are defined in (3.22)–(3.24), respectively.

Proof. If Γi is defined as

Γi �
[

Ai−1
s G Ai−2

s G · · · AsG G
]

, (3.26)

LG,i can be represented as

LG,i =
[

Ai
s Γi
]

, (3.27)

from which we have

LT
G,iC

TR−1CLG,i =
[

ATi
s CTR−1CAi

s ATi
s CTR−1CΓi

ΓTi C
TR−1CAi

s ΓTi C
TR−1CΓi

]

. (3.28)
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The four block elements in Mi+1 can be expressed recursively as

˜CT
i+1R

−1
i+1
˜Ci+1 = ˜CT

i R
−1
i
˜Ci +ATi

s CTR−1CAi
s,

˜CT
i+1R

−1
i+1
˜Go
i+1 =

[

˜CT
i R
−1
i
˜Go
i 0
]

+ATi
s CTR−1CΓi,

˜GoT
i+1R

−1
i+1
˜Go
i+1 =

[

˜GoT
i R−1i ˜G

o
i 0

0 0

]

+ ΓTi C
TR−1CΓi.

(3.29)

Using (3.28) and (3.29), we have Ni + LT
G,iC

TR−1CLG,i = Mi+1. This completes the proof.

Lemma 3.2 is useful for breaking up big matrices of (3.3) into small matrices. We now
exploit the recursive equations for two following quantities:

βj|k = LG,jN
−1
j

([

˜CT
NΠ−1N ˜Ym,N−1

0

]

+

[

˜CT
j

˜GT
j

]

R−1j ˜Ym,j−1

)

+ LB,j
˜Uj−1 + LS,j

˜Yj−1, (3.30)

for 1 ≤ j ≤N

γj|k = ΞjN
−1
j

([

˜CT
NΠ−1N ˜Ym,N−1

0

]

+

[

˜CT
j

˜GT
j

]

R−1j ˜Ym,j−1

)

+ Lb,j
˜Uj−1 + Ls,j

˜Yj−1, (3.31)

for N − h ≤ j ≤ N, where Lb,j and Ls,j are defined in a form (2.24), and ˜Yj−1, ˜Uj−1, LB,j , LS,j ,
and ˜Ym,j−1 are given by

˜Yj−1 �
[

yT
k−N · · ·yT

k−N+j−1
]T
, ˜Uj−1 �

[

uT
k−N · · ·uT

k−N+j−1
]T
,

LB,j �
[

A
j−1
s B A

j−2
s B · · · B

]

,

LS,j �
[

A
j−1
s GSR−1 A

j−2
s GSR−1 · · · GSR−1

]

,

˜Ym,j−1 �
(

I − ˜Sj

)

˜Yj−1 − ˜Bj
˜Uj−1.

(3.32)

Note that β0|k = ˜CT
NΠ−1N ((I − ˜SN)Yk−1 − ˜BNUk−1), γN−h|k = βN−h|k, and x̂k−h|k = γN|k. However,

βj|k is recursively computed from j = 0 to j = N and γj|k from j = N − h to j = N with the
initial value γN−h|k = βN−h|k. Even though βj|k does not look useful on [k − h, k], it is still used
to compute γj|k on that horizon. Now, we try to find out recursive equations for βj|k and γj|k
in what follows.

3.2.1. Recursive Equation for βj|k on 0 ≤ j ≤N

Using Lemma 3.2, we will obtain a recursive equation for βj|k, which is introduced in the
following theorem.
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Theorem 3.3. On 0 ≤ j ≤N, βj|k in (3.30) can be computed as follows:

βj+1|k = Asβj|k + Buk−N+j +GSR−1yk−N+j +AsPjC
T
(

R + CPjC
T
)−1
(

yk−N+j − Cβj|k
)

,
(3.33)

where Pj is given by

Pj+1 = AsPjA
T
s +GQsG

T −AsPjC
T
(

R + CPjC
T
)−1

CPjA
T
s , (3.34)

and initial conditions are set to P0 = ( ˜CT
NΠ−1N ˜CN)

−1
and β0|k = P0 ˜C

T
NΠ−1N ˜Ym,N−1 computed in

Section 3.1.

Proof. First, we will obtain a closed-form of Pj in (3.34) and then, using the closed-form of Pj ,
we show that βj|k in (3.30) can be computed recursively from (3.33).

Using the defined variables (3.22) and (3.24), we assume that Pj in (3.34) is of the form:

Pj = LG,jN
−1
j LT

G,j . (3.35)

By an induction method, we will prove (3.35). For the first step, we check (3.35) for j = 1.
Given the initial value P0, we transform P1 to the form (3.35) by (3.34) as follows:

P1 =
[

As G
]

[

P−10 + CTR−1C 0
0 Q−1s

]−1
[

As G
]T
. (3.36)

Equation (3.38) can be written in terms of LG,i and Ni as P1 = LG,1N
−1
1 LT

G,1. Now, we check
Pj+1 under the assumption that Pj = LG,jN

−1
j LT

G,j . From (3.34), we have

Pj+1 = AsLG,jM
−1
j+1L

T
G,jA

T
s +GQsG

T = LG,j+1N
−1
j+1L

T
G,j+1. (3.37)

Thus, we can see that Pj in (3.34) can be represented as the form (3.35) in terms of LG,j andNj .
Using this result, we are in a position to show that βj|k in (3.30) can be computed recursively
from (3.33). We can rewrite βj|k in (3.30) as

βj|k = LG,jN
−1
j Tj + LB,j

˜Uj−1 + LS,j
˜Yj−1, (3.38)

where Tj is given by

Tj �
[

P−10
0

]

β0|k +

[

˜CT
j

˜GT
j

]

R−1j ˜Ym,j−1. (3.39)
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As in a derivation of Pj in a batch form, we show by an induction method that βj|k in
(3.38) is equivalent to the one in (3.33). First, we show that β1|k can be obtained from
P0 = ( ˜CT

NΠ−1N ˜CN)−1 and β0|k = P0 ˜C
T
NΠ−1N ˜Ym,N−1:

β1|k = As

(

P−10 + CTR−1C
)−1(

P−10 β0|k + CTR−1yk−N
)

+ Buk−N +GSR−1yk−N, (3.40)

where, in terms of LG,i, Ni, and Ti, β1|k can be written as β1|k = LG,1N
−1
1 T1 + LB,1 ˜U0 + LS,1 ˜Y0.

Next, we show that βj+1|k in the form (3.38) can be obtained from βj|k of the batch form, that
is, βj|k = LG,jN

−1
j Tj + LB,j

˜Uj−1 + LS,j
˜Yj−1. First, note that we have the following relations:

{

As −AsPjC
T
(

R + CPjC
T
)−1

C

}

LG,jN
−1
j Tj = AsLG,jM

−1
j+1Tj ,

AsPjC
T
(

R + CPjC
T
)−1

yk−N+j = AsLG,jM
−1
j+1L

T
G,jC

TR−1yk−N+j .

(3.41)

Substituting (3.41) into (3.33) yields

βj+1|k = AsLG,jM
−1
j+1Tj +AsLG,jM

−1
j+1L

T
G,jC

TR−1yk−N+j

−AsLG,jM
−1
j+1L

T
G,jC

TR−1C
(

LB,j
˜Uj−1 + LS,j

˜Yj−1
)

+ LB,j+1 ˜Uj + LS,j+1 ˜Yj,

=
[

AsLG,j G
]

[

M−1
j+1 0
0 Qs

]

⎧

⎨

⎩

[

P−10
0

]

β0|k +

⎡

⎣

˜CT
j+1

[

˜Go
j+1 0

]T

⎤

⎦R−1j+1 ˜Ym,j

⎫

⎬

⎭

+ LB,j+1 ˜Uj + LS,j+1 ˜Yj = LG,j+1N
−1
j+1Tj+1 + LB,j+1 ˜Uj + LS,j+1 ˜Yj,

(3.42)

where G and Qs in the first and second matrix blocks on the right-hand side of the first
equality have no effect on the equation. This completes the proof.

It is observed that the recursive equations with (3.33) and (3.34) are the same as the
Kalman filter with initial conditions P0 = ( ˜CT

NΠ−1N ˜CN)−1 and β0|k = P0 ˜C
T
NΠ−1N ˜Ym,N−1. βj|k on

1 ≤ j ≤ N provides initial values and inputs for a recursive equation of γj|k (3.31), which will
be investigated in what follows.

3.2.2. Recursive Equation for γj|k on N − h ≤ j ≤N

Here, we discuss the recursive equation for γj|k on N − h ≤ j ≤ N. As mentioned before, the
recursive equation for γj|k starts from j = N − h with the initial value γN−h|k = βN−h|k. On
N − h ≤ j ≤ N, γj|k can be recursively computed with the help of βj|k. However, γN|k = x̂k−h|k
is what we want to find out finally. The recursive equation for γj|k is given in the following
theorem.

Theorem 3.4. OnN − h ≤ j ≤N − 1, γj|k in (3.31) can be computed as follows:

γj+1|k = γj|k +KjC
T
(

CPjC
T + R

)−1
(

yk−N+j − Cβj|k
)

, (3.43)
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· · · · · · · · ·· · ·

· · ·· · ·· · ·· · ·

Figure 2: An iterative form of the LMS RH estimator.

where γN−h|k = βN−h|k, βj|k and Pj are obtained from (3.33) and (3.34), respectively, andKj is given
by

Kj =Kj−1

(

I − CT
(

CPj−1CT + R
)−1

CPj−1

)

AT, (3.44)

with the initial conditionKN−h = PN−h.

Proof. Using Lemma 3.2, γj+1|k in (3.31) for j ≥N − h can be represented as

γj+1|k = γj|k + ΞjN
−1
j LT

G,jC
T
(

CPjC
T + R

)−1
(

yk−N+j − Cβj|k
)

. (3.45)

If we denote ΞjN
−1
j LT

G,j by Kj , we have only to prove (3.44). Since ΞN−h = LG,N−h, KN−h is
equal to PN−h. Using Lemma 3.2, we can representKj in a recursive form as follows:

Kj =Kj−1

(

I − CT
(

CPjC
T + R

)−1
CPj−1

)

AT. (3.46)

This completes the proof.

It is noted that the recursive equation (3.43) in Theorem 3.4 is a fixed-point smoother
of the state xk−h, which runs with a recursive equation (3.33) in Theorem 3.3. Variables for
recursive equations in Sections 3.1 and 3.2 are visualized in Figure 2. Starting from ̂P1 = 0
and α1|k = 0, we compute ̂PN and αN|k recursively in a backward time. From ̂PN and αN|k,
we compute P0 and β0|k, from which we drive the forward recursive equation for βj|k to get
γN|k = x̂k−h|k.
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Figure 3: Estimation errors of LMS RH and Kalman estimators when temporary uncertainties exist.

4. Simulation

In this section, a numerical example is given to demonstrate the performance of the proposed
LMS RH estimator. Suppose that we have a state space model represented as

xi+1 =
[

1.5400 + 2δi −0.7379
0.7379 δi

]

xi +
[

0.4921
0.7594

]

ui +
[

1
1

]

wi,

yi =
[

1 + δi 1 + δi
]

xi + vi,

(4.1)

where δi is an uncertain model parameter given as

δi =

{

0.1, 200 ≤ i ≤ 220,
0, otherwise.

(4.2)

The system noise covariance Q and the measurement noise covariance R are set to 0.012 and
0.0272, respectively. The memory size and the fixed-lag size are taken as N = 10 and h = 3,
respectively. A sinusoidal input is applied as an input.

We carry out a simulation for the system (4.1)with temporary modeling uncertainties
(4.2). In Figure 3, we compare the estimation errors of the LMS RH estimator with the fixed-
lag Kalman estimator [18]. When uncertainties do not exist, the fixed-lag Kalman estimator
has the smaller estimation error than the proposed LMS RH estimator. It can, however, be
seen that the estimation error of the LMS RH estimator is considerably smaller than that
of the fixed-lag Kalman estimator when modeling uncertainties exist. Actually, one of poles
of the fixed-lag Kalman estimator is so close to a unit that even small uncertainties have a
good chance of divergence. Additionally, we can see that the estimation error of the LMS
RH estimator converges much more rapidly than that of the fixed-lag Kalman estimator after
temporary modeling uncertainty disappears. The slow response is also related to the pole
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near a unit. To be summarized, we can say that the proposed LMS RH estimator is more
robust than other estimators with infinite memory when applied to systems with modeling
uncertainties.

5. Conclusions

In this paper, we proposed a receding horizon (RH) estimator based on the mean-square-
error criterion for a discrete-time state space model, called a least-mean-square (LMS) RH
estimator. An unknown state was estimated by making use of the finite number of inputs
and outputs over the recent finite horizon without any arbitrary assumptions and any a
priori state information. The proposed LMS RH estimator was obtained from the conditional
expectations of the initial state and the system noise on the corresponding horizon. It was
shown that the LMS RH estimator has a deadbeat property and has good robust performance
through a numerical example.

To the best of authors’ knowledge, the proposed LMS RH estimator would be the most
general version among existing RH or finite-memory estimators in the mean-square-error
sense. Furthermore, the LMS RH estimator could be extended to other stochastic systems
with imperfect communications, uncertainties, and so on [19, 20].
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