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Small fluctuations caused by random changes of loads exist continuously in power grids,
which are called ambient signals. Using time-synchronized phasor measurements, the closed-
loop identification of power system based on ambient data is discussed, which can reflect accu-
rate operating conditions currently and provide critical information for system analyzing and
controller designing. The closed-loop identification of a power system with multiple disturbances
is theoretically studied, including the closed-loop identifiability, the consistency properties, and
the convergence properties. The requirements for realizing the closed-loop identification are sum-
marized, and the theoretical research results are validated by simulation examples.

1. Introduction

Generally, the performance of large interconnected power grids is assessed using simulation
methods. In this approach, accurate simulation models and parameters are critical parts
to analyzing, controlling, and operating a power system. The identification of models and
parameters can be accomplished using two types of data: signals collected from special tests
or ringdown signals [1–4]. However, special tests are usually costly, since a lot of preparatory
work has to be done in order to avoid negative impact on the system. On the other
hand, relatively small quantity of ringdown signals in actual power system and relatively
high requirement to calculation speed both limit this approach’s application. Moreover, the
identification results may not reflect the accurate operating characteristics of power system
currently, which would cause serious adaptability problems in system analysis and regulator
design.
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The development and application of wide area measurement system (WAMS)
provides favorable conditions for solving these problems. In actual power system, ambient
signals caused by random changes of loads are much easier to be collected. Recently, many
publications have offered algorithms for estimating the electromechanical modal properties
from ambient data [5–12], which fully demonstrate that this type of signal includes rich
information about power grids.

In this paper, the closed-loop identification of power system based on wide area meas-
ured ambient data is proposed. The identification is carried out during normal operation and
provides critical information for the improved operational reliability of interconnected power
grids.

Nowadays, scholars in automation field have done a lot about the system identifi-
cation, including the identifiability, the identification algorithm, the identification accuracy
evaluation, and so forth [13–20]. However, in power system field, researchers mainly
focus on the identification algorithm [1–4, 21–23] whereas ignore some basic problems.
In actual power systems, multiple stochastic disturbances always exist, and the wide area
damping regulators are gradually put into operation for improving the system’s oscillation
characteristic. All these indicate that the closed-loop system is less sensitive to changes, and
ambient signals have less information about the system, thus the system identification is
much more difficult.

In this paper, the closed-loop identification of power system based on ambient signals
is theoretically studied. Using “true” system and identification model structure shown in
Section 2 as the subjects, the closed-loop identifiability is discussed in Section 3, in order to
specify the conditions for estimating a unique system model in this situation. Section 4 and
Section 5 evaluate the identification accuracy, including the consistency properties and the
convergence properties. Then, the necessary conditions for ambient-data-based closed-loop
identification of power system are summarized in Section 6, and the simulation examples
done in Section 7 are used to validate the theoretical research results.

2. True System and Identification Model Structure

“True” system and identification model structure shown in Figure 1 are used to discuss the
power system’s closed-loop identification problems. To simulate random changes of loads in
actual power grids, multiple small amplitude stochastic disturbances are added to the “true”
system. Taken two disturbances existed as an example, in the “true” system, u(t) and y(t)
denote the input variable and output variable of the controlled system at time t (t = 1, 2, . . .),
e10(t) and e20(t) are the “true” independent random disturbance variables with zero mean
values and variances λ10 and λ20, r is an independent external reference signal, G10(q) and
G20(q) denote the “true” controlled system,H10(q) andH20(q) are two inversely stable, monic
filters, and C0(q) is the “true” feedback regulator. In the identification model structure, e(t) is
a stochastic disturbance variable with zero mean value and variance λ, G(q, θ) represents the
transfer function of controlled systemmodel corresponding to the parameter value θ,H(q, θ)
and C(q, θ) denote the transfer functions of noise model and feedback regulator model and q
is a forward operator satisfying qu(t) = u(t + 1).

We will assume that the data ZN = {y(1), u(1), y(2), u(2) . . .} of the “true” system Θ
are generated as depicted in (2.1):

y(t) = G10
(
q
)
G20

(
q
)
u(t) +H10

(
q
)
e10(t) +H20

(
q
)
G10

(
q
)
e20(t),

u(t) = −C0
(
q
)
y(t) + r(t).

(2.1)
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Figure 1: “True system” (a) and identification model structure (b).
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(2.2)

then, the “true” system Θ can be described as

y(t) = G0
(
q
)
u(t) +H0

(
q
)
e0(t),

u(t) = −C0
(
q
)
y(t) + r(t).

(2.3)

The closed-loop system is stated as
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(
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q
)
H0

(
q
)
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)
H0

(
q
)
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(2.4)

where S0(q) = 1/(1 +G0(q)C0(q)).
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The identification model structure Ω is also given:

y(t) = G
(
q, θ

)
u(t) +H

(
q, θ

)
e(t),

u(t) = −C(q, θ)y(t) + r(t).
(2.5)

Similar to (2.4), (2.5) can be rewritten as

y(t) = S
(
q, θ

)
G
(
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)
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(
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)
H
(
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)
e(t),
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(
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)
r(t) − S

(
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)
C
(
q, θ

)
H
(
q, θ

)
e(t),

(2.6)

where S(q, θ) = 1/(1 +G(q, θ)C(q, θ)).

3. Closed-Loop Identifiability Analysis

For the system identification problem, it is nature to check whether the “true” system
described by (2.1) belongs to the model set defined by (2.5). We, thus, introduce the concept
of identifiability.

The dataset ZN is the source of information about the “true” system. This be fit to a
model structure Ω of our choice. The structure Ω describes a set of models Ω∗ within which
the best one is sought for. Identifiability concerns the question whether different parameter
vectors of model structure can describe the same model in the set Ω∗, that is to say, whether
the dataset ZN allows us to distinguish between different models in the set [13]. The dataset
ZN is called to be informative if it is capable of distinguishing between different models
[13, 24]. Now, we will discuss whether ambient data is informative enough to closed-loop
estimate one unique solution of power system model.

An obvious approach is to estimate the model parameters θ by the prediction error
method. Assuming two models called W(q, θ1) and W(q, θ2) are identified based on the
quasistationary dataset ZN , obviously

0 = E
[(
W

(
q, θ1

) −W
(
q, θ2

))
Z(t)

]2

= E

∣∣∣∣∣
[
ΔWu ΔWy

]
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]∣∣∣∣∣

2

,
(3.1)

where Ex = limN→∞(1/N)
∑N

t=1 Ex(t), i = 1, 2, . . .
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We will discuss the closed-loop identifiability problem in two cases: without reference signal
and with reference signal.

3.1. Without Reference Signal

When no reference signal is added to the system, W(q, θ1) and W(q, θ2) are identified based
on the quasistationary data set ZN , (3.1) establishes.

The input and output of the “true” system are stated as

[
u(t)

y(t)

]

=

[−S0
(
q
)
C0

(
q
)

S0
(
q
)

]

H0
(
q
)
e0(t). (3.3)

Then, substituting (3.3) into (3.1),

E
∣∣(−ΔWuC0 + ΔWy

)
S0H0e0(t)

∣∣2 = 0. (3.4)

As defined above, e0 is a combination of two filtered uncorrelated white-noise dis-
turbances e10 and e20, and the two corresponding filters are both stable and nonsingular.
Clearly, Φei0u(ω) > 0 establishes.

When the feedback regulator in the “true” system satisfies C0 /=ΔWy/ΔWu, then

ΔWy = ΔWu = 0. (3.5)

It means that

W
(
q, θ1

)
= W

(
q, θ2

)
. (3.6)

In actual power system, this condition shows up as the feedback regulator should be
not too simple. High-order complex or nonlinear or time-varying regulator can ensure the
identification data informative enough, and then the model structure is closed-loop identifi-
ability.

3.2. With Reference Signal

Once the feedback regulator could not assure the identification data set informative enough,
an external reference signal should be added. Likewise, W(q, θ1) and W(q, θ2) are identified
based on the quasistationary data set ZN , (3.1) establishes.

The input and output of the “true” system are stated as

[
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]
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·
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(
q
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e0(t)

]

. (3.7)
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Substituting (3.7) into (3.1), then

0 = E

∣
∣
∣
∣
∣

[
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H0e0(t)
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,

(3.8)

where

[
W̃u W̃y

]
=
[
ΔWu ΔWy

]
[
1 −S0C0

G0 S0

]

. (3.9)

Recalling that the signals r and e0 are uncorrelated by the assumption, apparently the two
components in (3.8) both equal zero.

(1) E|W̃yH0e0(t)|
2
= 0. The signal e0 is defined as a combination of two filtered uncor-

related white-noise disturbances e10 and e20, and the two corresponding filters are
both stable and nonsingular, Φe0(ω) > 0 establishes, therefore, W̃y = 0.

(2) E|W̃uS0r(t)|
2
= 0. Obviously, when E|S0r(t)|2 > 0, W̃u = 0 establishes. According to

the definition, the analytical function S0 depends on the “true” system G0 and H0,
then |S0|2 may be zero at most finitely many points. Only when Φr(ω) > 0,
E|S0r(t)|2 > 0. Only when the reference signal is persistently exciting, W̃u = 0 estab-
lishes.

On the other hand, the determinant of matrix
∣∣∣ 1 −S0C0
G0 S0

∣∣∣ equals 1, the matrix is always
invertible. It indicates that

[
W̃u W̃y

]
= 0. (3.10)

Clearly, (3.5) and (3.6) are established.
Besides, it has found that if there is just a simple feedback regulator like u(t) = ay(t),

the data set is not informative enough to realize the closed-loop identification even with a
persistently exciting reference signal [13].

Therefore, not only a persistently exciting reference signal will assure the informative
data set, but also certain complexity feedback regulator should, in general, yield data set
informative enough.

3.3. Closed-Loop Identifiability Conditions

When multiple random changes exist in the power system, in order to ensure the ambient
signals informative enough to realize the closed-loop identification, at least one of the fol-
lowing conditions must be met.

(1) The feedback regulator is high-order complex or time-varying or nonlinear.

(2) A persistently exciting reference signal is added, and the feedback regulator should
have a certain complexity.
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We will now characterize in what sense the identified model approximates to the
“true” system, including the consistency properties and the convergence properties. The
following discussions are based on the frequency domain expression for the limiting criterion
function.

4. Consistency Analysis of Closed-loop Identification

For the “true” system and the identification model shown in Figure 1, let us focus on the case
with a fixed noise model Hθ = H∗, the spectrum of the prediction error is

Φε(ω, θ) =
|G0 + Bθ −Gθ|2Φu(ω)

|H∗|2

+
|Dθ|2
|H∗|2

(
λ20 −

Φue20(ω)Φe20u(ω)
Φu(ω)

)

+
|H10 −H∗|2

|H∗|2
λ10 + λ10 + λ20

− |H10 −H∗|2Φue10(ω)Φe10u(ω)λ20
|H∗|2(λ20Φu(ω) −Φue20(ω)Φe20u(ω))

,

Bθ =
Φe20u(ω)

(
H ′

20 −Hθ

)

Φu(ω)
+
Φe10u(ω)(H10 −Hθ)

Φu(ω)
,

Dθ =
(
H ′

20 −Hθ

) − Φe10u(ω)Φue20(ω)(H10 −Hθ)
λ20Φu(ω) −Φue20(ω)Φe20u(ω)

,

(4.1)

whereΦu(ω) denotes the spectrum of input u, λ10 and λ20 denote the spectra of disturbances
e10 and e20, Φuei0(ω) and Φei0u(ω) denote the cross-spectra between signal u and ei0, i = 1, 2,
and the operator eiω is omitted in the formula.

The model parameters are estimated using the prediction error method whose princi-
ple is to make the prediction error as small as possible [13]. Therefore, the model Gθ would
approximate to the biased transfer function G0 + Bθ as well as possible, according to the
weighted frequency domain function above. It means that the function Bθ denotes the identi-
fication bias.

We can split up the input spectrumΦu(ω) into one part that originates from r and two
parts that come from ei0:

Φu(ω) = Φr
u(ω) + Φe10

u (ω) + Φe20
u (ω). (4.2)

The cross-spectrum between the signal u and ei0 satisfies

|Φei0u(ω)|2 = Φei0
u (ω)λi0. (4.3)
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Let us comment on the bias function Bθ.

|Bθ|2 =
∣
∣
∣
∣
Φe20u(ω)
Φu(ω)

(
H ′

20 −H∗
)
+
Φe10u(ω)
Φu(ω)

(H10 −H∗)
∣
∣
∣
∣

2

≥ λ20Φ
e20
u (ω)

|Φu(ω)|2
∣∣H ′

20 −H∗
∣∣2 +

λ10Φ
e10
u (ω)

|Φu(ω)|2
|H10 −H∗|2.

(4.4)

From (4.4), we see that the bias inclination will be small in the frequency range where
either (or all) of the followings holds.

(1) The noise model is good ((Hθ–H∗) is small).

(2) The input signal-to-noise ratio is good.

(3) The feedback contribution to the input spectrum is small.

The conditions (2.3) and (2.4) are both associated with the disturbances. In this paper,
small amplitude stochastic changes of loads in actual power system are considered to be
disturbances, which are hard to be manipulated. Thus, in order to reduce the identification
bias, we should focus on improving the noise model’s accuracy.

Moreover, in the “true” system, the filters of disturbances are generally different from
each other, namely, H10 /=H ′

20, which implies that the noise model H∗ is impossible equal to
the true filters H10 and H ′

20 at the same time. Then, it can be deduced from (4.1) that Bθ /= 0,
the identification bias inevitably exists in this situation.

Then, extending to the situation that L disturbances exist in the “true” system, the bias
Bθ is described as

|Bθ|2 =
∣∣∣∣∣

L∑

i=1

[
Φei0u(ω)
Φu(ω)

(
H ′

i0 −H∗
)
]∣∣∣∣∣

2

≥
L∑

i=1

[
λi0Φ

ei0
u (ω)

|Φu(ω)|2
∣∣H ′

i0 −H∗
∣∣2
]

.

(4.5)

Obviously, with the increase in the disturbance number, the identification bias also
rises. When we magnify the reference signal’s energy, its contribution to input also increases
and the input’s total power amplifies correspondingly, then the identification bias reduces.

Therefore, when multiple small amplitude stochastic disturbances exist in a power
system, the closed-loop identification bias inevitably exists. It will rise with the increase in
disturbance number. In order to improve the consistency prosperities of identification, it is
necessary to add a persistently exciting reference signal with certain power.

5. Convergence Analysis of Closed-Loop Identification

Let us now consider the convergence prosperities of closed-loop identification in two cases:
with unfixed noise model, and with fixed noise model.
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5.1. Identification with Unfixed Noise Model

It can be deduced that the asymptotic variance of the estimated transfer function is

cov ĜN ≈ n

N

Φv0(ω)
Φr

u(ω)
, (5.1)

where N denotes the length of identification data, the signal v0 is defined as

v0(t) = H10
(
q
)
e10(t) +H ′

20
(
q
)
e20(t). (5.2)

Substituting the spectra of associated signals into (5.1), the variance of the estimated
transfer function is rewritten as

cov ĜN ≈ n

N

∣∣H ′
20

∣∣2λ20 + |H10|2λ10
|S0|2Φr(ω)

. (5.3)

When the noise model is unfixed during the closed-loop identification the following
hold.

(1) The variance of estimated transfer function will approximate to infinite if there is
no reference signal.

(2) The variance of estimated transfer function is proportional to the model order, and
inversely proportional to the length of identification data.

Then, extending to the situation that L disturbances exist in the “true” system, the
variance of the estimated transfer function is

cov ĜN ≈ n

N

∑L
i=1

∣∣H ′
i0

∣∣2λi0

|S0|2Φr(ω)
. (5.4)

The variance of the estimated transfer function rises with the increase in disturbance
number. Magnifying the energy of reference signal leads to a reduction of identification
variance. It demonstrates again the necessity of the persistently exciting reference signal.

5.2. Identification with Fixed Noise Model

Likewise, in this situation, the variance of the estimated transfer function is

cov ĜN ≈ n

N

Φv0(ω)
Φu(ω)

=
n

N

∣∣H ′
20

∣∣2λ20 + |H10|2λ10
Φu(ω)

. (5.5)

In this case, since the noise model is fixed in advance, the variance of the estimated
transfer function would not trend to infinite even no reference signal existed.
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Then, extending to the situation that L disturbances exist in the “true” system, the
variance of the estimated transfer function is

cov ĜN ≈ n

N

∑L
i=1

∣
∣H ′

i0

∣
∣2λi0

Φu(ω)
. (5.6)

Clearly, the variance of estimated transfer function rises with the increase in distur-
bance number. Similarly, amplifying the power of reference signal will lead to the reduction of
identification variance. The result also demonstrates that, it is necessary to add a persistently
exciting reference signal.

Then, comparing the identification variances in the two cases, obviously

n

N

Φv0(ω)
Φu(ω)

<
n

N

Φv0(ω)
Φr

u(ω)
. (5.7)

A fixed noise model is effective to reduce the identification variance.
Therefore, when multiple small amplitude stochastic disturbances exist in a power

system, the closed-loop identification variance rises with the increase in disturbance number.
A persistently exciting reference signal with certain energy and a fixed noise model are both
helpful to improve the convergence prosperities of closed-loop identification.

6. Conditions for Realizing Ambient Signals Based Closed-Loop
Identification of Power System

We summarize the conditions for ambient signals based closed-loop identification of system
as follows.

(1) In the aspect of closed-loop identifiability, the feedback regulator should be high-
order complex or nonlinear or time varying, otherwise, a persistently exciting
reference signal is added and the feedback regulator has a certain complexity.

(2) In the aspect of identification accuracy, the identification bias always exists, and the
identification bias and variance both rise with the increase in disturbance number.
For improving the identification accuracy, it is necessary to add a persistently
exciting reference signal with certain energy and fix the noise model during the
identification process.

Taking actual power systems into account, in order to realize the closed-loop identifi-
cation, a high-order complex feedback regulator, a persistently exciting reference signal with
certain power and a fixed noise model are necessary.

7. Simulation Examples

A two-area four-machine power system [25] shown in Figure 2 is selected to validate the
closed-loop identification theoretical results. Area 1 consists of generators at bus 1 and 2, and
load at bus 7; Area 2 consists of generators at bus 3 and 4, and load at bus 8. The two areas
are connected through long transmission lines between bus 7 and 8.

Based on the reduced-order model calculated by the MATLAB linearization tool, the
electromechanical modal properties of system are estimated, shown in Table 1.



Mathematical Problems in Engineering 11

Table 1: Estimated electromechanical modal properties based on the closed-loop identification model.

Closed-loop identification Theoretical calculation error/%
Mode 1
frequency/Hz 1.174618 1.163930 0.918268

Mode 1
damping ratio/% 10.9619 10.0376 9.208263

Mode 2
frequency/Hz 0.648041 0.653445 0.827002

Mode 2
damping ratio/% 4.8910 5.3702 8.924001

G

G G

G

Gen1

Bus1

Bus2

1 2

Gen2

Gen3

Bus5 Bus6
Bus7

Load1 Load2

Bus8
Bus9 Bus10 Bus4

5 63
4

Area 1 Area 2

Gen4

Bus3

Figure 2: Two-area four-machine system.

For the examples that follows, using MATLAB as the tool, a typical time-domain
simulation that consists of driving the systemwith random load variations is done. Each load
in this system is split into a portion consisting of constant power and random power. The
random portions of real and reactive loads are obtained by passing independent Gaussian
white noises through lowpass filters with very low cutoff frequency. The system’s responses
consist of small random variations in the system states.

In order to improve the oscillation characteristic of power system, a wide area
damping regulator is designed and put into operation. Using the comprehensive dominant
mode ratio and the improving residue method [26, 27], the active power of tieline between
the two areas and the excitation side of Gen4 are selected to be the feedback signal and the
control position. Thus, the input signal on the excitation side of Gen4 and the active power of
tieline are collected to closed-loop identify the controlled system.

In this paper, the moving data window approach is adopted. The length of each data
window is 1 minute, and the time interval between adjacent windows is 30 seconds. With
the model order selected automatically by the method proposed in [8], the autoregressive
exogenous (ARX) model is used to process ambient signals.

Defining the amplitude frequency response fitting degree index (ΔM%) and the phase
frequency response variance index (ΔP ) to evaluate the closed-loop identification perfor-
mance, obviously the larger theΔM% value and the smaller theΔP value will indicate a more
precise closed-loop identification:

ΔM% =

[

1 −
∑Nω

i=1 |Miden(ωi) −M0(ωi)|2
∑Nω

i=1 |M0(ωi)|2
]

× 100%,

ΔP =
1

Nω

Nω∑

i=1

{

ΔPiden(ωi) −
∑Nω

i=1 ΔPiden(ωi)
Nω

}2

, ΔPiden(ωi) = Piden(ωi) − P0(ωi),

(7.1)
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Figure 3: Closed-loop identification results with different number of disturbances.

where Miden and M0 denote the amplitude frequency response of the identification model
and the “true” system, Piden and P0 represent the phase frequency response of the identifica-
tion model and the “true” system, ΔPiden is the error of phase frequency response, andNω is
the number of frequency points.

First, the effect of disturbances on closed-loop identification is analyzed. One, three
and five disturbance signals are added to the controlled system, respectively. Ambient data
are collected for identifying the system model. The results are shown in Figure 3.

When one disturbance exists in the simulation system, the ΔM% value fluctuates
between 40% and 60%, and the ΔP value is less than 1; when three disturbances are added
to the system, the ΔM% value changes between 20% and 30%, and the ΔP value are about
2; when five disturbances exist, the ΔM% value is less than 20%, and the ΔP value is up to
4. Obviously, when the disturbance number increases, the ΔM% value decreases, whereas
the ΔP value rises. The accuracy of closed-loop identification reduces with the increase of
disturbance number.

Asmentioned in Section 4, a persistently exciting reference signal is helpful to improve
the identification performance. Therefore, when three disturbances exist in the controlled
system, a reference signal is added. This signal is obtained by passing Gaussian white noise
through a one-order filter with cutoff frequency 2Hz, and we guarantee that it would not
affect the fluctuation amplitude of system’s responses. The identification data are collected
and the corresponding results are shown in Figure 4.
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Figure 4: Closed-loop identification results with\without reference signal.

When the reference signal is added to the simulation system, theΔM%value fluctuates
between 30% and 45%, and the ΔP value is about 1. Comparing with the results of system
without reference signal, it is clear that due to the existence of reference signal, theΔM%value
rises and the ΔP value falls. A persistently exciting reference signal is helpful to improve the
identification accuracy.

Then, the effect of reference signal’s energy is further analyzed. When three
disturbances exist in the controlled system, we magnify the power of reference signal
gradually, and collect ambient signals to identify the system. The results are shown in
Figure 5. These reference signals are ensured no obvious affect on the system’s response.

When we gradually increase the energy of reference signal, the fluctuation ranges of
ΔM% value are 30–45%, 60–75%, 85–95%, respectively. On the other hand, the change ranges
of ΔP value are 0.8–1.2, 0.6-0.7, 0.1–0.3. Clearly, with the increase of reference signal’s energy,
theΔM%value rises, and theΔP value decreases. It demonstrates that appropriately boosting
the reference signal’s power is effective to improve the closed-loop identification accuracy.

Then, basing on the result corresponding to the reference signal with medium energy,
the electromechanical modal properties are estimated, listed in Table 1, and the correspond-
ing Bode diagram is shown in Figure 6.

Obviously, the closed-loop identification results are basically consistent with the theo-
retical calculation results, that is to say, the system is identified accurately based on ambient
signals.
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Figure 5: Closed-loop identification results with increasing energy reference signals.
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Figure 6: Bode diagram of closed-loop identification result.

8. Conclusions

Ambient signals based closed-loop identification of power system is theoretically studied
in this paper, including the closed-loop identifiability, the consistency properties, and the
convergence properties. It is found that a persistently exciting reference signal and a high-
order complex feedback regulator are necessary for realizing the system identification in this
situation. Considering that the identification bias inevitably exists, and the identification bias
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and variance boosts with the increase of disturbance number, it is better to appropriately
magnify the reference signal’s energy and fix the noise model. At last, the theoretical results
are validated by simulation examples.
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