
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 639824, 10 pages
doi:10.1155/2012/639824

Research Article
Kernel Optimization for Blind Motion Deblurring
with Image Edge Prior

Jing Wang, Ke Lu, Qian Wang, and Jie Jia

College of Computing & Communication Engineering, Graduate University of Chinese Academy of Science,
Beijing 100049, China

Correspondence should be addressed to Ke Lu, luk@gucas.ac.cn

Received 10 January 2012; Accepted 20 February 2012

Academic Editor: Ming Li

Copyright q 2012 Jing Wang et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Image motion deblurring with unknown blur kernel is an ill-posed problem. This paper proposes
a blind motion deblurring approach that solves blur kernel and the latent image robustly. For
kernel optimization, an edge mask is used as an image prior to improve kernel update, then an
edge selection mask is adopted to improve image update. In addition, an alternative iterative
method is introduced to perform kernel optimization under a multiscale scheme. Moreover, for
image restoration, a total-variation-(TV-) based algorithm is proposed to recover the latent image
via nonblind deconvolution. Experimental results demonstrate that our method obtains accurate
blur kernel and achieves better deblurring results than previous works.

1. Introduction

Motion deblurring is a type of image restoration problems [1, 2]. Commonly, image motion
blur is caused by camera sensor motion, where the track of the sensor motion is represented
by a blur kernel [3]. Theoretically, the motion blur process is modeled as the convolution
of the latent image and a blur kernel with additive noise (Figure 1). Therefore, motion
deblurring not only solves for blur kernel but also recovers latent image. As a blind de-
convolution process, motion deblurring is always split into two stages: kernel estimation
and nonblind image deconvolution. Note that motion deblurring with single-input image is
more complicated than that with two-or-more-input images because multiple blurred images
always providemore information in solving the problem [4–6]. In this paper, wemainly focus
on the single-image-based motion deblurring.

To address such challenging problem, various theories and methods have been pro-
posed. In early days, blind deconvolution recovers sharp images by simple motion and
Gaussian blur based on frequency-domain constraints or assumptions [7]. Recently, many
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Figure 1: Image motion blur process.

researchers believe that the more accurate the obtained kernel is, the more clear the recovered
image will be. For this reason, kernel estimation becomes a principal task in motion
deblurring research. Several novel ideas based on image spatial domain priors are put
forward to solve for the blur kernel. For example, Fergus et al. [8] introduced a statistics
research of natural image as image gradient prior. Their method uses a Bayesian approach to
solve the kernel and then adopts the Richardson-Lucy deconvolution algorithm to reconstruct
the image with the estimated kernel. Jia [9] suggested that the blur kernel can be determined
by the transparency on the object boundary, and a maximum a posteriori (MAP) model
was implemented to estimate the blur kernel. Cai et al. [10] handled a joint optimization
problem with the linearized Bregman iteration method, which maximizes the sparsity of the
blur kernel and the latent image under curvelet system and framelet system, respectively.
Moreover, Joshi et al. [11] solved the simple motion blur and defocus blur kernel by a
predicted sharp edge of the blurry image. Xu and Jia [12] proposed a two-phase kernel es-
timation scheme, which uses a gradient selection process to measure the usefulness of image
edges [13].

Even with the estimated kernel, the restoration of the latent image is still a tough
problem. In the process of motion blur, the latent image loses much high-frequency infor-
mation. The traditional methods (inverse filter, wiener filter, etc.) always give undesirable
restoration results because of the effect of the additive noise [14, 15]. To overcome such
difficulty, novel image restoration method with total variation regularization term was
proposed recently which removes the image noise and preserves edge details simultaneously
[16, 17]. To solve the total variation deconvolution problem, it is common to transform it into
a partial difference equation first. Rudin and Osher [16] proposed a time marching scheme to
solve the TV model. Vogel and Oman [18] used the fix point iteration method to optimize the
TV image deconvolution. According to the variable split method and half quadratic penalty
function method, Wang et al. [19] presented a fast total variation deconvolution (FTVd)
algorithm to compute TV image deconvolution. Afonso et al. [20] proposed a split augmented
Lagrangian shrinkage algorithm (SALSA), where the augmented Lagrangian method is used
in computing. Similarly, Chan et al. [21] adopted the alternating direction method (ADM)
which considered another variant of the augmented Lagrangian method.

In this paper, a complete blind deblurring algorithm is proposed to handle image
motion blur with image edge prior. In kernel optimization, an edge mask is used as im-
age prior to improve kernel update and an edge selection mask is adopted to improve im-
age update. Moreover, an alternative iterative method is introduced to implement kernel
optimization under a multiscale scheme. For image restoration, a total-variation-based image
nonblind deconvolution algorithm is proposed to restore latent image. The rest of the paper
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is organized as follows. In Section 2, the edge character in the blurry image is analyzed and
an edge detection process is introduced. In Section 3, given the image edge prior, a complete
blind deblurring algorithm is described including a kernel estimation model and an image
restoration model. Then, the algorithm is implemented with motion blurred images and
the restored results are shown and discussed in Section 4. Finally, Section 5 concludes our
work.

2. Image Edge Prior

Motion deblurring is an ill-posed problem where the number of unknowns is more than the
number of observed measurements. Generally, the motion blur process can be modeled as

B = K ∗ I +N, (2.1)

where B is the blurry image, K is the motion blur kernel, I is the latent image, N is the
noise effect, and ∗ is the convolution operator. This model suggests that the blurry image is
the convolution of a blur kernel and the latent image. Accordingly, our goal is to solve the
kernel and the latent image inversely from a single blurred image, which is obviously an
ill-posed problem. Therefore, such inverse problem can be solved only with other necessary
prior knowledge being provided.

In image processing system, an edge is defined as the continuous boundary pixels that
connect two separate regions with changing image amplitude attributes [22–24]. It offers
information including magnitude and orientation, which has been widely used as image
prior knowledge in solving many image processing and computer vision problems, such as
image restoration [11, 13] and image superresolution [25, 26]. After edge detection, there
always exist some particular edges caused by blur or noise in edge map. Such edges are
called false edges, which can be further removed by other image processing techniques.

In motion deblurring problem, it can be seen that the edge in the blurry image usually
appears fuzzy or unsharp, as shown in Figures 2(c) and 2(d), while the latent image has
clear edges, as shown in Figures 2(a) and 2(b). If an edge map can be found from the motion
blurred image, which is also assumed to be closed enough to the edgemap of the latent image,
then it might be used to refine the kernel estimation. In this paper, it is assumed that the fuzzy
edges in the blurry image are viewed as false edges, which are removed through an edge
detection process. In other words, sharp edges can be found through certain edge detection
process. This sharp edge map is taken as an edge prior to improve kernel estimation.

The edge detection process finds the presence and locations of the intensity transitions.
To find an ideal edge map from the blurry image, a modified edge detection process is used
and described as follows. First the blurry image is convolved by the derivatives of Gaussian.
Then, the magnitude and orientation of its gradient are computed. Thirdly, a nonmaxima
suppression method is used to get the thinned gradient magnitudes. Finally, hysteresis is
used to get the sharp edge map by doing threshold operation on the gradient magnitude.
Especially, two adaptive thresholds are used to suppress the false edges. As shown in Figures
2(e) and 2(f), the detected edge map and its close-up are sufficiently clear and sharp in detail.
According to this edge map, the edge locations are labeled in a mask, which is used to solve
for the blur kernel as described in the Section 3.
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Figure 2: Edge features analysis in both motion blurred image and latent image. (a) Edge map before
motion blur, (b) close-up of (a), (c) edge map after motion blur, (d) close-up of (c), (e) edge map detected
from the blurry image by our edge detection process, and (f) close-up of (e).

3. Blind Deblurring Algorithm

3.1. Kernel Estimation Model

Before kernel estimation, the blurry image and the initial kernel, which are later used as the
inputs of our algorithm, need to be preprocessed. More specifically, the bilateral filter and the
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shock filter are used to smooth the noise and keep the edge details, respectively [27]. The blur
kernel is defined as a smooth convolution mask with nonnegativity values and normalized.
So the initial kernel is set as a unit matrix with unit value at its central position.

For kernel optimization, an iterative optimization problem model is constructed, and
its task is to optimize the blur kernel and the latent image alternately under a multiscale
scheme. The edge map mentioned above is introduced as image prior, which adds mask on
both latent image and blurry image. On the other hand, the L1 norm of the kernel is used as
a regularization term to suppress the noise in the blur kernel. According to the motion blur
model, the minimization energy function for motion blur kernel is as follows:

min
K

{
‖K ∗ME(∇I) −ME(∇B)‖2 + α‖K‖1

}
, (3.1)

where ‖K ∗ME(∇I) −ME(∇B)‖2 is the data fitting term and ‖K‖1 is the L1 regularization
term of K. ME is the edge location mask mentioned in Section 2, ∇I is the gradient of latent
image, ∇B is the gradient of blurry image, and parameter α controls the relative strength
of the data fitting and kernel regularization terms. Before adding the edge mask ME, lateral
filter is used to suppress noise in blurry image B. Here an unconstrained iterative reweighted
least squares (IRLS) system [28, 29] is adopted to solve this minimization problem, and the
conjugate gradient (CG)method is used to solve the inner IRLS system.

For latent image optimization, an edge selection mask mentioned in [13] is used to
recover a coarse latent image. Image edges do not always profit kernel estimation, so we
need an edge selection process to choose useful ones. The energy function is then modeled as
follows:

‖K ∗ I − B‖2 + β‖∇I −MS(∇I)‖2, (3.2)

where ‖K ∗ I − B‖2 is the data fitting term, β‖∇I −MS(∇I)‖2 is the regularization term, β
is playing the same role as α, and MS is the edge selection mask. According to Parseval’s
theorem, this equation has a closed-form solution by using FFTs:

I = F−1

⎛
⎜⎝
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(
IxMs

)
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)
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))

F(K)F(K) + β
(
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(
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)
F
(
∂y

))

⎞
⎟⎠, (3.3)

where F denotes the FFT and F−1 denotes the inverse FFT.
To solve for the kernel accurately, a multiscale scheme is introduced to implement

the whole blind deblurring algorithm. Under this scheme, blur kernel and latent image are
estimated by using a coarse-to-fine pyramid of image resolutions. The number of scale levels
is computed by the size of blur kernel and the scale level step is

√
2. The blurry image is

downsampled as the algorithm input. In each scale, the latent image is updated by solving
(3.2). Then the updated latent image is used to update the blur kernel by solving (3.1). Finally,
the updated kernel is used in the next scale.
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3.2. Image Restoration Model

Given the estimated blur kernel, the latent image can be restored by using a nonblind image
deconvolution algorithm. As mentioned above, a clear image should have sharp edge details.
For this reason, an image restoration model with TV regularization term is built to recover
the latent image. This model is a minimum optimization problem:

min
I

{
λ

2
‖K ∗ I − B‖2 + ‖DI‖1

}
, (3.4)

where ‖K ∗ I − B‖2 is the data fitting term, ‖DI‖1 is the TV regularization term,D is the finite
difference operator, and λ is weight factor. When (3.4) is used to restore the latent image, the
TV regularization term can keep the image edge details satisfyingly.

It can be seen that (3.4) is an L1 norm regularization optimization problem. In this
paper, the split Bregman method [30, 31] is introduced to solve the problem. The split Breg-
man method, proposed by Goldstein and Osher, is a fast scheme to solve a type of optimiza-
tion problem with the form

min
u

{‖l(u)‖1 + f(u)
}
, (3.5)

where l(u) and f(u) are both convex functions. According to the variable split method, the
split Bregman method transforms (3.5) into an unconstraint optimization problem with an
auxiliary variable and quadratic penalty function. Then this unconstraint optimization model
is divided into two or three optimization subproblems and solved alternatively with the
Bregman iteration.

At first, an auxiliary variable G takes the place of DI, and (3.4) is transformed into a
unconstrained optimization equation related to I and G as follows:

min
G,I

{
λ

2
‖K ∗ I − B‖2 + γ

2
‖G −DI‖2 + ‖G‖1

}
. (3.6)

Then, (3.6) is divided into two subproblems related to I and G, respectively. According to the
Bregman iteration, these two optimization subproblems are modeled as

min
I

{
λ

2
‖K ∗ I − B‖2 + γ

2
‖G −DI − b‖2

}
, (3.7)

min
G

{
λ

2
‖G −DI − b‖2 + ‖G‖1

}
, (3.8)

where b is an iteration parameter and b = b + (G −DI).
To solve these two sub-problems, an alternative minimization method (AMD) is used

to optimize them. In each iteration, (3.7) is transformed into the equation as follows:

(
DTD +

γ

λ
KTK

)
I =

γ

λ
KTB +DT (G − b), (3.9)
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Figure 3: Testing our algorithm with the synthetic images. (a)–(c) In order from left to right, the images
are the original synthetic images, the synthetic images after motion blur, restored results and estimated
kernels by using our algorithm, and the close-ups of them (the red rectangle in the blurry image shows the
location of close-ups).

where K and D are both block circulant matrices. So (3.9) is computed by FFTs. On the
other hand, (3.8) is optimized by the shrinkage technique, and it can be solved by using
the following equation:

G = max
{∥∥g∥∥2 −

1
λ
, 0
}

g∥∥g∥∥2

, (3.10)

where g = DI + b. Interested readers can refer to [32] for more details.

4. Experiments

In this Section, the proposed blind deblurring algorithm was tested with both synthetic
motion blurred images and real-life motion blurred images. In the kernel estimation process,
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(a)

(b)

(c)

Figure 4: Testing our algorithm with real-life motion blurry images. (a)–(c) In order from left to right, the
images are original blurry images, restored results and estimated kernels by our algorithm, restored results
and estimated kernels by using the algorithm in [28] and the close-ups of them (the red rectangle in the
original blurry image shows the location of close-up).

the parameters α and β were set as 1e − 4, 2e − 3, the initial minimum kernel size was 3 × 3,
and the initial maximum kernel size was 35 × 35. According to the multiscale scheme, the
outer iteration was controlled by the maximum kernel size and the inner iteration was set as
8 uniformly. In the image recovery process, the parameter λ was set as 2e + 3. Our algorithm
was implemented on Matlab experimental platform.

To verify the validity of our algorithm, the synthetic blurry images were generated by
convolving the synthetic images with a 15 × 15 synthetic kernel. The Gaussian white noise
was added whose standard deviation was 0.001. Figure 3 shows the experimental results of
several synthetic images. The deblurring results are extremely close to the original synthetic
images, and they manifest the significance of the proposed algorithm.

On the other hand, the proposed algorithm was compared with the approach
described in [28] by deblurring the real-life motion blur images. In Figure 4, the restored
results of some real-life images are given. As shown in recovery results, our method is
robust to restored sharp images and accurate kernels. In contrast to the approach in [28],
the deblurring images and the close-ups show that our algorithm could obtain clearer image
detail information.
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5. Conclusion

In this paper, a novel blind deblurring algorithm is presented for motion blur occurring in
photography. The approach consists of two stages: kernel estimation and image reconstruc-
tion. The edge information in blurry images is explored as an image prior for obtaining
accurate blur kernel and the use of total variation regularization keeps image details during
image recovery. The proposed algorithm was tested with synthetic and really captured
motion blur images. The experimental results demonstrated the efficacy of our algorithm
in image motion deblurring. On the other hand, there still exist some defects (cartoon effect
and unclear texture detail) in the restored images. Our future work is to extend the current
research by considering more complex blurs (such as blur with rotation and shift-variant
blur) and other image analysis problems [33–35].
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