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A new direct operational inversion method is introduced for solving coupled linear systems of
ordinary fractional differential equations. The solutions so-obtained can be expressed explicitly in
terms of multivariate Mittag-Leffler functions. In the case where the multiorders are multiples of
a common real positive number, the solutions can be reduced to linear combinations of Mittag-
Leffler functions of a single variable. The solutions can be shown to be asymptotically oscillatory
under certain conditions. This technique is illustrated in detail by two concrete examples, namely,
the coupled harmonic oscillator and the fractional Wien bridge circuit. Stability conditions and
simulations of the corresponding solutions are given.

1. Introduction

Fractional differential equations are well suited to model physical systems with memory or
fractal attributes. This is particularly true in the fields of condensed matter physics, where
fractional differential equations have been used to model various anomalous transport and
relaxation phenomena [1–9]. Coupled fractional differential equations (CFDEs) of nonlinear
type are widely used in studying various chaotic systems [10] such as the Lorentz system
[11], fractional Chuah’s circuit [12], fractional Rössler system [13], and fractional Duffing
system [14]. Since in most cases no analytic solutions for such nonlinear CFDEs exist, it is
necessary to resort to numerical approximations and simulations [15–21]. Even for linear
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CFDEs with unequal multiorders, analytic solutions, if they exist, are difficult to obtain and
very often numerical methods have to be used.

In this paper we introduce a direct operational method to solve a system of linear
inhomogeneous CFDEs. We will restrict our discussion to a system of linear nonhomoge-
neous ordinary differential equations of arbitrary fractional-orders. These equations based
on two types of fractional derivatives will be considered, namely, the Caputo and Riemann-
Liouville fractional derivatives. Themain idea is to reexpress the coupled fractional equations
by incorporating the initial conditions based on the definitions of these derivatives. The
solutions obtained can be expressed in terms of multivariate Mittag-Leffler functions. When
each order of the CFDEs is an integer multiple of a certain common real positive number, it
is possible to further reduce the solutions to the single-variate Mittag-Leffler functions. For
such cases, we study the conditions for the existence of asymptotic periodic solutions.

In the next sectionwe consider two types of coupled fractional differential equations of
Caputo and Riemann-Liouville type, and a direct operational method is introduced to solve
these equations. Subsequent sections deal with the applications of the coupled fractional
differential equations to two physical systems, namely, the coupled fractional oscillator and
the fractional Wien bridge circuit, as examples to illustrate the proposed method.

2. Linear-Coupled Fractional Differential Equations

We consider two types of fractional derivatives [22–26]:

Caputo Dα
∗f(t) = I

m−αDmf(t), (2.1a)

Riemann-Liouville Dα
#f(t) = D

mIm−αf(t), (2.1b)

where the fractional integral is defined for γ > 0 as

Iγf(t) =
1

Γ
(
γ
)
∫∞

0
(t − τ)γ−1f(τ)dτ. (2.2)

When referring to either definition, we simply use the notation Dα.
Let us consider a linear-coupled system of inhomogeneous fractional differential equa-

tions of the form

DαX(t) = B(t) +AX(t), (2.3)

where X = (x1, . . . , xn) and B = (b1, . . . , bn) are vectors of dimension n, A = (aij), i, j = 1, . . . , n
is an (n×n)-matrix, andDα is the fractional differential operator given by the diagonal matrix
operator:

Dα =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

Dα1 0 · · · 0

0 Dα2 · · · 0

...
...

. . .
...

0 0 · · · Dαn

⎞

⎟⎟⎟
⎟⎟⎟
⎠

. (2.4)
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The orders αi are real positive numbers with mi − 1 < αi < mi, where mi is a positive integer
for each i = 1, 2, . . . , n. The boundary conditions for (2.3) are given by

[
Dki∗ xi

]
(0) = cki∗i for ki = 0, 1, 2, . . . , (mi − 1), (2.5a)

[
Dαi−ki

# xi
]
(0) = cki#i for ki = 1, 2, . . . , mi, (2.5b)

and i = 1, 2, . . . , n. We remark that the mi’s generally differ in value. Let its maximum and
minimum values be denoted bym andmo, respectively.

For a single fractional differential equation, its solution can be obtained by integral
transformmethods such as the Fourier, Laplace, andMellin transforms (see, e.g., [24, Chapter
4]). However, in the case of a system of CFDEs, it is necessary to employ specific techniques
appropriate to the given problem, that is, the form of matrix A and the type of fractional
derivative involved. There exist several methods (see [24, Chapters 5 and 6]) for solving
such problems. Here we want to develop a technique which is more direct, similar to Green’s
function method.

Let the operator be

L = Dα −A. (2.6)

The solution of (2.3) can then be expressed as

X(t) = L−1B. (2.7)

Unfortunately, the inverse of L may not exist. However, the right-inverse G does exist for
both the Riemann-Liouville and Caputo cases with

LG = 1/=GL. (2.8)

The main task now is to determine the right-inverse of L associated with (2.3) for both
Riemann-Liouville and Caputo fractional derivatives. We remark that our treatment is rather
formal, aiming mainly to provide an alternative direct operational method to the usual
Laplace transform technique in solving CFDEs. In particular, the existence of solutions will be
assumed, and all operators considered are assumed to bewell defined in a certain appropriate
function space.

2.1. The Right-Inverse Operator

For the Caputo derivativeDα
∗ with arbitrary α andm,

IαDα
∗ f(t) = I

αIm−αDmf(t) = ImDmf(t)

= f(t) −
m−1∑

k=0

tk

Γ(k + 1)

[
Dkf

]
(0),

(2.9a)
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and similarly for the Riemann-Liouville derivative,

IαDα
#f(t) = I

αDmIm−αf(t)

= f(t) −
m∑

k=1

tα−k

Γ(α − k + 1)

[
Dα−k

# f
]
(0).

(2.9b)

Applying the fractional integral operator Iα to (2.3) and using the initial conditions (2.5a) and
(2.5b) gives

X = IaAX + IaB +W, (2.10)

where W is given by

w∗i =
mi−1∑

k=0

tk

Γ(k + 1)
ck∗i,

w#i =
mi∑

k=1

tα−k

Γ(α − k + 1)
ck#i.

(2.11)

Let

Q = [1 − IαA]. (2.12)

Now by rearranging (2.10) one gets

QX = IαB +W. (2.13)

The operatorQ has an inverse K. One possible representation of K is given by

K =
∞∑

0
(IαA)p. (2.14)

This form may not be a simple one, since in most cases Iα and A do not commute. However,
the verification is straightforward:

QK = KQ =
∞∑

p=0
(IαA)p −

∞∑

p=0
(IαA)p+1 = 1. (2.15)

The other possible representation is

K = ΨQ∗, (2.16)
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where Q∗ is the adjoint of Q, that is, Q∗Q = detQ, and the Ψ is the inverse operator of detQ
such that ΨdetQf(t) = f(t). It is quite simple to verify that this representation is the inverse
of Q, and this will be shown in Section 4.

Now we define

G = KIα. (2.17)

One can easily verify thatG is the right inverse of L. Thus, the solution is given by

X = GB +KW. (2.18)

The detailed evaluation can be carried out by using different techniques, a few of which will
be considered here.

2.2. System with Constant Inhomogeneous Terms

When the inhomogeneous term is a constant, we can absorb this term in the following way,
though it may not be immediately obvious. For the Caputo case, let

X∗ = X∗ −A−1B, (2.19)

with

x∗i(0) = x∗i(0) +
(
a−1
)

ij
bj . (2.20)

The initial conditions have to be transformed accordingly and they become

c0∗i = c
0
∗i +

(
a−1
)

ij
bj . (2.21)

In the Riemann-Liouville case, we cannot absorb the term B into X as in the Caputo
case. However, if one compares the initial condition terms w#i and the term IαB, one can see
that if we modify

w#i =
mi∑

k=0

tα−k

Γ(α − k + 1)
ck#i, (2.22)

with c0#i = bi, then the solution can be written as if it is a solution of a homogeneous linear
equation.

Thus the inhomogeneous linear fractional differential equation with constant source
term bi can be transformed into a homogeneous linear fractional differential equation. The
solution of the transformed equation can then be written as

X = KW. (2.23)
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When bi is time dependent with power up to mi, the above modification can still apply to
the Caputo case. In the Riemann-Liouville case, if bi(·) are analytic functions, then the same
modification as above holds if (2.22) is altered with the summation from −∞ tomi − 1.

In subsequent sections, we will consider the solution of (2.3) according to the above
modifications.

3. System with Equal Fractional Orders

In the case where all αi = α, then Iα = Iα1, and

K =
∞∑

p=0

AnInα. (3.1)

It would be convenient if we introduce the Mittag-Leffler function with matrix argument
[27–29]:

Eα,β(Z) =
∞∑

n=0

Zn

Γ
(
nα + β

) . (3.2)

Then

Kδ(t) = t−1Eα,0(Atα). (3.3)

Here we have used the following definition of the Dirac delta function:

δ(t) = lim
ε→ 0

tε−1+

Γ(ε)
. (3.4)

The matrix A can always be decomposed into Jordan normal form. However, we consider
only the case where it can be diagonalized:

Λ = P−1AP,

K̂ = P−1KP,
(3.5)

with eigenvalues λj as the diagonal elements of Λ, and

K̂ijδ(t) = δij t−1Eα,0
(
λjt

α), (3.6)

X∗ =
m−1∑

k=0

PtkEα,k+1(Λtα)P−1Ck
∗ ,

X# =
m−1∑

k=−1
Ptα−k−1Eα,α−k(Λtα)P−1Ck

# .

(3.7)
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Thus, the solutions of the fractional differential equation under consideration based on both
types of fractional derivatives are simply linear combinations of Mittag-Leffler functions.

3.1. Coupled Oscillator with Equal Fractional Orders

Here we demonstrate our method by considering a linear-coupled oscillator system given by

Dα1x1(t) = −ω2x1(t) +ω
2(x2(t) − x1(t)),

Dα2x2(t) = −ω2x2(t) +ω
2(x1(t) − x2(t)),

(3.8)

where ω2 and ω2 are nonnegative real numbers. The initial conditions are

x∗j(0) = c0∗j , Dx∗j(0) = c1∗j ,

Dαj−1x#j(0) = c0#j , Dαj−2x#j(0) = c1#j .
(3.9)

Thus

A = −
(
ω2 +ω2 −ω2

−ω2 ω2 +ω2

)

. (3.10)

For simplicity, we use the following notation:

a11 = a22 = −
(
ω2 +ω2

)
= −η,

a12 = a21 = ω
2 = ε.

(3.11)

We first consider the simpler case with α1 = α2 = α in this section. SinceA is symmetric, it can
be diagonalized to give two eigenvalues:

λ± = −η ± ε =
⎧
⎨

⎩

−ω2

−ω2 −ω2.
(3.12)

Both eigenvalues are nonpositive and

P =
1√
2

(
1 1

−1 1

)

. (3.13)
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Figure 1: Coupled oscillator with equal fractional orders. Parameters:ω = 1, ω = 0.5, x∗1(0) = 1.0, x∗2(0) =
0, Dx∗1(0) = 0, Dx∗2(0) = 0.1. Legend: x∗1 (solid line), x∗2 (dashed line).

Just as we have shown in (3.7), the solutions are again linear combinations of Mittag-Leffler
functions:

x∗1 =
(
c0∗1 + c

0
∗2
)
Eα,1(λ−tα) +

(
c0∗1 − c0∗2

)
Eα,1(λ+tα) +

(
c1∗1 + c

1
∗2
)
tEα,2(λ−tα)

+
(
c1∗1 − c1∗2

)
tEα,2(λ+tα),

(3.14a)

x#1 =
(
c1#1 + c

1
#2

)
tα−1Eα,α(λ−tα) +

(
c1#1 − c1#2

)
tα−1Eα,α(λ+tα) +

(
c2#1 + c

2
#2

)
tα−2Eα,α−1(λ−tα)

+
(
c2#1 − c2#2

)
tα−2Eα,α−1(λ+tα).

(3.14b)

Figure 1 shows simulations of the Caputo solution (3.14a) for orders 1 < α ≤ 2. An
interesting feature of fractional oscillators in general is the presence of damping internal to the
system, that is, an inherent decay in the amplitude which is not associated with any external
friction. The variation in the amount of internal damping can be clearly seen as the order
increases. In the limiting caseswe obtain exponential decay (α = 1) and undamped oscillation
(α = 2).
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4. The Adjoint Method

As we mentioned in Section 2.1, (2.16), the main task now is to calculate the inverse of detQ.
Note that (2.16) can be reexpressed as

K = ψ[1 − IαA]∗, (4.1)

so that

G = ψ[1 − IαA]∗Iα. (4.2)

Also recall that

detQ = det(1 − IαA). (4.3)

We know that any finite dimension determinant can be evaluated; however, it can be easily
obtained only for a few lower-dimensional cases. We will compute it explicitly for a two-
dimensional system.

4.1. Two-Dimensional System

In a two-dimensional system the determinant is easy to calculate, and we have

detQ = 1 − a11Iα1 − a22Iα2 + Iα1+α2 detA. (4.4)

The inverse is given by

ψ =
∞∑

r=0
[a11Iα1 + a22Iα2 − Iα1+α2 detA]r (4.5)

=
∞∑

r=0

∑

k1+k2+k3=r

r!
k1!k2!k3!

[a11Iα1]
k1[a22Iα2]

k2[−Iα1+α2 detA]k3 . (4.6)

Its kernel is the multivariate Mittag-Leffler function of the kind given by (B.3), Appendix B:

ψδ(t) = t−1Ẽα1,α2,α1+α2,0(a11t
α1 , a22t

α2 ,−detAtα1+α2)

= ε̃α1,α2,α1+α2,0(a11, a22,−detA : t).
(4.7)

The adjoint ofQ is

Q∗ =

(
1 − a22Iα2 a12Iα1

a21Iα2 1 − a11Iα1

)

. (4.8)
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In the following we evaluate explicitly only for the 11- and 12-elements, while the 22- and
21-elements can be obtained by just interchanging subscripts. The kernels of K are given by

K11δ(t) = ε̃α1,α2,α1+α2,0(a11, a22,−detA : t) − a22ε̃α1,α2,α1+α2,α2(a11, a22,−detA : t),

K12δ(t) = a12ε̃α1,α2,α1+α2,α1(a11, a22,−detA : t).
(4.9)

4.2. The Solutions

The solutions based on the adjoint method are given by

x∗1 =
m1−1∑

k=0

ck∗1[ε̃α1,α2,α1+α2,k+1(a11, a22,−detA : t)

−a22ε̃α1,α2,α1+α2,α2+k+1(a11, a22,−detA : t)]

+ a12
m2−1∑

k=0

ck∗2ε̃α1,α2,α1+α2,α1+k+1(a11, a22,−detA : t),

(4.10a)

x#1 =
m1−1∑

k=0

ck#1[ε̃α1,α2,α1+α2,α1−k+1(a11, a22,−detA : t)

−a22ε̃α1,α2,α1+α2,α2+α1−k+1(a11, a22,−detA : t)]

+ a12
m2−1∑

k=0

ck#2ε̃α1,α2,α1+α2,α1+α2−k+1(a11, a22,−detA : t).

(4.10b)

5. Laplace Transform Method

In this section we briefly discuss how the widely used Laplace transform technique can be
employed to determine Green’s function G and the operator K. There is no intention here to
provide a detailed discussion of this method. Instead, it will be discussed as a complement to
the adjoint method introduced above, so as to allow one to see the relation between the direct
operational method presented here and usual Laplace transform method.

Without loss of generality (see Section 2.2) the system of CFDEs is assumed to be
homogeneous. We begin by calculating the Laplace transform of detQδ(t) using (4.5):

∫∞

0
detQδ(t)e−stdt = 1 − a11s−α1 − a22s−α2 + detAs−(α1+α2) (5.1)

and the Laplace transform of the adjoint kernelQ∗δ(t):

∫∞

0
Q∗

11δ(t)e
−stdt = 1 − a22s−α2 ,

∫∞

0
Q∗

12δ(t)e
−stdt = a12s−α1 ,

∫∞

0
Q∗

21δ(t)e
−stdt = a21s−α2 ,

∫∞

0
Q∗

22δ(t)e
−stdt = 1 − a11s−α1 .

(5.2)
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Next, the Laplace transforms of the part related to the initial conditions from (2.11) are

∫∞

0
w∗i(t)e−stdt =

mi−1∑

k=0

s−k−1ck∗i,

∫∞

0
w#i(t)e−stdt =

mi∑

k=1

s−αi+k−1ck#i.

(5.3)

Thus the Laplace transforms of the solutions become

x̂∗1(s) =
[1 − a22s−α2]

∑m1−1
k=0 s−k−1ck∗1 + a12s

−α1 ∑m2−1
k=0 s−k−1ck∗2

1 − a11s−α1 − a22s−α2 + det As−(α1+α2)
, (5.4a)

x̂#1(s) =
[1 − a22s−α2]

∑m1
k=1 s

−α1+k−1ck#1 + a12s
−α1 ∑m2

k=1 s
−α2+k−1ck#2

1 − a11s−α1 − a22s−α2 + det As−(α1+α2)
. (5.4b)

x̂∗2(s) and x̂#2(s) can be obtained just by interchanging 1 ↔ 2. From the complexity of the
Laplace transforms, one sees that it is virtually impossible to obtain the analytic solutions
by direct application of the inverse Laplace transform. To obtain the solution of this type
one has to use the Laplace transform of the multivariate Mittag-Leffler function [27–29],
which then gives the identity for getting the Laplace inversion of (5.4a) and (5.4b). This is
one main advantage of the direct operational inversion method proposed here as it will give
the solution directly.

Clearly, it is important that both methods produce equivalent solutions. This is verified
explicitly in Appendix C for a 2-dimensional system.

6. Multiple Fractional-Order System

In physics and engineering problems the fractional-orders can often be approximated by
rational numbers, that is, αi = pi/qi, for some pi, qi ∈ �. Thus one gets αi = μi/q, where
q is the least common multiple of q1, q2, . . . , qn with some μi ∈ �. However, we can also
consider the more general case with αj = μjα0, for some μj ∈ �. Here, α0 ∈ �+ can be either
rational or irrational. In this sectionwe show how such a system of CFDEswith thesemultiple
fractional-orders can be solved.

Referring to (4.4), if we assign the symbol ξ = Iα0 , the expansion of the determinant
will be a polynomial of order μ = μ1 + μ2 + μ3 + · · · + μn in ξ. By the fundamental theorem of
algebra, it must have in general μ complex roots, that is, ζj for j = 1, 2, 3, . . . , μ. Note that since
all coefficients of the polynomial are real, if any root ζp is complex, its complex conjugate ζp
is also a root. That means that the complex roots occur in pairs. For convenience we write
λj = 1/ζj , for j = 1, 2, 3, . . . , μ. We can then factorize the polynomial

detQ =
μ∏

j=1

(
1 − λjξ

)
. (6.1)
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If all roots are distinct, the inverse can be written as a partial fraction:

ψ =
μ∑

j=1

hj

1 − λjξ

=
μ∑

j=1

hj
∞∑

k=0

λkj I
kα0 .

(6.2)

6.1. Two-Dimensional System

We will explore this method further for two dimensions. Using (4.5) and the adjoint in (4.8),
the solution is given by

x∗1 =
μ1+μ2∑

j=1

hj

{
m1−1∑

k=0

ck∗1
[
tkEα0,k+1

(
λjt

α0
) − a22tμ2α0+kEα0 ,μ2α0+k+1

(
λjt

α0
)]

+a12
m2−1∑

k=0

ck∗2t
μ1α0+kEα0,μ1α0+k+1

(
λjt

α0
)
}

,

x#1 =
μ1+μ2∑

j=1

hj

{
m1∑

k=1

ck#1

[
tμ1α0−kEα0 ,μ1α0−k+1

(
λjt

α0
) − a22t(μ1+μ2)α0−kEα0,(μ1+μ2)α0−k+1

(
λjt

α0
)]

+a12
m2∑

k=1

ck#2t
(μ1+μ2)α0−kEα0 ,(μ1+μ2)α0−k+1

(
λjt

α0
)
}

.

(6.3)

To simplify the problem we consider the case where 0 < max(μ1α0, μ2α0) ≤ 1, that is,
m1 = m2 = 1. The extension to the general case as above is straightforward:

x∗1 =
μ1+μ2∑

j=1

hj
{
c0∗1
[
Eα0,1

(
λjt

α0
) − a22tμ2α0Eα0,μ2α0+1

(
λjt

α0
)]

+ a12c0∗2t
μ1α0Eα0,μ1α0+1

(
λjt

α0
)}
,

x#1 =
μ1+μ2∑

j=1

hj
{
c1#1t

μ1α0−1Eα0,μ1α0

(
λjt

α0
) −

(
a22c

1
#1 − a12c1#2

)
t(μ1+μ2)α0−1Eα0,(μ1+μ2)α0

(
λjt

α0
)}
.

(6.4)

Using the following formula:

zqEα,qα+γ (z) = Eα,γ(z) −
q−1∑

p=0

zp

Γ
(
pα + γ

) , (6.5)
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(6.4) can be written as

x∗1 = f∗1 + g∗1,

x#1 = f#1 + g#1,
(6.6)

where

f∗1 =
μ1+μ2∑

j

hjf
j

∗1, g∗1 =
μ1+μ2∑

j

hjg
j

∗1, (6.7a)

f#1 =
μ1+μ2∑

j

hjf
j

#1, g#1 =
μ1+μ2∑

j

hjg
j

#1. (6.7b)

f
j

∗1 =
[
c0∗1
(
1 − a22λ−μ2

j

)
+ a12c0∗2λ

−μ1

j

]
Eα0,1

(
λjt

α0
)
, (6.8a)

f
j

#1 =
[
c1#1λ

1−μ1

j −
(
a22c

0
1 − a12c1#2

)
λ
1−μ1−μ2

j

]
tα0−1Eα0,α0

(
λjt

α0
)
. (6.8b)

g
j

∗1 = a22c
0
∗1λ

−μ2

j

μ2−1∑

p=0

λ
p

j t
pα0

Γ
(
pα0 + 1

) − a12c0∗2λ
−μ1

j

μ1−1∑

p=0

λ
p

j t
pα0

Γ
(
pα0 + 1

) , (6.9a)

g
j

#1 = −c1#1λ
1−μ1

j

μ1−2∑

p=0

λ
p

j t
pα0+α0−1

Γ
(
pα0 + α0

) +
(
a22c

1
#1 − a12c1#2

)
λ
1−μ1−μ2

j

μ1+μ2−2∑

p=0

λ
p

j t
pα0+α0−1

Γ
(
pα0 + α0

) . (6.9b)

6.2. Solutions with Asymptotic Oscillations

It is clear from the previous expansion of the Caputo terms that for the solution x∗1, as t → ∞,
any possible oscillation arises from the pair of complex roots (λj, λj), while all (negative) real
roots must result in an asymptotic decay. Note that each term in (6.9a) with p > 0 will grow
asymptotically as the power law tpα0 . However, when we combine the terms and reexpress
the equation explicitly as

g∗1 =
μ1+μ2∑

j=1

hjg
j

∗1

= a22c0∗1

μ2−1∑

p=0

⎡

⎣
μ1+μ2∑

j=1

hjλ
p−μ2

j

⎤

⎦ tpα0

Γ
(
pα0 + 1

) − a12c0∗2
μ1−1∑

p=0

⎡

⎣
μ1+μ2∑

j=1

hjλ
p−μ1

j

⎤

⎦ tpα0

Γ
(
pα0 + 1

) ,

(6.10)
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for the particular case with μ1 = 1, μ2 = 2, one has

g∗1 = a22c0∗1
1∑

p=0

⎡

⎣
3∑

j=1

hjλ
p−2
j

⎤

⎦ tpα0

Γ
(
pα0 + 1

) − a12c0∗2

⎡

⎣
3∑

j=1

hjλ
−1
j

⎤

⎦ 1
Γ(1)

(6.11)

= a22c0∗1

⎧
⎨

⎩

⎡

⎣
3∑

j=1

hjλ
−2
j

⎤

⎦ 1
Γ(1)

+

⎡

⎣
3∑

j=1

hjλ
−1
j

⎤

⎦ tα0

Γ(α0 + 1)

⎫
⎬

⎭
− a12c0∗2

⎡

⎣
3∑

j=1

hjλ
−1
j

⎤

⎦ 1
Γ(1)

.

(6.12)

The second term is the only term that grows asymptotically as ∼ tα0 , which does not
contribute since [

∑3
j=1 hjλ

−1
j ] is zero. The verification of this result is given here for the general

case of n-roots. Let us consider general partial fractions:

1
(1 − λ1x)(1 − λ2x) · · · (1 − λnx) =

h1
(1 − λ1x) +

h2
(1 − λ2x) + · · · + hn

(1 − λnx) . (6.13)

We have

h1 + h2 + · · · + hn = 1, (6.14.0)

h1(λ2 + λ3 + · · ·λn) + h2(λ3 + λ4 + · · ·λn + λ1) + · · · + hn(λ1 + λ2 + · · ·λn−1) = 0,
(6.14.1)

... (
...)

h1λ2λ3 · · ·λn + h2λ3λ4 · · ·λnλ1 + · · · + hnλ1λ2 · · ·λn−1 = 0. (6.14.n−1)

We can rewrite (6.14.n−1) as

h1
λ1

+
h2
λ2

+
h3
λ3

+ · · · + hn
λn

= 0. (6.15)

Using (6.15) with n = 3 in (6.12), we have

g∗1 = a22c0∗1

⎡

⎣
3∑

j=1

hjλ
−2
j

⎤

⎦, (6.16)

which is a constant. Thus for this particular case with the Caputo derivative one can have
asymptotic oscillations. In general, CFDEs based on the Caputo derivatives will not oscillate
asymptotically, since one cannot find any rule for the power law terms to cancel out.
However, this is possible for some special cases under suitable conditions on the elements
of A.

Similar consideration can be given to Riemann-Liouville system. However, now g
j

#1
approaches a constant or possible zero as t → ∞ if 0 < max(μ1α0, μ2α0) ≤ 1, and
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min(μ1, μ2) ≤ 2. Thus the possible asymptotically stable oscillations are due to the term f
j

#1
with its corresponding complex conjugate. If one looks at (6.8b), one can write explicitly the
asymptotic expansion:

tα0−1Eα0,α0
(
λjt

α0
)
=
λ
(1−α0)/α0
j

α0
eλ

1/α0
j t + tα0−1O

(
1
tα0

)
−→

λ
(1−α0)/α0
j

α0
eλ

1/α0
j t +O

(
1
t

)

−→
λ
(1−α0)/α0
j

α0
eλ

1/α0
j t.

(6.17)

One has to impose the condition that λ1/α0j be a purely imaginary number. Let us denote the
inversion of the root by λj = |λj |eiθ; we must have

θ = ±α0π
2
. (6.18)

Furthermore, all the other roots that will not give rise to oscillation must have a negative real
part so that their contributions will be asymptotically zero.

Assume that there is only one pair of complex roots that satisfies (6.18). The coefficient
of the exponential in (6.17) after substitution into (6.8b) gives the jth term of (6.7b) as

hj
[
c1#1λ

1−μ1

j −
(
a22c

1
#1 − a12c1#2

)
λ
1−μ1−μ2

j

]λ(1−α0)/α0j

α0
= rjeiϕ, (6.19)

and we then have the asymptotic solution:

x1 −→ rje
i|λj |t+iϕ + rje−i|λj |t−iϕ = 2rj cos

(∣∣λj
∣∣t + ϕ

)
. (6.20a)

x2 can be evaluated in a similar way; it has the same period but different modulus and phase:

x2 −→ 2r ′j cos
(∣∣λj

∣∣t + ϕ′). (6.20b)

We omit the determination of the roots for each system, which can be computed without any
difficulty.

The oscillation condition (6.18) was first derived by Matignon [30] who also showed
that an identical condition existed for the eigenfunction Eα,1(z) of the Caputo derivative. This
will be elaborated in the context of a physical system in Section 7.

7. Wien Bridge System

In this section we apply the solution methods discussed earlier to model a fractional-order
Wien bridge oscillator (Figure 2). The Wien bridge is a common electronic circuit that can
generate a sinusoidal output signal without requiring an oscillatory input. The resistor-
capacitor pairs form a frequency-selective network, hence allowing the selection of output
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Figure 2: Wien bridge oscillator: (a) circuit schematic with operational amplifier and (b) simplified circuit
diagram for voltage analysis.

sine wave frequency by varying the circuit parameters. Ahmad et al. [31] first proposed
a generalization of this circuit using fractional-order capacitors. Since the authors did not
obtain the solutions explicitly, we briefly show how analytic solutions for such a system
can be obtained within our present framework. Also, we show solutions based on both the
Caputo and the Riemann-Liouville derivatives. (Note that reference [31] does not mention
the type of derivative used; we were informed by one of the authors, Professor Ahmad, that
they used the Riemann-Liouville fractional derivative.)

It is well known that a fractional differential equation of order 0 < α < 1 is usually used
to describe relaxation phenomena [2]. In the case of Wien bridge system, however, oscillation
is achieved via the active elements and feedback provided in the circuit (see Section 7.3).

In the following we use normalized voltages xi = vi/Vsat where Vsat is the amplifier
saturation voltage and time axes (normalized with respect to time constant τ = RC).
Using basic circuit analysis, it can be shown that the capacitor voltages are related via a 2-
dimensional CFDE:

DαX = AX + B, (7.1)

where

A =

(
a − 2 −1
a − 1 −1

)

, B =

(
b

b

)

, (7.2a)

(a, b) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(0, 1), Kx1 ≥ 1,

(K, 0), −1 < Kx1 < 1,

(0, 1), Kx1 ≤ 1.

(7.2b)
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HereK is the amplifier gain (i.e., vo = Kv1). In the linear region of the amplifier, −1 < Kx1 < 1
and (7.2a) simplifies to

A =

(
K − 2 −1
K − 1 −1

)

, B =

(
0

0

)

, (7.3)

Thus we have to solve the homogeneous linear fractional-order differential system with

a11 = K − 2, a21 = K − 1, a12 = −1, a22 = −1. (7.4)

For fractional capacitors, the real orders are restricted to

0 < α1 ≤ 1, 0 < α2 ≤ 1. (7.5)

We remark that the boundary conditions associated with the Caputo derivative seem more
“physical” as they can be verified by experiments, whereas for the Riemann-Liouville case,
the fractional derivative boundary conditions cannot be measured. However, the Riemann-
Liouville operators are popular with mathematicians and theoretical physicists. We can write
the initial conditions explicitly as

x1(0) = c0∗1, x2(0) = c0∗2,

Dα1−1
# x1(0) = c1#1, Dα2−2

# x2(0) = c1#2.
(7.6)

7.1. Solution Using the Adjoint Method

Substituting (7.4) into the solution (4.10a) we get for the Caputo case

x∗1 = c0∗1[ε̃α1,α2,α1+α2,1(K − 2,−1,−1 : t) + ε̃α1,α2,α1+α2,α2(K − 2,−1,−1 : t)]

− c0∗2ε̃α1,α2,α1+α2,α1(K − 2,−1,−1 : t),

x∗2 = c0∗2[ε̃α1,α2,α1+α2,1(K − 2,−1,−1 : t) − (K − 2)ε̃α1,α2,α1+α2,α1(K − 2,−1,−1 : t)]

+ (K − 1)c0∗1ε̃α1,α2,α1+α2,α2(K − 2,−1,−1 : t).

(7.7)

Similarly, for the Riemann-Liouville case, substituting (7.4) into the solution (4.10b), we get

x#1 = c1#1[ε̃α1,α2,α1+α2,α1(K − 2,−1,−1 : t) + ε̃α1,α2,α1+α2,α2+α1−1(K − 2,−1,−1 : t)]

− c1#2ε̃α1,α2,α1+α2,α1+α2−1(K − 2,−1,−1 : t),

x#2 = c1#2[ε̃α1,α2,α1+α2,α2(K − 2,−1,−1 : t) − (K − 2)ε̃α1,α2,α1+α2,α2+α1−1(K − 2,−1,−1 : t)]

− c1#1(K − 1)ε̃α1,α2,α1+α2,α1+α2−1(K − 2,−1,−1 : t).

(7.8)



18 Mathematical Problems in Engineering

7.2. Solution Using the Laplace Transform

Substituting (7.4) into the Laplace transform solution (5.4a), we obtain

x̂∗1(s) =
[1 + s−α2]s−1c0∗1 − s−α1−1c0∗2

1 − (K − 2)s−α1 + s−α2 + s−(α1+α2)
, (7.9a)

x̂∗2(s) =
[1 − (K − 2)s−α1]s−1c0∗2 + (K − 1)s−α2−1c0∗1

1 − (K − 2)s−α1 + s−α2 + s−(α1+α2)
. (7.9b)

Similarly, for the Laplace transform of the solution (5.4b),

x̂#1(s) =
[1 + s−α2]s−α1c1#1 − s−(α1+α2)c1#2

1 − (K − 2)s−α1 + s−α2 + s−(α1+α2)
,

x̂#2(s) =
[1 − (K − 2)s−α1]s−α2c1#2 + (K − 1)s−(α1+α2)c1#1

1 − (K − 2)s−α1 + s−α2 + s−(α1+α2)
.

(7.10)

In the following subsections, we study the conditions under which asymptotically stable
oscillations are possible for a fractional Wien bridge oscillator and also present numerical
simulations of the capacitor voltages.

7.3. Equal-Order Fractional Wien Bridge

The classical Wien bridge oscillator produces a stable sinusoidal output when its amplifier
gain K = 3. The amplitude and frequency of the sinusoid are a function of the initial
capacitor voltages and the circuit time constant. For a fractional capacitor, the current-voltage
relationship is dependent on both capacitor value and order; hence an additional degree of
freedom is introduced into the Wien bridge circuit. We consider first the simple case with
equal real fractional orders α1 = α2 = α. Equation (7.7) then simplifies to

x∗1 = c0∗1ε̃α,α,2α,1(K − 2,−1,−1 : t) +
(
c0∗1 − c0∗2

)
ε̃α,α,2α,α(K − 2,−1,−1 : t),

x∗2 = c0∗2ε̃α,α,2α,1(K − 2,−1,−1 : t) +
[
c0∗1(K − 1) − c0∗2(K − 2)

]
ε̃α,α,2α,α(K − 2,−1,−1 : t).

(7.11)

To gain further insight into the system’s behaviour, it is advantageous to express the solution
in a simpler form using only 1-parameter Mittag-Leffler functions Eα,1(λitα). From (7.9a),

x̂∗1(s) = sα−1
c0∗1s

α +
(
c0∗1 − c0∗2

)

s2α − (K − 3)sα + 1
=
σ1s

α−1

sα − λ1 +
σ2s

α−1

sα − λ2 , (7.12)

where the σi ∈ � are constants to be determined from partial fraction decomposition (see
equivalent method in Section 6). The inverse transform yields

x∗1(t) = σ1Eα,1(λ1tα) + σ2Eα,1(λ2tα). (7.13)
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Figure 3: Caputo model of fractional Wien bridge with equal orders—comparison of phase and amplitude
for capacitor voltages. Parameters: x∗1(0) = x∗2(0) = 0.03. Legend: x∗1 (solid line); x∗2 (dashed line).

The solution for x∗2(t) can be found in a similar manner. For brevity, we present only
numerical simulations of the Caputo solutions (one plot of the Riemann-Liouville solution
is presented for comparison). In order for the Wien bridge to produce sustained oscillations,
we need to impose condition (6.18) on the complex roots λi. For the current system, this
translates to the following expression forK:

K = 3 + 2 cos
(απ

2

)
. (7.14)

Hence, the amplifier gainK is no longer a constant as in the case of the classical Wien bridge
but a function of capacitor order α. Simulations of (7.13) were plotted using Mathematica.

Figure 3 shows plots of x∗1 and x∗2 for α = 0.3, 0.5, 0.7, and 1.0. There is a clear
dependence of waveform amplitude on the fractional-order. The plot for α = 1 corresponds
to the classical Wien bridge (with ordinary capacitors) and is included for comparison. It is
important to keep in mind that the time axes are normalized and oscillation frequency ωα

actually varies with order as

ωα = (RC)−1/α. (7.15)
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Figure 4: Variation of waveform characteristics for x1(t). Parameters: x∗1(0) = x∗2(0) = 0.05, (a) Capacitor
order affects both frequency and amplitude. Legend: α = 0.3 (solid), 0.5 (dashed), 0.7 (dash-dotted), 1.0
(dotted) and (b) Time constant affects frequency while amplitude remains constant. Legend: RC = 0.8
(solid), 0.9 (dashed), and 1.0 (dash-dotted), and 1.1 (dotted).
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Figure 5:Comparison of x1(t)waveform for both derivativemodels. Solution for Riemann-Liouville model
diverges as t → 0. Parameters: x∗1(0) = x∗2(0) = 0.03. Legend: Caputo (solid line), and Riemann-Liouville
(dashed line).

This can be seen in Figure 4(a). It is interesting to note that the values of resistance and
capacitance have no effect on the output waveform amplitude (Figure 4(b)). Hence, the
frequency of oscillation can be controlled by both the value C and order α of the capacitors.
As noted in [31], a clear advantage of this is that high frequencies can be obtained by reducing
the order of the capacitors rather than their value, which can remain sufficiently large.

In Figure 5 we see that the Riemann-Liouville solutions (7.8) are very similar to the
Caputo solutions in terms of frequency and amplitude but differ in phase due to the second
parameter β of the Mittag-Leffler function. Of particular concern is the fact that the former
tends to diverge at the origin since the fractional initial conditions (2.5b) do not correspond to
measurable physical quantities. This is an important distinction between the two definitions
and has to be taken into consideration when modeling physical systems.
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7.4. Multiorder Fractional Wien Bridge

The Wien bridge circuit can be further generalized by allowing the orders to assume values
αj = μjα as detailed in Section 6. We use the case α2 = 2α1 as a starting point. Substituting
α1 = α and α2 = 2α into (7.7), (7.9a) and (7.9b), we have

x∗1 = c0∗1[ε̃α,2α,3α,1(K − 2,−1,−1 : t) + ε̃α,2α,3α,2α(K − 2,−1,−1 : t)]

− c0∗2ε̃α,2α,3α,α(K − 2,−1,−1 : t),

x∗2 = c0∗2[ε̃α,2α,3α,1(K − 2,−1,−1 : t) − (K − 2)ε̃α,2α,3α,α(K − 2,−1,−1 : t)]

+ (K − 1)c0∗1ε̃α,2α,3α,2α(K − 2,−1,−1 : t).

(7.16)

As with the equal-order bridge, we express the solution in Laplace domain and use partial
fractions to obtain a more tractable form:

x̂∗1(s) = sα−1
(
s2α + 1

)
c0∗1 − sαc0∗2

s3α − (K − 2)s2α + sα + 1
=

3∑

k=1

σksα−1

sα − λk , (7.17)

x∗1(t) =
3∑

k=1

σkEα,1(λktα). (7.18)

Only solutions with one negative real and two complex-conjugate roots will be of
concern to our present discussion. To justify this, we note that the alternative case of three real
roots is of no physical interest as it does not produce oscillatory solutions. With the exception
of the exponentially decaying term (due to the negative real root, see asymptotic analysis
in Section 6.2), the solution is hence similar to the case with equal capacitor orders; that is,
the output of the fractional Wien bridge can be expressed as a linear combination of Mittag-
Leffler functions. Unfortunately, the relationship between K and α is not as simple as in the
equal-order case (7.14). Although K is still a function of α, its form is sufficiently complex
that a more convenient alternative is to define K implicitly, that is, find α = φ(K), and use
polynomial curve-fitting as shown in Figure 6.

Using the method of least-squares, we obtain a third-order approximation for K:

K ≈ 4.611 − 4.821α2 + 0.008α3. (7.19)

Two restrictions apply to the usable range ofK and α. The first is the requirement that
the real root be negative. Plotting the denominator of (7.17) as a function of sα for various
amplifier gains, we obtain the relationship in Figure 7. For 0 < K < K0 ≈ 4.611, we have
λ1 ∈ �− and λ2 = λ3 ∈ � as required. Therefore, this serves as an upper limit to the amplifier
gain. The lower limit can be determined by recalling that 0 < α2 = 2α1 < 1 so that 0 < α < 0.5.
The result of these restrictions is also shown in Figure 6.

Within the stipulated range, the values of gain calculated from the polynomial curve
(7.19) are sufficiently accurate to create oscillatory solutions, as demonstrated in the following
simulations (Figure 8).
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Figure 6: Determination of amplifier gain K: (a) restrictions on possible values ofK and α; (b) third-order
least-squares approximation ofK(α) for x ∈ (0, 0.5).
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Figure 7: Properties of roots of (7.19) (shown as horizontal intercepts) for parameterK.

As mentioned earlier, it is possible to extend this procedure to any case where one
order is an integer multiple of the other. Consider the solution of x∗1 for α1 = α, α2 = υα:

x̂∗1(s) = sα−1
(sυα + 1)c0∗1 − s(υ−1)αc0∗2

s(υ+1)α − (K − 2)sυα + sα + 1
=

υ+1∑

k=1

σksα−1

sα − λk , (7.20)

x∗1(t) =
μ+1∑

k=1

σkEα,1(λktα). (7.21)

Indeed, unless we are concerned about obtaining the actual Laplace solution in partial
fraction form, the value of K that produces asymptotic oscillations can be found by simply
studying the roots of the denominator in (7.20) (a polynomial in sα of order υ + 1) and
imposing suitable conditions as previously shown so that at least one pair of Mittag-Leffler
terms has an eigenvalue that satisfies (6.18). For example, when υ = 3, a possible solution
contains 4 roots in 2 complex-conjugate pairs. One can adjust the amplifier gain such that



Mathematical Problems in Engineering 23

−0.2

−0.1

0

0.1

0.2

t

α1 = 0.3, α2 = 0.6, K = 4.18952

0 2 4 6 8 10 12 14

x
∗(
t)

−0.2

−0.1

0

0.1

0.2

t

0 2 4 6 8 10 12 14

x
∗(
t)

α = 0.35, α2 = 0.7, K = 4.04346

−0.2

−0.1

0

0.1

0.2

t

0 2 4 6 8 10 12 14

x
∗(
t)

α1 = 0.4, α2 = 0.8, K = 3.87881

−0.2

−0.1

0

0.1

0.2

t

0 2 4 6 8 10 12 14

x
∗(
t)

α1 = 0.45, α2 = 0.9, K = 3.6971

(a)

−0.2

−0.1

0

0.1

0.2

t

0 2 4 6 8 10 12 14

x
∗(
t)

α1 = 0.5, α2 = 1, K = 3.5

(b)

Figure 8: Caputo model of fractional Wien bridge with α2 = 2α1. The effect of the nonoscillatory term
in (7.20) can be observed as an initial offset that decays asymptotically as t → ∞. Parameters: x∗1(0) =
x∗2(0) = 0.03, (a) Comparison of phase and amplitude for capacitor voltages. (b) The limiting case of one
ordinary capacitor and one semicapacitor (order 1/2). Legend: and x∗1 (solid line), x∗2 (dashed line).

the roots satisfy |θ| = α0π/2 for the first pair and |θ| > α0π/2 for the second pair, hence
resulting in sustained oscillation and asymptotically decaying oscillation, respectively.

8. Concluding Remarks

We have proposed a new direct operational method for solving coupled linear fractional
differential equations of multiorders. This technique provides an alternative way for solving
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some linear CFDEs, and the solutions so obtained can be expressed in terms of multivariate
Mittag-Leffler functions. For the special cases where each of the multiorders is an integer
multiple of a real positive number, the solutions can be further reduced to linear combinations
of Mittag-Leffler functions of a single variable. Conditions for asymptotically oscillatory
solutions are considered. Two examples, namely, the coupled fractional harmonic oscillator
and the fractional Wien bridge circuit, are given to illustrate our method. Simulations of
solutions and stability conditions are given. Note that to obtain the solution based on our
method requires the use of the Laplace transform of the multivariate Mittag-Leffler function,
which then gives the identity for getting the Laplace inversion for the solution. This is one
main advantage of the direct operational inversion method proposed here as it will give the
solution directly. We remark that our method does not actually simplify the computational
aspect of obtaining solutions, though intuitively it allows one to obtain the solution in explicit
form.

Here we would like to remark that there were attempts recently to transform CFDEs
with different multiorders into an equivalent system of CFDEs of a single order [32, 33].
Such a method again does not reduce the amount of computation necessary to obtain the
solutions; instead, due to the increase in the number of the auxiliary equations in the latter
system, it is actually more tedious to obtain the full solutions. Our view on CFDEs is that, in
general, one still has to use numerical methods to obtain approximate solutions. The point
is to find a method that provides a more efficient way of doing so. We hope to look into
this aspect in a future work. Finally, it will be interesting to consider whether the above
method can be extended to nonlinear CFDEs. One expects that such a generalization will
not be straightforward.

Appendices

A. Mittag-Leffler Function and Related Functions

The Mittag-Leffler function [26, 28] and its generalizations are defined as follows:

Eα(z) =
∞∑

n=0

zn

Γ(nα + 1)
,

Eα,β(z) =
∞∑

n=0

zn

Γ
(
nα + β

) ,

E
γ

α,β(z) =
∞∑

n=0

(
γ
)
n
zn

Γ
(
nα + β

)
n!
,

(A.1)

where

(
γ
)
n
= γ
(
γ + 1

)(
γ + 2

) · · · (γ + n − 1
)
=
Γ
(
γ + n

)

Γ
(
γ
) . (A.2)
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Note that

(
γ
)
0 = 1, (0)n = 0 for n = 0, (0)0 = 1. (A.3)

Thus we have

E0
α,β(z) =

1
Γ
(
β
) . (A.4)

For convenience we define the following functions:

εα,β(λ : t) = tβ−1Eα,β(λtα), (A.5a)

ε
γ

α,β(λ : t) = t
β−1Eγ

α,β(λt
α). (A.5b)

A.1. Asymptotic Expansion of Mittag-Leffler Function [8, 24, 26]

For 0 < α < 2,

Eα(z) = −
N∑

n=1

z−n

Γ(1 − nα) + 0
(
|z|−N+1

)
, z −→ ∞,

απ

2
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2
,
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∣
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2
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(A.6)

Similarly one has

Eα,β(z) = −
N∑

n=1

z−n
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(
β − nα) + 0

(
|z|−N+1

)
, z −→ ∞,

απ
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2
,
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−
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(
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)
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∣argz

∣
∣ <

απ

2
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(A.7)

B. Multivariate Mittag-Leffler Functions [27–29]

Let us adopt the following notations:

αi ∈ �, β ∈ �, zi ∈ � , pi ∈ �0 = � ∪ {0},
α = (α1, α2, α3, . . . , αn), z = (z1, z2, z3, . . . , zn), p =

(
p1, p2, p3, . . . , pn

)
,

zp =
n∏

i=1

z
pi
i , p · α =

n∑

i=1

piαi,
[
p
]
=

n∑

i=1

pi,

(B.1)
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and the binomial coefficient is generalized to

αi ∈ �,

(
k

p

)

=
k!

∏n
i=1pi!

.
(B.2)

The multivariate Mittag-Leffler functions is defined as:

Ẽα,β(z) =
∞∑

k=0

∑

[p]=k

(
k

p

)
zp

Γ
(
p · α + β

) . (B.3)

C. Equivalence of Adjoint Method and Laplace Transform Solutions

We demonstrate the equivalence of the time-domain and frequency-domain (Laplace) solu-
tions for the 2-dimensional system as given by (4.10a) and (4.10b) and (5.4a) and (5.4b),
respectively. The generalization to systems of higher dimension is straightforward and will
be omitted for brevity. The Laplace transform of the multivariate Mittag-Leffler function in
(A.5a) is

L
[
ε̃α1,...,αn,β(a1, . . . , an : t)

]
=

s−β

1 −∑n
i=1 ais

−αi , (C.1)

with β > 0. The transform of (4.10a) and (4.10b) is then

L[x∗1] =

∑m1−1
k=0 ck∗1s

−(k+1) −∑m1−1
k=0 ck∗1a22s

−(α2+k+1) +
∑m2−1

k=0 ck∗2a12s
−(α1+k+1)

1 − a11s−α1 − a22s−α2 + detAs−(α1+α2)
,

L[x#1] =

∑m1
k=1 c

k
#1s

−(α1−k+1) −∑m1
k=1 c

k
#1a22s

−(α1+α2−k+1) +
∑m2

k=1 c
k
#2a12s

−(α1+α2−k+1)

1 − a11s−α1 − a22s−α2 + detAs−(α1+α2)
,

(C.2)

which agrees precisely with (5.4a) and (5.4b).
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