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This paper investigates the pinning synchronization of nonlinearly coupled complex networks
with time-varying coupling delay and time-varying delay in dynamical nodes. Some simple and
useful criteria are derived by constructing an effective control scheme and adjusting automatically
the adaptive coupling strengths. To validate the proposed method, numerical simulation examples
are provided to verify the correctness and effectiveness of the proposed scheme.

1. Introduction

In the past few years, the analysis and controllability of complex networks have attracted
lots of attention [1–5]. One of the main reasons for that is its wide applications in biology
[6], physics, and engineering [7]. So far, many different types of synchronization have been
investigated, such as complete synchronization [8], generalized synchronization [9], phase
synchronization [10], lag synchronization [11], projection synchronization [12, 13], and so
forth. Meanwhile, many control approaches have been developed to synchronize complex
networks such as adaptive control [14], pinning control [15, 16], impulsive control [17–20]
intermittent control [21, 22], and so on.

For the complexity of the dynamical network, it is difficult to realize the synchro-
nization by adding controllers to all nodes, such as [23]. To reduce the number of the
controllers, a natural way is using pinning control method. Guo et al. [24] investigated the
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global synchronization of the complex networks with nondelayed and delayed coupling
based on the pinning controllers. We can obtain some sufficient conditions for the global
synchronization by adding linear and adaptive feedback controllers to some part of nodes
from his woks. In [25], the authors investigated pinning control for linearly coupled networks
and found that one can pin the coupled networks by introducing fewer locally negative
feedback controllers. They also compared two different pinning strategies: randomly pin-
ning and selective pinning based on the connection degrees and found out that the pin-
ning strategy based on highest connection degree has better performance than totally ran-
domly pinning. In [26], the authors pinned the complex network to the synchronization
manifold by controlling one single node. And in [27], the authors investigated the pinning
synchronization of delayed dynamical networks via periodically intermittent control. How-
ever, not much has been done on the synchronization of nonlinearly coupled complex
networks with time-varying coupling delay and time-varying delay in dynamical nodes by
pinning part of nodes and adjusting time-varying coupling strengths.

Motivated by the above discussions, in this paper, we work on the pinning syn-
chronization of nonlinearly coupled complex networks with time-varying coupling delay and
time-varying delay in dynamical nodes. The main contributions of this paper are threefold.
(1) This paper deals with the synchronization problem for nonlinearly coupled complex
networks with time-varying coupling delay and time-varying delay in dynamical nodes. The
method used is adaptive pinning controlling method. By adjusting time-varying coupling
strengths, some sufficient conditions for the synchronization are derived by constructing
an effective control scheme, which are different from the methods used in [28]. (2) By
using the Lyapunov stability theorem and a linear matrix inequality (LMI), we prove that
the dynamical network can be made to be synchronous with one isolated node by adding
controllers to only a small subset of the nodes. Compared with some similar designs, our
pinning adaptive controllers are very simple. In addition, the pinning nodes can be randomly
selected. It indeed provides some new insights for the future practical engineering design.
(3) The Synchronization criteria are independent of time delay. Numerical examples are also
provided to demonstrate the effectiveness of the theory.

The rest of this paper is organized as follows. The network model is introduced,
and some necessary definitions, lemmas, and hypotheses are given in Section 2. The syn-
chronization of the coupled complex networks is discussed in Section 3. Examples and their
simulations are obtained in Section 4. Finally, conclusions are drawn in Section 5.

2. Networks Models and Mathematical Preliminaries

2.1. Model Description

The network with time-varying coupling delay and adaptive coupling strengths can be des-
cribed by

ẋi(t) = f(t, xi(t), xi(t − τ(t))) + σ(t)
N∑

j=1

aijH1
(
xj(t)

)

+ c(t)
N∑

j=1

bijH2
(
xj(t − τ(t))

)
, i = 1, 2, . . . ,N,

(2.1)
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where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ Rn is the state vector of the ith dynamical node,

f : R+ × Rn → Rn is an vector value function, τ(t) > 0 is time-varying delay, σ(t) > 0 and
c(t) > 0 are time-varying coupling strengths, H1(·) and H2(·) are nonlinear functions, and
A = (aij)N×N and B = (bij)N×N are the weight configuration matrices; if there is a connection
from node i to node j (j /= i), then, aij = aji > 0, bij = bji > 0, otherwise, aij = aji = 0,
bij = bji = 0, and the diagonal elements of matrix A,B are defined by

aii = −
N∑

j=1, j /= i

aji, bii = −
N∑

j=1, j /= i

bji, i = 1, 2, . . . ,N. (2.2)

2.2. Mathematical Preliminaries

Definition 2.1. Assume that s(t) ∈ Rn is any smooth dynamics. The controlled complex net-
work (2.1) is said to be synchronized on to the homogeneous state s(t) if the solution satisfies
limt→∞‖xi(t) − s(t)‖ = 0 for any initial conditions.

Let C([−τ, 0], Rn) be the Banach space of continuous functions that map the interval
[−τ, 0] into Rn with norm ‖φ‖ = sup−τ≤θ≤0‖φ(θ)‖. The initial conditions of the functional
differential equation (2.1) are given by xi(t) = φi(t) ∈ C([−τ, 0], Rn). It is assumed that (2.1)
has a unique solution for these initial conditions.

Suppose that s(t) is a solution of the uncoupled system ṡ(t) = f(s(t)). In order to
pin the system (2.1) onto the synchronization manifold (s(t), s(t), . . . , s(t)), we will add the
controllers ui(t) = ki(H1(xi(t)) −H1(s(t))) to a certain selection of the nodes where ki will be
defined in the following section. Without loss of generality, we add the controllers to the first
l nodes (0 ≤ l ≤ N) so that we have

ẋi(t) = f(t, xi(t), xi(t − τ(t))) + σ(t)
N∑

j=1

aijH1
(
xj(t)

)

+ c(t)
N∑

j=1

bijH2
(
xj(t − τ(t))

) − ui(t), i = 1, 2, . . . , l,

ẋi(t) = f(t, xi(t), xi(t − τ(t))) + σ(t)
N∑

j=1

aijH1
(
xj(t)

)

+ c(t)
N∑

j=1

bijH2
(
xj(t − τ(t))

)
, i = l + 1, l + 2 · · ·N.

(2.3)

Noting that ei(t) = xi(t) − s(t), we have

ėi(t) = f̃(t, xi(t), xi(t − τ(t))) + σ(t)
N∑

j=1

aijH1
(
xj(t)

)

+ c(t)
N∑

j=1

bijH2
(
xj(t − τ(t))

) − ui(t), i = 1, 2, . . . , l,
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ėi(t) = f̃(t, xi(t), xi(t − τ(t))) + σ(t)
N∑

j=1

aijH1
(
xj(t)

)

+ c(t)
N∑

j=1

bijH2
(
xj(t − τ(t))

)
, i = l + 1, l + 2 · · ·N,

(2.4)

where f̃(t, xi(t), xi(t − τ(t))) = f(t, xi(t), xi(t − τ(t))) − f(t, s(t), s(t − τ(t))).
We now introduce some definitions, assumptions, and lemmas that will be required

throughout this paper.

Lemma 2.2 (see [29]). Assuming that A = (aij) ∈ RN×N satisfies the following conditions:

(1) A = (aij) ∈ RN×N, aij = aji > 0, aii = −∑N
j=1,j /= iaij , i = 1, 2, . . . ,N,

(2) A is irreducible.

Then we have that

(i) the real parts of the eigenvalues ofA are all negative except an eigenvalue 0 with multiplicity
1.

(ii) A has a right eigenvector (1, 1, . . . , 1)T corresponding to the eigenvalue 0.

Lemma 2.3 (see [24]). If G = (gij)N×N is an irreducible matrix that satisfies gij = gji ≥ 0 for i /= j,
and gii = −∑N

j=1, i /= jgij , for i = 1, 2, . . . ,N, then all the eigenvalues of the matrix

G̃ =

⎛
⎜⎜⎜⎝

g11 − ε1 · · · g1N

...
. . .

...

gN1 · · · gNN − εN

⎞
⎟⎟⎟⎠ (2.5)

are negative, where ε1, ε2, . . . , εN are nonnegative constants and ε1, ε2, . . . , εN > 0.

Lemma 2.4 (see [30]). For any two vectors x and y, a matrix S > 0 with compatible dimensions,
one has: 2xTy ≤ xTSx + yTS−1y.

Lemma 2.5 (see [31]). LetQ andR be two symmetric matrices, and matrix S has suitable dimension.
Then

(
Q S

ST R

)
< 0 (2.6)

if and only if both R < 0 and Q − SR−1ST < 0.
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Lemma 2.6 (see [32]). For the vector-valued function f(t, xi(t), xi(t − τ(t))), assuming that there
exist positive constants γ > 0, θ > 0 such that f satisfies the semi-Lipschitz condition

(
xi(t) − yi(t)

)T(
f(t, xi(t), xi(t − τ(t))) − f

(
t, yi(t), yi(t − τ(t))

))

≤γ(xi(t) − yi(t)
)T(

xi(t) − yi(t)
)
+ θ
(
xi(t − τ(t)) − yi(t − τ(t))

)T(
xi(t − τ(t))−yi(t − τ(t))

)
,

(2.7)

for all x, y ∈ Rn and t ≥ 0, i = 1, 2, . . .N.

Assumption 2.7 (see [9] (Global Lipschitz Condition)). Suppose that there exist nonnegative
constants α, β, for all t ∈ R+, such that for any time-varying vectors x(t), y(t) ∈ Rn

∥∥H1(x) −H1
(
y
)∥∥ ≤ α

∥∥x − y
∥∥,

∥∥H2(x) −H2
(
y
)∥∥ ≤ β

∥∥x − y
∥∥, (2.8)

where ‖ ‖ denotes the 2 norm throughout the paper.

Assumption 2.8 (see [9]). τ(t) is differential function with 0 ≤ τ̇(t) ≤ ε ≤ 1. Clearly, this
assumption is certainly to ensure that the delay τ(t) is constant.

3. Main Results

In this section, a control scheme is developed to synchronize a delayed complex network with
time-varying delay dynamical nodes to any smooth dynamics s(t). The local controllers are
designed as follows:

ui(t) = ki(H1(xi(t)) −H1(s(t))), (3.1)

we let

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 − k1

μ1
. . . a1l a1,l+1 . . . a1N

...
. . .

...
...

...
...

al1 . . . all − kl
μ1

al,l+1 . . . alN

al+1,1 . . . al+1,l al+1,l+1 . . . al+1,N

...
. . .

...
...

...
...

aN1 . . . aNl aN,l+1 . . . aNN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.2)
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where k1, k2, . . . , kl are positive constants. It follows from Lemma 2.3 that if A is symmetric
and irreducible, then Ã is negative definite. We can therefore prove the following theorem.

For convenience in later use, we denote

x̃i(t) = (x1i(t), x2i(t), . . . , xNi(t))T , ẽi(t) = (e1i(t), e2i(t), . . . , eNi(t))T ,

H1(x̃i(t)) = (H1(x1i(t)),H1(x2i(t)), . . . ,H1(xNi(t)))T ,

H2(x̃i(t)) = (H2(x1i(t)),H2(x2i(t)), . . . ,H2(xNi(t)))T , ẽi = x̃i(t) − s̃i(t).

(3.3)

Theorem 3.1. Suppose that Assumptions 2.7 and 2.8 hold, the adaptive coupling strength

σ(t) = ρ̂(t) + μ1, c(t) = η̂(t) + μ2, (3.4)

where μ = max(μ1, μ2), μ1 > 0, μ2 > 0, and ρ̂(0) > 0, η̂(0) > 0. If ρ̂(t), η̂(t) satisfies the following
update law: ˙̂ρ(t) = −∑N

i=1e
T
i (t)ei(t), ˙̂η(t) = −∑N

i=1[e
T
i (t)ei(t) + eTi (t − τ(t))ei(t − τ(t))] and the

following condition hold:

μ1αÃ +
1

2(1 − ε)
IN +

1
2
β2μ2

2B
TB < 0. (3.5)

then the controlled dynamical network (2.1) is synchronization.

Proof. Construct the following Lyapunov function:

V (t) =
1
2

N∑

i=1

eTi (t)ei(t) +
θ

(1 − ε)

N∑

i=1

∫ t

t−τ(t)
eTi (ξ)ei(ξ)dξ

+
1

2(1 − ε)

n∑

j=1

∫ t

t−τ(t)
ẽTj (ξ)ẽj(ξ)dξ +

ρ̃2

2β1
+

η̃2

2β2
,

(3.6)

where ˙̃ρ(t) = −β1
∑N

i=1e
T
i (t)ei(t), ˙̃η(t) = −β2

∑N
i=1[e

T
i (t)ei(t) + eTi (t − τ(t))ei(t − τ(t))], ρ̃(t) =

(γ+(θ/(1−ε)))+αλ1ρ̂(t), η̃(t) = (1/2)βλ2η̂(t), λ1 = max(|λ1(A)|, |λ2(A)|, . . . , |λN(A)|), β1 = αλ1,
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λ2 = max(|λ1(B)|, |λ2(B)|, . . . , |λN(B)|), and β2 = (1/2)βλ2. In virtue of Assumptions 2.7 and
2.8, the time derivative of V (t) along the trajectory of system (2.4) is derived by

V̇ (t) =
N∑

i=1

eTi (t)

⎛

⎝f̃(t, xi(t), xi(t − τ(t)))+σ(t)
N∑

j=1

aijH1
(
xj(t)

)
+c(t)

N∑

j=1

bijH2(xi(t − τ(t)))−ui(t)

⎞

⎠

+
θ

(1 − ε)

N∑

i=1

(
eTi (t)ei(t) − (1 − τ̇(t))eTi (t − τ(t))ei(t − τ(t))

)

+
1

2(1 − ε)

n∑

j=1

(
ẽTj (t)ẽj(t) − (1 − τ̇(t))ẽTj (t − τ(t))ẽj(t − τ(t))

)
+ ρ̃(t) ˙̂ρ(t) + η̃(t) ˙̂η(t)

=
N∑

i=1

eTi (t)f̃(t, xi(t), xi(t − τ(t))) +
N∑

i=1

eTi (t)σ(t)
N∑

j=1

aijH1
(
xj(t)

)

+
N∑

i=1

eTi (t)c(t)
N∑

j=1

bijH2
(
xj(t − τ(t))

) −
l∑

i=1

kie
T
i (t)(H1(xi(t)) −H1(s(t)))

+
θ

(1 − ε)

N∑

i=1

eTi (t)ei(t) −
θ(1 − τ̇(t))
(1 − ε)

N∑

i=1

eTi (t − τ(t))ei(t − τ(t))

+
1

2(1 − ε)

n∑

j=1

ẽTj (t)ẽj(t) −
1 − τ̇(t)
2(1 − ε)

n∑

j=1

ẽTj (t − τ(t))ẽj(t − τ(t)) + ρ̃(t) ˙̂ρ(t) + η̃(t) ˙̂η(t)

≤
N∑

i=1

[
γei(t)Tei(t) + θeTi (t − τ(t))ei(t − τ(t))

]
+

N∑

i=1

eTi (t)ρ̂(t)
N∑

j=1

aijH1
(
xj(t)

)

+ μ1

N∑

i=1

eTi (t)
N∑

j=1

aijH1
(
xj(t)

)
+

N∑

i=1

eTi (t)η̂(t)
N∑

j=1

bijH2
(
xj(t − τ(t))

)

+ μ2

N∑

i=1

eTi (t)
N∑

j=1

bijH2
(
xj(t − τ(t))

) −
l∑

i=1

kie
T
i (t)(H1(xi(t)) −H1(s(t)))

+
θ

(1 − ε)

N∑

i=1

eTi (t)ei(t) −
θ(1 − τ̇(t))
(1 − ε)

N∑

i=1

eTi (t − τ(t))ei(t − τ(t))

+
1

2(1 − ε)

n∑

j=1

ẽTj (t)ẽj(t) −
1 − τ̇(t)
2(1 − ε)

n∑

j=1

ẽTj (t − τ(t))ẽj(t − τ(t)) + ρ̃(t) ˙̂ρ(t) + η̃(t) ˙̂η(t)

≤ γ
N∑

i=1

ei(t)Tei(t) + θ
N∑

i=1

ei(t − τ(t))Tei(t − τ(t))+μ1

n∑

i=1

ẽTj (t)Ã
(
H1
(
x̃j(t)

)−H1(s̃(t))
)
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+ μ2

n∑

i=1

ẽTj (t)B
(
H2
(
x̃j(t − τ(t))

) −H2
(
s̃j(t − τ(t))

))

+
θ

(1 − ε)

N∑

i=1

eTi (t)ei(t) −
θ(1 − τ̇(t))
(1 − ε)

N∑

i=1

eTi (t − τ(t))ei(t − τ(t))

+
1

2(1 − ε)

n∑

j=1

ẽTj (t)ẽj(t) −
1 − τ̇(t)
2(1 − ε)

n∑

j=1

ẽTj (t − τ(t))ẽj(t − τ(t)) + ρ̃(t) ˙̂ρ(t) + η̃(t) ˙̂η(t)

+
N∑

i=1

eTi (t)ρ̂(t)
N∑

j=1

aijH1
(
xj(t)

)
+

N∑

i=1

eTi (t)η̂(t)
N∑

j=1

bijH2
(
xj(t − τ(t))

)

≤
(
γ +

θ

(1 − ε)

) N∑

i=1

ei(t)Tei(t) + μ1α
n∑

j=1

ẽTj (t)Ãẽj(t) + μ2β
n∑

j=1

ẽTj (t)Bẽj(t − τ(t))

+
1

2(1 − ε)

n∑

j=1

ẽTj (t)ẽj(t) −
1
2

n∑

j=1

ẽTj (t − τ(t))ẽj(t − τ(t)) + ρ̃(t) ˙̂ρ(t) + η̃(t) ˙̂η(t)

+
N∑

i=1

eTi (t)ρ̂(t)
N∑

j=1

aijH1
(
xj(t)

)
+

N∑

i=1

eTi (t)η̂(t)
N∑

j=1

bijH2
(
xj(t − τ(t))

)
.

(3.7)

Let e(t) = (eT1 (t), e
T
2 (t), . . . , e

T
N(t))T ∈ RnN ,

V̇ (t) ≤
(
γ +

θ

(1 − ε)

) N∑

i=1

ei(t)Tei(t) + μ1α
n∑

j=1

ẽTj (t)Ãẽj(t) + μ2β
n∑

j=1

ẽTj (t)Bẽj(t − τ(t))

+
1

2(1 − ε)

n∑

j=1

ẽTj (t)ẽj(t) −
1
2

n∑

j=1

ẽTj (t − τ(t))ẽj(t − τ(t)) + ρ̃(t) ˙̂ρ(t) + η̃(t) ˙̂η(t)

+ αρ̂(t)eT (t)Ae(t) + βη̂(t)eT (t)Be(t − τ(t))

≤ μ1α
n∑

j=1

ẽTj (t)Ãẽj(t) + μ2β
n∑

j=1

ẽTj (t)Bẽj(t − τ(t)) +
1

2(1 − ε)

n∑

j=1

ẽTj (t)ẽj(t)

− 1
2

n∑

j=1

ẽTj (t − τ(t))ẽj(t − τ(t)) + η̃(t) ˙̂η(t) +
1
2
βλ2η̂(t)

(
eT(t)e(t) + eT (t − τ(t))e(t − τ(t))

)
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≤ μ1α
n∑

j=1

ẽTj (t)Ãẽj(t) + μ2β
n∑

j=1

ẽTj (t)Bẽj(t − τ(t)) +
1

2(1 − ε)

n∑

j=1

ẽTj (t)ẽj(t)

− 1
2

n∑

j=1

ẽTj (t − τ(t))ẽj(t − τ(t))

≤
n∑

j=1

ẽTj (t)
(
μ1αÃ +

1
2(1 − ε)

I

)
ẽj(t) + βμ2

n∑

j=1

ẽTj (t)Bẽj(t − τ(t))

− 1
2

n∑

j=1

ẽTj (t − τ(t))ẽj(t − τ(t))

≤
n∑

j=1

(
ẽTj (t), ẽ

T
j (t − τ(t))

)
Zj

(
ẽj(t), ẽj(t − τ(t))

)
,

(3.8)

where

Zj =

⎛
⎜⎜⎜⎜⎝

μ1αÃ +
1

2(1 − ε)
IN

1
2
βμ2B

1
2
βμ2B

T −1
2
IN

⎞
⎟⎟⎟⎟⎠

. (3.9)

It follows from Lemma 2.5 that if

μ1αÃ +
1

2(1 − ε)
IN +

1
2
β2μ2

2B
TB < 0, (3.10)

we obtain V̇ (t) < 0. The proof is completed.

Remark 3.2. Compared with the other control methods in the literature, pinning controller
is relatively simple and is easy to implement. As we know now, the real-world complex
networks normally have a large number of nodes. Therefore, it is usually difficult to con-
trol a complex network by adding the controllers to all nodes. To reduce the number of the
controllers, a natural approach is to control a complex network by pinning part of nodes. In
this paper, we designed controllers to ensure that the special networks could get synchro-
nization. The pinning nodes can be randomly selected. It indeed provides some new insights
for the future practical engineering design.
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Remark 3.3. Synchronization criteria have been given in Theorem 3.1. Compared with some
similar designs, our pinning adaptive controllers are very simple. In particular, the synchro-
nization criteria are independent of time delays.

4. Illustrative Examples

In this section, a numerical example will be given to demonstrate the validity of the synchro-
nization criteria obtained in the previous sections. Considering the followingnetwork:

ẋi(t) = f(t, xi(t), xi(t − τ(t))) + σ(t)
N∑

j=1

aijH1
(
xj(t)

)

+ c(t)
N∑

j=1

bijH2
(
xj(t − τ(t))

) − ui(t), i = 1, 2, . . . , l,

ẋi(t) = f(t, xi(t), xi(t − τ(t))) + σ(t)
N∑

j=1

aijH1
(
xj(t)

)

+ c(t)
N∑

j=1

bijH2
(
xj(t − τ(t))

)
, i = l + 1, l + 2 · · ·N,

(4.1)

where f(t, xi(t), xi(t − τ(t))) = Dxi(t) + h1(xi(t)) + h2(xi(t − τ(t))) here τ(t) = et/100(1 + et),
xi(t) = (xi1(t), xi2(t), xi3(t))

T , h1(xi) = (0,−xi1xi3, xi1xi2)
T , h2(xi) = (0, 0.2xi2, 0)

T , μ = 5, N =
4, l = 1, H1(x) = sinx + 2x, H2(x) = cosx + 3x, and

D =

⎡
⎢⎢⎢⎣

−10 10 0

28 −1 0

0 0 −8
3

⎤
⎥⎥⎥⎦
,

A = B =

⎡
⎢⎢⎢⎢⎢⎣

−1 1 0 0

1 −3 1 1

0 1 −2 1

0 1 1 −2

⎤
⎥⎥⎥⎥⎥⎦
. (4.2)

5. Conclusions

The problems of synchronization and pinning control for the nonlinearly coupled complex
networks with time-varying coupling delay and time-varying delay in dynamical nodes are
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Figure 1: The chaotic behavior of time-delayed Lorenz system.
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Figure 2: Time evolution of the synchronization errors.

investigated. It is shown that synchronization can be realized via adjusting time-varying
coupling strengths. The study showed that the use of simple control law helps to derive
sufficient criteria which ensure that the synchronization of the network model is derived. In
addition numerical simulations were performed to verify the effectiveness of the theoretical
results. Compared with existing results, our synchronization is still very useful when the
existing methods become invalid (Figures 1 and 2).
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