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Permeability is a key parameter associated with the characterization of any hydrocarbon reservoir.
In fact, it is not possible to have accurate solutions to many petroleum engineering problems with-
out having accurate permeability value. The conventional methods for permeability determination
are core analysis and well test techniques. These methods are very expensive and time consuming.
Therefore, attempts have usually been carried out to use artificial neural network for identification
of the relationship between the well log data and core permeability. In this way, recent works on
artificial intelligence techniques have led to introduce a robust machine learning methodology
called support vector machine. This paper aims to utilize the SVM for predicting the permeability
of three gas wells in the Southern Pars field. Obtained results of SVM showed that the correlation
coefficient between core and predicted permeability is 0.97 for testing dataset. Comparing the
result of SVM with that of a general regression neural network (GRNN) revealed that the SVM
approach is faster and more accurate than the GRNN in prediction of hydrocarbon reservoirs
permeability.

1. Introduction

In reservoir engineering, reservoir management, and enhanced recovery design point of view,
permeability is the most important rock parameter affecting fluids flow in reservoir. Know-
ledge of rock permeability and its spatial distribution throughout the reservoir is of utmost
importance. In fact, the key parameter for reservoir characterization is the permeability dis-
tribution. In addition, in most reservoirs, permeability measurements are rare and therefore
permeability must be predicted from the available data. Thus, the accurate estimation of
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permeability can be considered as a difficult task. Permeability is generally measured in the
laboratory on the cored rocks taken from the reservoir or can be determined by well test tech-
niques. The well testing and coring methods are, however, very expensive and time consum-
ing compared to the wire-line logging techniques [1]. Moreover, in a typical oil or gas field,
almost all wells are logged using various tools to measure geophysical parameters such as
porosity and density, while both well test and core data are available only for a few wells
[2, 3]. As the well log data are usually available for most of wells, many researchers attempt
to predict permeability through establishing a series of statistical empirical correlation bet-
ween permeability, porosity, water saturation, and other physical properties of rocks. This
technique has been used with some success in sandstone and carbonate reservoirs, but it often
shows short of the accuracy for permeability prediction from well log data in heterogeneous
reservoirs. Proton magnetic resonance (PMR) is another modern approach for the prediction
of the permeability as a continuous log, but it has significant technological constrains
[4].

Alternatively, neural networks have been increasingly applied to predict reservoir pro-
perties using well log data [5–7]. In this way, previous investigations [8–15] have revealed
that neural network is a proper tool for identifying the complex relationship among permea-
bility, porosity, fluid saturations, depositional environments, lithology, and well log data.
However, recent works on the artificial intelligence have resulted in finding a suitable mac-
hine learning theory called support vector machine (SVM). Support vector machines, based
on the structural risk minimization (SRM) principle [16], seem to be a promising method
for data mining and knowledge discovery. It was introduced in the early 90s as a nonlinear
solution for classification and regression tasks [17, 18]. It stems from the frame work of sta-
tistical learning theory or Vapnik-Chervonenkis (VC) theory [19, 20] and was originally deve-
loped for pattern recognition problem [21, 22]. VC theory is the most successful tool by now
for accurately describing the capacity of a learned model and can further tell us how to
ensure the generalization performance for future samples [23] by controlling the capacity of
a model. Its theory is mainly based on the consistency and rate of convergence of a learning
process [20]. VC dimension and SRM principle are the two most important elements of VC
theory. VC dimension is a measure of the capacity of a set of functions, and SRM principle
can ensure that the model will be well generalized. SVM is firmly rooted in VC theory and
has superiority compared to the traditional learning methods. As a matter of fact, there
are at least three reasons for the success of SVM: its ability to learn well with only a very
small number of parameters, its robustness against the error of data, and its computational
efficiency compared with several other intelligent computational methods such as neural
network, fuzzy network, and so forth [24, 25]. By minimizing the structural risk, SVM works
well not only in classification [26–28] but also in regression [29, 30]. It was soon introduced
into many other research fields, for example, image analysis [31, 32], signal processing [33],
drug design [34], gene analysis [35], climate change [36], remote sensing [37], protein struc-
ture/function prediction [38], and time series analysis [39] and usually outperformed the tra-
ditional statistical learning methods [40]. Thus, SVM has been receiving increasing attention
and quickly becomes quite an active research field. The objective of this study is to evaluate
the ability of SVM for prediction of the reservoirs permeability. In this way, Kangan and
Dallan gas reservoirs in the Southern Pars field, Iran are selected as case study in this research
work. In addition, obtained results of SVM will be compared to those given by a general reg-
ression neural network (GRNN).
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Figure 1: Geographical position of Southern Pars gas field.

2. Study Area

The Iranian South Pars field is the northern extension of Qatar’s giant North Field. It covers an
area of 500 square miles and is located 3,000 m below the seabed at a water depth of 65 m. The
Iranian side accounts for 10% of the worlds and 60% of Iran’s total gas reserves. Iran’s portion
of the field contains an estimated 436 trillion cubic feet. The field consists of two independent
gas-bearing formations, Kangan (Triassic) and Dalan (Permian). Each formation is divided
into two different reservoir layers, separated by impermeable barriers. The field is a part
of the N-trending Qatar Arch structural feature that is bounded by Zagros fold belt to the
north and northeast. In the field, gas accumulation is mostly limited to the Permian-Triassic
stratigraphic units. These units known as the “Kangan-Dalan Formations” constitute which
are very extensive natural gas reservoirs in the Persian Gulf area and consist of carbonate-
evaporate series also known as the Khuff Formation [41]. Figure 1 shows the geographical
position of Southern Pars gas field.

3. Material and Method

3.1. Data Set

The main objective of this study is to predict permeability of the gas reservoirs by incorporat-
ing well logs and core data of three gas wells in the Southern Pars field. As a matter of fact, the
well logs are considered as the inputs, whereas horizontal permeability (kh) is taken as the
output of the networks. Available digitized well logs are consisted of sonic log (DT), gamma
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ray log (GR), compensated neutron porosity log (NPHI), density log (ROHB), photoelectric
factor log (PEF), microspherical focused resistivity log (MSFL), and shallow and deep latero-
resistivity logs (LLS and LLD). For the present study, a total number of 175 well logs and
core permeability datasets were obtained from 3 wells of Kangan and Dalan gas reservoirs.
In view of the requirements of the networks computation algorithms, the data of the input
and output variables were normalised to an interval by transformation process. In this study,
normalization of data (inputs and outputs) was done for the range of (−1, 1) using (3.1), and
the number of training (125) and testing data (50) was then selected randomly:

pn = 2
p − pmin

pmax − pmin
− 1, (3.1)

where pn is the normalised parameter, p denotes the actual parameter, pmin represents a mini-
mum of the actual parameters, and pmax stands for a maximum of the actual parameters. In
addition, the leave-one-out (LOO) cross-validation of the whole training set was used for
adjusting the associated parameters of the networks [42].

3.2. Independent Component Analysis

Independent component analysis (ICA) is a suitable method for feature extraction process.
Unlike the PCA, this method both decorrelates the input signals and also reduces higher-
order statistical dependencies [43, 44]. ICA is based on the non-Gaussian assumption of the
independent sources and uses higher-order statistics to reveal interesting features. The appli-
cations of IC transformation include dimension reduction, extracting characteristics of the
image, anomaly and target detection, feature separation, classification, noise reduction, and
mapping. Compared with principal component (PC) analysis, IC analysis provides some uni-
que advantages:

(i) PC analysis is orthogonal decomposition. It is based on covariance matrix analysis
and Gaussian assumption. IC analysis is based on non-Gaussian assumption of the
independent sources;

(ii) PC analysis uses only second-order statistics. IC analysis uses higher-order statis-
tics. Higher-order statistics is a stronger statistical assumption, revealing interesting
features in the usually non-Gaussian datasets [45, 46].

3.2.1. The ICA Algorithm

Independent Component Analysis of the random vector x is defined as the process of finding
a linear transform S = Wx such that W is a linear transformation and the components si are
as independent as possible. They maximize a function F(s1, . . . , sm) that provides a measure
of independence [46]. The individual components si are independent when their probability
distribution factorizes (when there is no mutual information between them) and can be men-
tioned as (3.2):

fs(s) =
∏

si

fsi(si). (3.2)
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Figure 2: Mechanism of data transformation via ICA algorithm.

This approach used to minimize the mutual information involves maximizing the joint
entropy H[g(s)]. This is accomplished using a stochastic gradient ascent method, termed
Infomax. If the nonlinear function g is the cumulative density function of the independent
components si, then this method also minimizes the mutual information. The procedure of
transforming data in higher dimension is shown in Figure 2.

Notice that the nonlinear function g is chosen without knowing the cumulative density
functions of the independent components. In case of a mismatch, it is possible that the algo-
rithm does not converge to a solution [47]. A set of nonlinear functions has been tested, and
it was found that super-Gaussian probability distribution functions converge to an ICA solu-
tion when the joint entropy is maximized. The optimization step in obtaining the indepen-
dent components relies on changing the weights according to the entropy gradient that can
be expressed as (3.3):

ΔW ∝ ∂H
(
y
)

∂W
= E

[
∂ ln|J |
∂W

]
, (3.3)

where E is the expected value, y = [g(s1) · · · g(sn)]T , and |J | is the absolute value of the deter-
minant of the Jacobian matrix of the transformation from x to y. From this formula, it is shown
that ΔW can be calculated using

ΔW =
(
WT

)−1
+
(
∂g(s)/∂s

g(s)

)
· xT . (3.4)

Equation (3.4) involves the matrix inversion, and thus an alternative formulation involving
only simple matrix multiplication is preferred. This formula can be mentioned as [43, 47]:

ΔW ∝ ∂H
(
y
)

∂W
WTW =

((
WT

)−1
+
(
∂g(s)/∂s

g(s)

)
· xT

)
WTW = W +

(
∂g(s)/∂s

g(s)

)
sTW.

(3.5)

3.3. Support Vector Machine

In pattern recognition, the SVM algorithm constructs nonlinear decision functions by training
a classifier to perform a linear separation in high-dimensional space which is nonlinearly
related to input space. To generalize the SVM algorithm for regression analysis, an analogue
of the margin is constructed in the space of the target values (y) using Vapnik’s ε-insensitive
loss function (Figure 3) [48–50]:

∣∣y − f(x)
∣∣
ε := max

{
0,
∣∣y − f(x) − ε

∣∣}. (3.6)
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Figure 3: Concept of ε-insensitivity. Only the samples out of the ±ε margin will have a non-zero slack
variable, so they will be the only ones that will be part of the solution [50].

To estimate a linear regression,

f(x) = (w · x) + b, (3.7)

where w is the weighting matrix, x is the input vector, and b is the bias term. With precision,
one minimizes

1
2
‖w‖2 + C

m∑

i=1

∣∣y − f(x)
∣∣
ε, (3.8)

where C is a trade-off parameter to ensure that the margin ε is maximized and error of the
classification ξ is minimized. Considering a set of constraints, one may write the following
relations as a constrained optimization problem:

L
(
w, ξ, ξ′

)
=

1
2
‖w‖2 + C

N∑

i=1

(
ξi + ξ′i

)
. (3.9)

Subject to

yi −wT · x − b ≤ ξi + ε, (3.10)

wT · x + b − yi ≤ ξ′i + ε, (3.11)

ξi, ξ
′
i, xi ≥ 0. (3.12)

According to relations (3.10) and (3.11), any error smaller than ε does not require a nonzero
ξi or ξ′i and does not enter the objective function (3.9) [51–53].

By introducing Lagrange multipliers (α and α′) and allowing for C > 0, ε > 0
chosen a priori, the equation of an optimum hyper plane is achieved by maximizing the fol-
lowing relations:

L
(
α, α′) =

1
2

N∑

i=1

N∑

i=1

(
αi − α′

i

)
x′
ixi

(
αi − α′

i

)
+

N∑

i=1

((
αi − α′

i

)
yi −

(
αi + α′

i

)
ε
)

Subject to 0 ≤ (
αi − α′

i

) ≤ C,

(3.13)
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Table 1: Polynomial, normalized polynomial, and radial basis function (Gaussian) kernels [24].

Kernel function Type of classifier
K(xi, xj) = (xT

i xj + 1)ρ Complete polynomial of degree ρ

K(xi, xj) = (xT
i xj + 1)ρ/

√
(xT

i xj) − (yT
i yj) Normalized polynomial kernel of degree ρ

K(xi, xj) = exp[‖xi − xj‖2/2σ2] Gaussian (RBF) kernel with parameter σ which
controls the half-width of the curve fitting peak

where xi only appears inside an inner product. To get a potentially better representation of
the data in nonlinear case, the data points can be mapped into an alternative space, generally
called feature space (a pre-Hilbert or inner product space) through a replacement:

xi · xj −→ ϕ(xi) · ϕ
(
xj

)
. (3.14)

The functional form of the mapping ϕ(xi) does not need to be known since it is implicitly
defined by the choice of kernel: k(xi, xj) = ϕ(xi)·ϕ(xj) or inner product in Hilbert space. With
a suitable choice of kernel, the data can become separable in feature space while the original
input space is still nonlinear. Thus, whereas data for n-parity or the two-spiral problem is non-
separable by a hyperplane in input space, it can be separated in the feature space by the pro-
per kernels [54–59]. Table 1 gives some of the common kernels.

Then, the nonlinear regression estimate takes the following form:

yi =
N∑

i=1

N∑

j=1

(
αi − α′

i

)
ϕ(xi)Tϕ

(
xj

)
+ b =

N∑

i=1

N∑

j=1

(
αi − α′

i

)
K
(
xi, xj

)
+ b, (3.15)

where b is computed using the fact that (3.5) becomes an equality with ξi = 0 if 0 < αi < C
and relation (3.6) becomes an equality with ξ′i = 0 if 0 < α′

i < C [60, 61].

3.4. General Regression Neural Network

General regression neural network has been proposed by [62]. GRNN is a type of supervised
network and also trains quickly on sparse data sets, rather than categorising it. GRNN appli-
cations are able to produce continuous valued outputs. GRNN is a three-layer network with
one hidden neuron for each training pattern.

GRNN is a memory-based network that provides estimates of continuous variables
and converges to the underlying regression surface. GRNN is based on the estimation of pro-
bability density functions, having a feature of fast training times, and can model nonlinear
functions. GRNN is a one-pass learning algorithm with a highly parallel structure. GRNN
algorithm provides smooth transitions from one observed value to another even with sparse
data in a multidimensional measurement space. The algorithmic form can be used for any
regression problem in which an assumption of linearity is not justified. GRNN can be thought
as a normalised radial basis functions (RBF) network in which there is a hidden unit centred
at every training case. These RBF units are usually probability density functions such as the
Gaussian. The only weights that need to be learned are the widths of the RBF units. These
widths are called “smoothing parameters.” The main drawback of GRNN is that it suffers
badly from the curse of dimensionality. GRNN cannot ignore irrelevant inputs without major
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modifications to the basic algorithm. So, GRNN is not likely to be the top choice if there are
more than 5 or 6 nonredundant inputs. The regression of a dependent variable, Y , on an
independent variable, X, is the computation of the most probable value of Y for each value of
X based on a finite number of possibly noisy measurements of X and the associated values of
Y . The variables X and Y are usually vectors. In order to implement system identification, it is
usually necessary to assume some functional form. In the case of linear regression, for exam-
ple, the output Y is assumed to be a linear function of the input, and the unknown parameters,
ai, are linear coefficients.

The method does not need to assume a specific functional form. A Euclidean distance
(D2

i ) is estimated between an input vector and the weights, which are then rescaled by the
spreading factor. The radial basis output is then the exponential of the negatively weighted
distance. The GRNN equation can be written as:

D2
i =

(
X −Xi

)T(
X −Xi

)
,

Y (X) =
∑n

i=1Yi exp
(−D2

i /2σ2)
∑n

i=1 exp
(−D2

i /2σ2
) ,

(3.16)

where σ is the smoothing factor (SF).
The estimate Y (X) can be visualised as a weighted average of all of the observed val-

ues, Yi, where each observed value is weighted exponentially according to its Euclidian
distance from X. Y (X) is simply the sum of Gaussian distributions centred at each training
sample. However, the sum is not limited to being Gaussian. In this theory, the optimum
smoothing factor is determined after several runs according to the mean squared error of
the estimate, which must be kept at minimum. This process is referred to as the training of
the network. If a number of iterations pass with no improvement in the mean squared error,
then smoothing factor is determined as the optimum one for that data set. While applying
the network to a new set of data, increasing the smoothing factor would result in decreasing
the range of output values [63]. In this network, there are no training parameters such as the
learning rate, momentum, optimum number of neurons in hidden layer and learning algo-
rithms as in BPNN, but there is a smoothing factor that its optimum is gained as try and error.
The smoothing factor must be greater than 0 and can usually range from 0.1 to 1 with good
results. The number of neurons in the input layer is the number of inputs in the proposed
problem, and the number of neurons in the output layer corresponds to the number of out-
puts. Because GRNN networks evaluate each output independently of the other outputs,
GRNN networks may be more accurate than BPNN when there are multiple outputs. GRNN
works by measuring how far given samples pattern is from patterns in the training set. The
output that is predicted by the network is a proportional amount of all the output in the train-
ing set. The proportion is based upon how far the new pattern is from the given patterns in
the training set.

4. Implementation

4.1. ICA Implementation and Determination of the Most Relevant Well Logs

As it was mentioned, ICA is one of the suitable methods for extracting the most important
and relevant features of any particular dataset. Hence, in this paper, we used this method for
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Table 2: Correlation matrix of the well logs and permeability after applying ICA.

X Y Z GR DT RHOB NPHI PEF MSFL LLD LLS KH
X 1.000
Y −.999 1.000
Z .655 −.655 1.000
GR .419 −.216 .490 1.000
DT .525 .026 .447 .488 1.000
RHOB .611 .010 .597 .582 .915 1.000
NPHI .710 .107 .440 .567 .746 .615 1.000
PEF .125 .619 .161 .210 .150 .176 .009 1.000
MSFL .772 −.070 .564 .459 .627 .401 −.318 −.236 1.000
LLD .607 −.510 .506 .541 .553 .469 −.101 .278 .574 1.000
LLS .577 −.678 .523 .602 .539 .648 −.203 .215 .635 .767 1.000
KH .607 .052 .676 .689 .829 .534 .836 .045 .642 .720 .603 1.000

Table 3: Rotated component matrix of the parameters.

Parameters Component 1 Component 2
X .971 −.065
Y −.065 .865
Z .768 .129
GR .653 −.018
DT .808 .100
RHOB .630 −.357
NPHI .826 .092
PEF .094 .802
MSFL .677 −.218
LLD .779 −.014
LLS .608 −.132
KH .816 .074

identification of those well logs that have a good relationship with permeability. Table 2 gives
the correlation matrix of the well logs and permeability after applying ICA in the first step.

As it is seen in Table 2, most of the well logs have a good relationship with permeability
except Y and PEF. Hence, it can be concluded that photoelectric factor log (PEF) and Y coor-
dinate should be ignored as the inputs because of the weak relationship with permeability.
For further analysis, rotated component matrix was determined showing the number of com-
ponents of the dataset. This matrix is show in Table 3.

Regarding Table 3, it can be observed that the entire well logs and their coordinate are
divided into two different components. In the first component, eight parameters including X
and Z coordinates, GR, DT, RHOB, NPHI, MSFL, LLD, and LLS well logs and permeability
were categorized. The second component is consisted of Y coordinate and PEF well log. This
table clearly shows that component no. 1 is the one which can be used for prediction of per-
meability. Figure 4 is another representation showing the obtained results of Table 3 in a
graphical form.

As it is also shown in Figure 4, Y and PEF are not associated with the others in a same
side of the cubic. Regarding the obtained results of ICA, five well logs including GR, DT,
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Figure 4: A graphical form of representation for showing the relationship of well logs and permeability.

RHOB, NPHI, MSFL, LLD, and LLS and two coordinates, X and Z, are taken into account for
prediction of permeability using the networks.

4.2. Implementation of SVM

Similar to other multivariate statistical models, the performance of SVM for regression
depends on the combination of several parameters. They are capacity parameter C, ε (epsi-
lon) of ε-insensitive loss function, and the kernel type K and its corresponding parameters. C
is a regularization parameter that controls the tradeoff between maximizing the margin and
minimizing the training error. If C is too small, then insufficient stress will be placed on fitting
the training data. If C is too large, then the algorithm will overfit the training data. But, Wang
et al. [64] indicated that prediction error was scarcely influenced by C. In order to make the
learning process stable, a large value should be set up for C (e.g., C = 100).

The optimal value for ε depends on the type of noise present in the data, which is
usually unknown. Even if enough knowledge of the noise is available to select an optimal
value for ε, there is the practical consideration of the number of resulting support vectors.
ε-insensitivity prevents the entire training set meeting boundary conditions and so allows
for the possibility of sparsity in the dual formulations solution. So, choosing the appropriate
value of ε is critical from theory.

Since in this study the nonlinear SVM is applied, it would be necessary to select a sui-
table kernel function. The obtained results of previous published researches [64, 65] indicated
that the Gaussian radial basis function has a superior efficiency than other kernel functions.
As it is seen in Table 1, the form of the Gaussian kernel is as follow:

K
(
xi, xj

)
= e−|xi−xj |2/2σ2

, (4.1)

where σ (sigma) is a constant parameter of the kernel. This parameter can control the ampli-
tude of the Gaussian function and the generalization ability of SVM. We have to optimize σ
and find the optimal one.

In order to find the optimum values of two parameters (σ and ε) and prohibit the over-
fitting of the model, the data set was separated into a training set of 125 compounds and a test
set of 50 compounds randomly and the leave-one-out cross-validation of the whole training
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set was performed. The leave-one-out (LOO) procedure consists of removing one example
from the training set, constructing the decision function on the basis only of the remain-
ing training data and then testing on the removed example [50]. In this fashion, one tests
all examples of the training data and measures the fraction of errors over the total number
of training examples. In this process, root mean square error (RMS) is commonly used as an
error function to evaluate the quality of model.

Detailed process of selecting the parameters and the effects of every parameter on
generalization performance of the corresponding model are shown in Figures 5 and 6. To
obtain the optimal value of σ, the SVM with different σs was trained, with the σ varying from
0.01 to 0.3, every 0.01. We calculated the RMS on different σs, according to the generalization
ability of the model based on the LOO cross-validation for the training set. The curve of RMS
versus the sigma was shown in Figure 5. In this regard, the optimal σ was found as 0.16.

In order to find an optimal ε, the RMS on different εs was calculated. The curve of the
RMS versus the epsilon was shown in Figure 6. From Figure 6, the optimal ε was found as
0.08.
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From the above discussion, the σ, ε, and C were fixed to 0.16, 0.08, and 100, respec-
tively, when the support vector number of the SVM model was 41. Figure 7 is a schematic
diagram showing the construction of the SVM.

4.3. Implementation of GRNN

In order to check the accuracy of the SVM in prediction of permeability, obtained results
of SVM are compared with those of the general regression neural network (GRNN). Cons-
tructed GRNN of this study was a multilayer neural network with one hidden layer of
radial basis function consisting 49 neurons and an output layer containing only one neuron.
Multiple layers of neurons with nonlinear transfer functions allow the network to learn
nonlinear and linear relationships between the input and output vectors.

In addition, the performance of GRNN depends mostly on the choice of smooth factor
(SF) which is in a sense equivalent to the choice of the ANN structure. For managing this
issue, LOO cross-validation technique has been used and optimal SF was found as 0.23.
Figure 8 shows the obtained results of this study.

5. Results

5.1. Prediction of Permeability Using SVM

After building an optimum SVM based on the training dataset, performance of constructed
SVM was evaluated in testing process. Figure 9 is a demonstration showing the ability of SVM
in prediction of permeability.

As it is illustrated in Figure 9, there is an acceptable agreement (correlation coefficient
of 0.97) between the predicted and measured permeability. In fact, the SVM is an appropriate
method for prediction of permeability. Nonetheless, the performance of this method should
be compared with another suitable method for highlighting the strength of SVM.
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Table 4: Comparing the performance of SVM and BPNN methods in the training and testing process.

Model R (train) R (test) RMSE (train) RMSE (test)
GRNN 0.998 0.94 0.16 0.35
SVM 0.998 0.96 0. 16 0.28

5.2. Prediction of Permeability Using GRNN

As it was already mentioned, to check the accuracy of the SVM in the prediction of per-
meability, obtained results of SVM are compared with those of the general regression neural
network (GRNN). Figure 10 shows the obtained results of prediction via GRNN.

As it is shown in Figure 10, GRNN is a good network for prediction of permeability.
However, it is not as strong as the SVM in prediction process. Hence, it can be considered as
the second alternative after the SVM for prediction of permeability.

6. Discussion

In this research work, we have demonstrated one of the applications of artificial intelligence
techniques in forecasting the hydrocarbon reservoirs permeability. Firstly, independent com-
ponent analysis (ICA) has been used for determination of relationship between the well log
data and permeability. In that section, we found that Y and PEF are not suitable inputs for the
networks because of the weak relationship with the permeability (Figure 4). As a matter of
fact, GR, DT, RHOB, NPHI, MSFL, LLD, and LLS well logs along with X and Z coordinates
were used for the training of the networks. In this regard, we developed two Matlab software
codes (i.e., M.file) and interrogated the performance of SVM with the best performed work
of the GRNN method. When comparing SVM with this model (Table 4), it presented overall
better efficiency over the GRNN in terms of RMS error in both training and testing process.

According to this table, the RMS error of the SVM is smaller than the GRNN. In terms
of running time, the SVM consumes a considerably less time (3 second) for the prediction
compared with that of the GRNN (6 second). All of these expressions can introduce the SVM
as a robust algorithm for the prediction of permeability.
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Figure 9: Relationship between the measured and predicted permeability obtained by SVM (a); estimation
capability of SVM (b).
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Figure 10: Relationship between the measured and predicted permeability obtained by GRNN (a); estima-
tion capability of GRNN (b).
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7. Conclusions

Support vector machine (SVM) is a novel machine learning methodology based on statistical
learning theory (SLT), which has considerable features including the fact that requirement on
kernel and nature of the optimization problem results in a uniquely global optimum, high
generalization performance, and prevention from converging to a local optimal solution. In
this research work, we have shown the application of SVM compared with GRNN model for
prediction of permeability of three gas wells in the Kangan and Dalan reservoir of Southern
Pars field, based on the digital well log data. Although both methods are data-driven models,
it has been found that SVM makes the running time considerably faster with the higher accu-
racy. In terms of accuracy, the SVM technique resulted in an RMS error reduction relative to
that of the GRNN model (Table 4). Regarding the running time, SVM requires a small frac-
tion of the computational time used by GRNN, an important factor to choose an appropriate
and high-performance data-driven model.

For the future works, we are going to test the trained SVM for predicting the per-
meability of the other reservoirs in the south of Iran. Undoubtedly, receiving meaningful
results from other reservoirs using well log data can further prove the ability of SVM in pre-
diction of petrophysical parameters including permeability.
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