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Estimating power spectrum density (PSD) is essential in signal processing. This short paper gives
a theorem to represent a smoothed PSD estimate with the Cauchy integral. It may be used for the
approximation of the smoothed PSD estimate.

1. Introduction

Estimating power spectrum density (PSD) of signals plays a role in signal processing. It has
applications to many issues in engineering [1–21]. Examples include those in biomedical
signal processing, see, for example, [1–3, 6, 12, 13]. Smoothing an estimate of PSD is com-
monly utilized for the purpose of reducing the estimate variance, see, for example, [22–29].
By smoothing a PSD estimate, one means that a smoothed estimate of PSD of a signal is the
PSD estimate convoluted by a smoother function [30, 31]. This short paper aims at providing
a representation of a smoothed PSD estimate based on the Cauchy’s integral.

2. Cauchy Representation of Smoothed PSD Estimate

Let x(t) be a signal for −∞ < t < ∞. Let Sxx(ω) be its PSD, whereω = 2πf is radian frequency
and f is frequency. Then, by using the Fourier transform, Sxx(ω) is computed by

Sxx(ω) =
∣
∣
∣
∣

∫∞

−∞
x(t)e−jωt dt

∣
∣
∣
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2

, j =
√
−1. (2.1)



2 Mathematical Problems in Engineering

In practical terms, if x(t) is a random signal, Sxx(ω)may never be achieved exactly because a
PSD is digitally computed only in a finite interval, say, (T1, T2) for T1 /= T2. Therefore, one can
only attain an estimate of Sxx(ω).

Denote by Ŝxx(ω) an estimate of Sxx(ω). Then,

Ŝxx(ω) =

∣
∣
∣
∣
∣

∫T2

T1

x(t)e−jωt dt
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2

. (2.2)

Without generality losing, we assume T1 = 0 and T2 = T . Thus, the above becomes

Ŝxx(ω) =
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x(t)e−jωt dt
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. (2.3)

In the discrete case, one has the following for a discrete signal x(n) [21–23]:

Ŝxx(ω) =

∣
∣
∣
∣
∣
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x(n)e−jωn
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. (2.4)

Because

∣
∣
∣
∣
∣

N+L−1∑

n=L

x(n)e−jωn
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for L/=M, (2.5)

Ŝxx(ω) is usually a random variable. One way of reducing the variance of Ŝxx(ω) is to smooth
Ŝxx(ω) by a smoother function denoted by G(ω). Denote by S̃xx(ω) the smoothed PSD esti-
mate. Let ∗ imply the operation of convolution. Then, S̃xx(ω) is given by

S̃xx(ω) = Ŝxx(ω) ∗G(ω). (2.6)

Assume that S̃xx(ω) is differentiable any time for −∞ < ω < ∞. Then, by using the
Taylor series at ω = ω0, Ŝxx(ω) is expressed by

Ŝxx(ω) =
∞∑

l=0

Ŝ
(l)
xx(ω0)
l!

(ω −ω0)n. (2.7)

Therefore,

S̃xx(ω) =
∞∑

l=0

Ŝ
(l)
xx(ω0)
l!

(ω −ω0)n ∗G(ω). (2.8)
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Let ω −ω0 = ω1. Then,

(ω −ω0)n ∗G(ω) = ωn
1 ∗G(ω1 +ω0). (2.9)

Thus, we have a theorem to represent S̃xx(ω) based on the Cauchy integral.

Theorem 2.1. Suppose Ŝxx(ω) is differentiable any time at ω0. Then, the smoothed PSD, that is,
S̃xx(ω), may be expressed by

S̃xx(ω) =
∞∑

l=0

Ŝ
(l)
xx(ω0)
l!

ωl
1 ∗G(ω1 +ω0) =

∞∑

l=0

Ŝ
(l)
xx(ω0)

∫ω1

0

(ω1 −ωτ)l

l!
G(ωτ +ω0)dωτ . (2.10)

Proof. The Cauchy integral in terms of G(ωτ +ω0) is in the form

∫ω1

0

(ω1 −ωτ)l

l!
G(ωτ +ω0)dωτ =

∫ωτ

0
dωτ · · ·

∫ωτ

0
G(ωτ +ω0)dωτ

︸ ︷︷ ︸

l+1

.
(2.11)

That may be taken as the convolution between ωl
1/l! and G(ω1 +ω0). Thus,

ωl
1

l!
∗G(ω1 +ω0) =

∫ω1

0

(ω1 −ωτ)l

l!
G(ωτ +ω0)dωτ . (2.12)

Therefore, (2.10) holds. This completes the proof.

The present theorem is a theoretic representation of a smoothed PSD estimate. It may
yet be a method to be used in the approximation of a smoothed PSD estimate. As a matter of
fact, we may approximate S̃xx(ω) by a finite series given by

S̃xx(ω) ≈
L∑

l=0

Ŝ
(l)
xx(ω0)

∫ω1

0

(ω1 −ωτ)l

l!
G(ωτ +ω0)dωτ . (2.13)

From the above theorem, we have the following corollary.

Corollary 2.2. Suppose Ŝxx(ω) is differentiable any time at ω = 0. Then, S̃xx(ω) may be expressed
by

S̃xx(ω) =
∞∑

l=0

Ŝ
(l)
xx(0)
l!

ωl ∗G(ω) =
∞∑

l=0

Ŝ
(l)
xx(0)

∫ω

0

(ω −ωτ)l

l!
G(ωτ)dωτ . (2.14)

The proof is omitted since it is straightforward when one takes into account the proof of theorem.
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3. Conclusions

We have presented a theorem with respect to a representation of a smoothed PSD estimate of
signals based on the Cauchy integral. The theorem constructively implies that the design of
a smoother function G(ω)may consider the approximation described by the Cauchy integral
with the finite Taylor series (2.13). In addition, the smoother function G(ω) can also be taken
as a solution to the integral equation (2.14), which is worth being investigated in the future.
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