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We study the effect of variable viscosity on the flow and vortex instability for non-Darcy mixed
convection boundary layer flow on a nonisothermal horizontal plat surface in a saturated porous
medium. The variation of viscosity is expressed as an exponential function of temperature. The
analysis of the disturbance flow is based on linear stability theory. The base flow equations and
the resulting eigenvalue problem are solved using finite difference schemes. It is found that the
variable viscosity effect enhances the heat transfer rate and destabilizes the flow for liquid heating,
while the opposite trend is true for gas heating.

1. Introduction

The study of convective heat transfer from surfaces embedded in porous media has
received considerable attention in the literature. The interest for such studies is motivated
by several thermal engineering applications, such as storage of radioactive nuclear waste
materials transfer, separation processes in chemical industries, filtration, transpiration
cooling, transport processes in aquifers, ground water pollution, and thermal insulation. The
presence of a buoyancy force component in the direction normal to the surface leads to vortex
instability of the flow. The problem of the vortex mode of instability in mixed or natural
convection flow over a horizontal or an inclined heated plate in a saturated porous medium
has recently received considerable attention (see [1–10]). These studies used either Darcy
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model [1–6], or non-Darcy model [7–10]. A comprehensive literature survey on this subject
can be found in the recent book by Nield and Bejan [11].

All the above studies dealt with constant viscosity. The fundamental analysis of
convection through porous media with temperature-dependent viscosity is driven by several
contemporary engineering applications from cooling of electronic devices to porous journal
bearings and is important for studying the variations in constitutive property. The effect of
variable viscosity for convective heat transfer through porous media is studied by several
investigators [12–20]. The effect of variation of viscosity to study the instability of flow and
temperature fields is discussed by Kassoy and Zebib [12] and Gray et al. [13]. Ling and Dybbs
[14] presented a very interesting theoretical investigation of temperature-dependent fluid
viscosity influence on the forced convection flow through a semi-infinite porous medium
bounded by an isothermal flat plate. Lai and Kulacki [15] considered the variable viscosity
effect for mixed convection flow along a vertical plate embedded in saturated porous
medium. The effect of variable viscosity on combined heat and mass transfer in mixed
convection about a wedge embedded in a saturated porous media for the case of uniform
heat mass flux (UHF/UMF) is analyzed by Hassanien et al. [17]. The effect of variable
viscosity on non-Darcy, free or mixed convection flow on a horizontal surface in a saturated
porous medium, is studied by Kumari [16]. The effect of the temperature-dependent viscosity
on mixed convection boundary layer assisting and opposing flows over a vertical surface
embedded in a porous medium is investigated by Chin et al. [18]. Seddeek [19] studied the
effects of magnetic field and variable viscosity on forced non-Darcy flow about a flat plate
with variable wall temperature in porous media in the presence of suction and blowing. In
[17], the linear variation of fluid viscosity is assumed while, in [15] and [16], the viscosity of
the fluid is assumed to vary as an inverse linear function of temperature. In [20], the variation
of viscosity with temperature is represented by an exponential function.

The effect of variable viscosity on vortex instability of a horizontal free convection
boundary layer flow in a saturated porous medium for an isothermal surface was studied by
Jang and Leu [20]. However, the variable viscosity behavior on the flow and vortex instability
of non-Darcy mixed convection boundary layer flow over a nonisothermal horizontal plate
dose not seem to have been investigated. This motivated the present investigation.

The present study examines in details the effects of temperature-dependent viscosity
on the flow and vortex instability of non-Darcy mixed convection boundary layer flow
adjacent to a heated horizontal surface embedded in a porous medium with variable wall
temperature. The variation of viscosity with temperature is represented by an exponential
function, which is more accurate than a linear function for large temperature differences.
The transformed boundary layer equations, which are given by using nonsimilar solution
approach, are solved by means of a finite difference method. The analysis of the disturbance
flow is based on linear stability theory. The disturbance quantities are assumed to be in the
form of a stationary vortex roll that is periodic in the spanwise direction, with its amplitude
function depending primarily on the normal coordinate and weakly on the streamwise
coordinate. The resulting eigenvalue problems are solved by using a finite difference scheme.

2. Analysis

2.1. The Main Flow

We considered a semi-infinite nonisothermal horizontal surface (Tw) embedded in a porous
medium (T∞), where x represents the distance along the plate from its leading edge, and y
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the distance normal to the surface. The wall temperature is assumed to be a power function
of x, that is, Tw = T∞ + Axλ, where A is a constant, and λ is the parameter representing the
variation of the wall temperature. In order to study transport through high porosity media,
the original Darcy model is improved by including inertia. For the mathematical analysis of
the problem, we assume that (i) local thermal equilibrium exists between the fluid and the
solid phase, (ii) the physical properties are considered to be constant, except for the viscosity
μ and the density ρ in the buoyancy force, (iii) we consider the non-Darcy model given by
Ergun [21], and (iv) the Boussinesq approximation is valid. With these assumptions, the
governing equations are given by

∂u

∂x
+
∂v

∂y
= 0, (2.1)

u +
K∗

ν
u2 = −K

μ

∂P

∂x
, (2.2)

v +
K∗

ν
v2 = −K

μ

(
∂P

∂y
+ ρg

)
, (2.3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
, (2.4)

where ρ = ρ∞[1 − β(T − T∞)] is the fluid density, u and v are the velocities in the x and y
directions, respectively, P is the pressure, T is the temperature, μ is the dynamic viscosity, K
is the permeability of the porous medium, g is the gravitational acceleration, β is the thermal
expansion coefficient of the fluid, and α represents the equivalent thermal diffusivity. Note
that the second term on the left-hand side of (2.2) and (2.3) represents the inertia force, where
K∗ is the inertia coefficient in Ergun model. As K∗ = 0, (2.2) and (2.3) reduce to Darcy model.

The viscosity μ of the fluid is assumed to vary with temperature according to an
exponential function

μ = μ∞eA1((T−T∞)/(Tw−T∞)), (2.5)

where μ∞ is the absolute viscosity at ambient temperature, and A1 is constant adopted from
the least square fitting for a particular fluid. Formula (2.5) is a generalization of that used in
[20], where the wall temperature is taken to be constant.

The pressure terms appearing in (2.2) and (2.3) can be eliminated through cross-
differentiation. The boundary layer assumption yields ∂/∂x � ∂/∂y and v � u. With ψ
being a stream function such that u = ∂ψ/∂y and v = −∂ψ/∂x, the equations (2.1)–(2.4)
become

(
μ + 2ρ∞K∗ ∂ψ

∂y

)
∂2ψ

∂y2
+ u

∂μ

∂y
= −Kρ∞gβ∂T

∂x
, (2.6)

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= α

∂2T

∂y2
. (2.7)
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The boundary conditions are defined as follows:

v(x, 0) = −∂ψ
∂x

= 0, T(x, 0) = Tw = T∞ +Axλ,

u(x,∞) = Bxm T(x,∞) = T∞.

(2.8)

Here m = 0 for assisting flow over a horizontal flat plate at zero incident and m = 1 for
stagnation point flow about a horizontal surface.

On applying the following transformations:

η
(
x, y

)
=
y

x
Pe1/2

x , f
(
ξ, η

)
=
ψ
(
x, y

)
αPe1/2

x

,

θ
(
ξ, η

)
=

T − T∞
Tw − T∞ , ξ =

(x
d

)(2λ−3m−1)/2
,

(2.9)

into (2.5)–(2.7) lead to the following:

μ

μ∞
= eA1((T−T∞)/(Tw−T∞)) =

(
μ∗)θ, (2.10)

(
1 + 2ErPedξ2m/(2λ−3m−1)(μ∗)−θf ′

)
f ′′

= −(lnμ∗)f ′θ′ −Mξ
(
μ∗)−θ(λθ +

m − 1
2

ηθ′ +
2λ − 3m − 1

2
ξ
∂θ

∂ξ

)
,

(2.11)

θ′′ =
(
λθ +

2λ − 3m − 1
2

ξ
∂θ

∂ξ

)
f ′ −

(
m + 1

2
f +

2λ − 3m − 1
2

ξ
∂f

∂ξ

)
θ′, (2.12)

where μ∗ = μw/μ∞ = eA1 is the wall to ambient viscosity ratio parameter, Pex = u∞x/α is the
local Peclet number, M = Rad/Pe3/2

d is the mixed convection parameter, Ped = u∞d/α is the
Peclet number based on the pore diameter, and Er = K∗α/dν∞ is the Ergun number, in which
the dynamic viscosity is evaluated at T∞. The transformed boundary conditions are

f(ξ, 0) = 0, θ(ξ, 0) = 1,

f ′(ξ,∞) = 1, θ(ξ,∞) = 0.
(2.13)

The physical quantities of major interest are the velocity components u and v, and the local
nusselt number

u
(
x, y

)
= u∞f ′(ξ, η),

v
(
x, y

)
= −αPe1/2

x

2x

(
(m + 1)f

(
ξ, η

)
+ (m − 1)ηf ′ + (2λ − 3m − 1)ξ

∂f
(
ξ, η

)
∂ξ

)
,

Nux

Pe1/2
x

= −θ′(ξ, 0).

(2.14)
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2.2. The Disturbance Flow

In the usual manner for linear stability analysis, the velocities, pressure, temperature, and
viscosity are assumed to be the sum of mean and fluctuating components, here denoted as
subscripts 0 and 1 quantities, respectively,

u
(
x, y, z, t

)
= u0

(
x, y

)
+ u1

(
x, y, z, t

)
,

v
(
x, y, z, t

)
= v0

(
x, y

)
+ v1

(
x, y, z, t

)
,

w
(
x, y, z, t

)
= w1

(
x, y, z, t

)
,

P
(
x, y, z, t

)
= P0

(
x, y

)
+ P1

(
x, y, z, t

)
,

T
(
x, y, z, t

)
= T0

(
x, y

)
+ T1

(
x, y, z, t

)
,

μ(T) = μ0(T0) + μ1(T1).

(2.15)

After substituting (2.15) into the governing equations for the three dimensional convective
flow in a porous medium, the base flow quantities are subtracted, with the terms higher than
first order in disturbance quantities being neglected. Then we get the following disturbance
equations:

∂u1

∂x
+
∂v1

∂y
+
∂w1

∂z
= 0, (2.16)

μ0u1 + μ1u0 + 2K∗ρ∞u0u1 = −K∂P1

∂x
, (2.17)

μ0v1 + μ1v0 + 2K∗ρ∞v0v1 = −K
(
∂P1

∂y
− ρ∞gβT1

)
, (2.18)

μ0w1 = −K∂P1

∂z
, (2.19)

u0
∂T1

∂x
+ v0

∂T1

∂y
+ u1

∂T0

∂x
+ v1

∂T0

∂y
= α

[
∂2T1

∂x2
+
∂2T1

∂y2
+
∂2T1

∂z2

]
. (2.20)

Following the method of order of magnitude analysis described in detail by Hsu and Cheng
[1], the terms ∂u1/∂x and ∂2T1/∂x

2 in (2.16) and (2.20) can be neglected. The omission of
∂u1/∂x in (2.16) implies the existence of a disturbance stream function Ψ1, such as

w1 =
∂Ψ1

∂y
, v1 = −∂Ψ1

∂z
. (2.21)
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Eliminating P1 from (2.17)–(2.19) with the aid of (2.21) leads to

u0
∂μ1

∂z
+
(
μ0 + 2K∗ρ∞u0

)∂u1

∂z
= μ0

∂2Ψ1

∂x∂y
+
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∂y

∂μ0

∂x
,

−(μ0 + 2K∗ρ∞v0
)∂2Ψ1

∂z2
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∂μ1

∂z
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∂2Ψ1

∂y2
+
∂μ0

∂y

∂Ψ1
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+Kρ∞gβ

∂T1
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,

u0
∂T1
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∂T1

∂y
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∂T0

∂x
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∂z

∂T0

∂y
= α

(
∂2T1

∂y2
+
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)
.

(2.22)

As in Hsu and Cheng [1], we assume that the three dimensionless disturbances for neutral
stability are of the form

(Ψ1, u1, T1) =
[
Ψ
(
x, y

)
, u

(
x, y

)
, T

(
x, y

)]
eiaz, (2.23)

where a is the spanwise periodic wave number. Substituting (2.23) into (2.22) yields

u =

(
1

1 + (2K∗/ν∞)
(
μ∗)−θu0

)[
1
ia

(
∂2Ψ
∂x∂y

+
(
lnμ∗)∂Ψ

∂y

∂θ

∂x

)
− (

lnμ∗) u0T

Tw − T∞

]
,

∂2Ψ
∂y2

− a2
(

1 +
2K∗

ν∞

(
μ∗)−θv0

)
Ψ − iav0

(
lnμ∗) T

Tw − T∞ +
(
lnμ∗)∂θ

∂y

∂Ψ
∂y

= − iaKρ∞gβ
μ∞

(
μ∗)−θT,

u0
∂T

∂x
+ v0

∂T

∂y
+ u

∂T0

∂x
− iaΨ∂T0

∂y
= α

(
∂2T

∂y2
− a2T

)
.

(2.24)

Equation (2.24) is solved based on the local similarity approximation (see [22]), wherein
the disturbances are assumed to have weak dependence in the streamwise direction (i.e.,
∂/∂x � ∂/∂η). To facilitate the analysis, the following transformations are introduced to
nondimensionalize the preceding equations

k =
ax

Pe1/2
x

, F
(
η
)
=

Ψ

iαPe1/2
x

, Θ
(
η
)
=

T

Tw − T∞ .
(2.25)
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Figure 1: The local Nusselt number as a function of M for selected values of μ∗ and n for the case m = 0.
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Figure 3: Neutral stability curves for selected values of μ∗ for the case m = 0.

Introducing (2.25) into (2.24) gives

F ′′ +
(
lnμ∗)θ′F ′ − k2

[
1 − 2ErPedξ2m/(2λ−3m−1)(μ∗)−θ

Pe1/2
x

H1

]
F +

k
(
lnμ∗)

Pe1/2
x

H1Θ

= −MkPe1/2
x ξ

(
μ∗)−θΘ,

(2.26)

Θ′′ +H3Θ′ −
[
k2 + λf ′ −

(
lnμ∗)f ′H2

1 + 2ErPedξ2m/(2λ−3m−1)
(
μ∗)−θf ′

]
Θ

− H2
[
((m − 1)/2)ηF ′′ +

(
m + lnμ∗H4

)
F ′]

kPe1/2
x

(
1 + 2ErPedξ2m/(2λ−3m−1)

(
μ∗)−θf ′

) = kPe1/2
x θ′F,

(2.27)

subject to the boundary conditions

F(0) = F(∞) = Θ(0) = Θ(∞) = 0, (2.28)
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Figure 4: Neutral stability curves for selected values of M for the case m = 0.

where the coefficients H1 −H4 are given by

H1 =
m + 1

2
f +

m − 1
2

ηf ′ +
2λ − 3m − 1

2
ξ
∂f

∂ξ
,

H2 = λθ +
m − 1

2
ηθ′ +

2λ − 3m − 1
2

ξ
∂θ

∂ξ
,

H3 =
m + 1

2
f +

2λ − 3m − 1
2

ξ
∂f

∂ξ
,

H4 =
m − 1

2
ηθ′ +

2λ − 3m − 1
2

ξ
∂θ

∂ξ
,

(2.29)

Equations (2.26) and (2.27) constitute a second-order system of linear ordinary differential
equations for the disturbance amplitude distributions F(η) and Θ(η). For fixed values of
ξ, λ, m,M, Er, Ped, k, and μ∗, the solution F and Θ is an eigenfunction for the eigenvalue
Pex. We note that (2.26) and (2.27) under boundary conditions (2.28) for μ∗ = 1, Er = 0, ξ = 1,
and ∂/∂ξ = 0 are reduced to those given in Hsu and Cheng [1], where the Darcy model with
constant viscosity is considered.

3. Numerical Scheme

In this section, we compute the approximate value of Pex for (2.26) and (2.27) with the
boundary conditions (2.28). An implicit finite difference method is used to solve first the
base flow (2.11) and (2.12) with the boundary conditions (2.13), and the results are stored
for a fixed step size h, which is small enough to predict accurate linear interpolation between
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mesh point. The domain is 0 ≤ η ≤ η∞, where η∞ is the edge of the boundary layer of the
basic flow. For a positive integer N, let h = η∞/N and ηi = ih, i = 0, 1, . . . ,N, the problem
is discretized with standard centered finite differences of order 2, following Usmani [23].
Solving eigenvalue problem is achieved by using the subroutine GVLRG of the IMSL library
Inc., see [24].

4. Results and Discussion

Numerical results for the local Nusselt number, neutral stability curves, the critical Peclet,
and associate wave numbers at the onset of vortex instability are presented for a range of
wall to ambient viscosity ratio parameter μ∗ from 0.1 to 10. As the temperature is increased,
the gas viscosity increases, while the liquid viscosity decreases [20]. Therefore, for a heated
wall, values of μ∗ > 1 correspond to the case of gas heating, and values of μ∗ < 1 corresponds
to the case of liquid heating. The effect of the nonuniform temperature profile on the wall is
also studied, and corresponds to variations of the parameter λ. Because of lack of space, we
shall only outline the numerical results of the case m = 0 (assisting flow over a horizontal flat
plate at zero incident) and results of the case m = 1 (stagnation point flow about a horizontal
surface) can be omitted.

The local Nusselt number as functions of M and ξ for various values of μ∗, n, and Er
are shown, respectively, in Figures 1 and 2. It is seen that higher Nusselt number occurs at
higher values of M, n, ξ, and lower values of Er, μ∗.

Figures 3, 4, and 5, respectively, show the neutral stability curves, in terms of the Peclet
number Pex and the dimensionless wave number k for selected values of μ∗, M, and ξ. It is
observed that, as μ∗ increases, the neutral stability curves shift to higher Peclet number, while
as ξ and M increase, the neutral stability curves shift to lower Peclet number Pex.



Mathematical Problems in Engineering 11

0.1 1 10

M

Ped = 1, 10

μ∗ = 0.5
μ∗ = 1
μ∗ = 5

n = 0.5, ξ = 1, Er = 0.1

1

10

100

1000

Pe
∗ x

Figure 6: Critical Peclet numbers as a function of M for selected values of Ped and μ∗ for the case m = 0.

0.01 0.1 1 10

M

0.5

1

1.5

2.5

2

k
∗

Ped = 1, 10

μ∗ = 0.5
μ∗ = 1
μ∗ = 5

n = 0.5, ξ = 1, Er = 0.1

Figure 7: Critical wave numbers as a function of M for the selected values of Ped and μ∗ for the case m = 0.



12 Mathematical Problems in Engineering

The critical Peclet number and wave number are plotted as a function ofM for selected
values of μ∗ and Ped in Figures 6 and 7. It can be seen that as the variable viscosity parameter
μ∗ increases, the critical Peclet number Pe∗x increases, while as Ped or M increases, the critical
Peclet number Pe∗x decreases. Further, higher critical wave number occurs at higher values of
M, and lower values of μ∗ or Ped.

Finally, we conclude that the variable viscosity effect enhances the heat transfer rate
and destabilizes the flow for liquid heating while the opposite tend is true for gas heating.

5. Conclusions

The non-Darcy mixed convection flow on a semi-infinite, nonisothermal horizontal plate
embedded in a porous medium with variable viscosity, is investigated. The non-Darcy model,
which includes the Ergun extension, is employed to describe the base and disturbed flows in
the porous medium. The variation of viscosity is expressed as an exponential function of
temperature. The effects of variable viscosity characterized by the parameter μ∗ on the flow
and vortex instability are examined. The surface temperature is assumed to vary as a power
function of the distance from the origin. The governing partial differential equations are
transformed to a nonsimilar form by introducing appropriate transformations and are solved
numerically using an implicit finite difference scheme. The resulting eigenvalue problem is
solved by using a finite difference scheme. The effects of all involved parameters on the local
Nusselt number, critical Peclet and associated wave number are presented. It is shown that,
for liquid heating, the variable viscosity effect enhances the heat transfer rate and destabilizes
flow, while, for gas heating, the opposite trend is true.

Nomenclature

a: Spanwise wave number
d: Mean particle diameter or pore diameter
f : Dimensionless base state stream function
F: Dimensionless disturbance stream function
g: Gravitational acceleration
i: Complex number
k: Dimensionless wave number
K: Permeability of porous medium
K∗: Inertial coefficient in Ergun Equation
Nux: Local Nusselt number
P : Pressure
Pex: Local Peclet number
Ped: Peclet number based on the pore diameter
T : Fluid temperature
u, v,w: Volume-averaged velocity in the x, y, and z directions
x, y, z: Axial, normal, and spanwise coordinates.
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Greek Symbols

α: Thermal diffusivity
β: Volumetric coefficient of thermal expansion
η: Pseudosimilarity variable
θ: Dimensionless base state temperature
Θ: Dimensionless disturbance temperature
μ: Dynamic viscosity of the fluid
ξ: Nonsimilarity parameter
λ: Exponent in the wall temperature variation
ν: Kinematic viscosity
μ∗: Wall to ambient viscosity ratio, μ∗ = μw/μ∞
ψ: Stream function

Subscripts

w: Conditions at the wall
∞: Conditions at the free stream
0: Basic undisturbed quantities
1: Disturbed quantities

Superscripts

∗: Critical value
′: Differentiation with respect to η.
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