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This paper is devoted to the problems of gain-scheduled control for a class of discrete-
time stochastic systems with infinite-distributed delays and missing measurements by utilizing
probability-dependent Lyapunov functional. The missing-measurement phenomenon is assumed
to occur in a random way, and the missing probability is time varying with securable upper and
lower bounds that can be measured in real time. The purpose is to design a static output feedback
controller with scheduled gains such that, for the admissible random missing measurements,
time delays, and noises, the closed-loop system is exponentially mean-square stable. At last, a
simulation example is exploited to illustrate the effectiveness of the proposed design procedures.

1. Introduction

Gain-scheduling is one of the most popular methods of controller design and has been
extensively applied in engineering, such as rotation speed control of engine, aircraft control
and process control. Over the past decades, the gain-scheduled control problem has been
extensively studied both from theoretical and practical viewpoint, see, for example, [1–6]. For
the controller design problems for parameter-varying systems, the gain-scheduling approach
has been found to be one of the most effective ones, whose main idea is to design controller
gains as functions of the scheduling parameters, which are supposed to be available in real
time and, therefore, have much less conservatism than the conventional ones.

On the other hand, instead of using the information of system states, static output
feedback (SOF) control directly makes use of system outputs to design controllers, which
has also attracted attentions of many researchers over the past two decades, see, for
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example, [7–12]. It is obvious that the structure of SOF controllers is simple and easy to
implement. However, to the best of the authors’ knowledge, there has been little research
attention on the control problem for discrete-time nonlinear stochastic systems with a
missing phenomenon based on the time-varying occurring probability by a gain-scheduling
method.

The missing-measurement phenomenon, due to various reasons such as probabilistic
network congestion and intermittent mechanical failures, usually occurs in many real-world
systems, which has attracted considerable attention during the past few years, see, for
example, [13–15]. The Bernoulli distribution has been successfully applied to model this
phenomenon, in which 0 is used to stand for an entire signal missing and 1 denotes the
intactness (i.e., there is no signal missing at all), and all sensors have the same missing
probability, which is simple and effective and has become very popular during the past years,
see, for example, [5, 13, 14, 16]. However, in the practical systems, the occurring probability of
the missing-measurement phenomenon might be time varying; consequently, a time-varying
Bernoulli distribution model is more suitable for such parameter-varying systems.

In another aspect, considering the signal propagation often distributed during a
certain time period, then, a new kind of delays, namely, distributed time-delays, has drawn
many researchers’ attention, see, for example, [17–22], but most of the existing works on
distributed delays have focused on continuous-time systems which are described either in
the form of finite or infinite integral. As we all know, when it comes to implementing the
control laws in a digital way, the discrete-time system is much better than continuous-time
one. Naturally, it turns out to be meaningful to investigate the issue of how distributed delays
influence the dynamical behavior of a discrete-time system. However, as far as authors know,
based on gain-scheduled control methods, the SOF control problem for nonlinear stochastic
systems with infinite-distributed delays andmissing measurements with time-varying occur-
ring probability has not been addressed yet and is still a very interesting and challenging
problem.

Themain contributions of this paper are summarized as follows: (1) a new SOF control
problem is addressed for a class of discrete-time nonlinear stochastic systems with missing
measurements and infinite-distributed delays via a gain-scheduling approach; (2) a sequence
of stochastic variables satisfying Bernoulli distributions is introduced to describe the time-
varying features of the missing measurements in the sensor; (3) a time-varying Lyapunov
functional dependent on the missing probability is proposed and then applied to improve
the performance of the gain-scheduled controller; and (4) a gain-scheduled controller is
designed, in which the controller parameters can be adjusted online according to the missing
probabilities estimated through statistical tests.

Notation 1. In this paper, R
n, R

n×m, and I
+ denote, respectively, the n-dimensional Euclidean

space, and the set of all n × m real matrices, the set of all positive integers. | · | refers to the
Euclidean norm in R

n. I denotes the identity matrix of compatible dimension. The notation
X ≥ Y (resp., X > Y ), where X and Y are symmetric matrices, means that X − Y is positive
semidefinite (resp., positive definite). For a matrix M, MT and M−1 represent its transpose
and inverse, respectively. The shorthand diag{M1,M2, . . . ,Mn} denotes a block diagonal
matrix with diagonal blocks being thematricesM1,M2, . . . ,Mn. In symmetric blockmatrices,
the symbol ∗ is used as an ellipsis for terms induced by symmetry. Matrices, if they are not
explicitly stated, are assumed to have compatible dimensions. In addition, E{x} and Prob{y}
will, respectively, mean expectation of x and probability of y.
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2. Problem Formulation

Consider the following discrete-time nonlinear stochastic systems with infinite-distributed
delays:

x(k + 1) = Ax(k) + Bu(k) +D
+∞∑

d=1

μdx(k − d) +Nf(z(k)) + Ex(k)w(k), (2.1)

x(k) = ρ(k), k = −d,−d + 1, . . . , 0, (2.2)

where x(k) ∈ R
n is the state, z(k) := Gx(k) + Gd

∑+∞
d=1 μdx(k − d). ω(k) is a one-dimensional

Gaussian white noise sequence satisfying E{ω(k)} = 0 and E{ω2(k)} = σ2, ρ(k) is the initial
state of the system. A, B, D, N, E, G, and Gd are constant real matrices of appropriate
dimensions and B is of full-column rank.

The nonlinear function f(·) with (f(0) = 0) is assumed as nonlinear disturbances and
satisfies the following sector-bounded condition:

[
f(z(k)) − F1z(k)

]T[
f(z(k)) − F2z(k)

] ≤ 0, (2.3)

where f(·) is called to belong to the sector [F1, F2] and F1 and F2 are given constant real
matrices.

For the technique convenience, the nonlinear function f(z(k)) can be decomposed into
a linear and a nonlinear part as

f(z(k)) = fs(z(k)) + F1z(k), (2.4)

then, from (2.3), we have

fT
s (z(k))

(
fs(z(k)) − Fz(k)

) ≤ 0, (2.5)

where F = F2 − F1 > 0.
On the other hand, μd ≥ 0 is the convergence constant that satisfies the following

condition:

+∞∑

d=1

μd ≤
+∞∑

d=1

dμd < +∞. (2.6)

Remark 2.1. The distributed delay is one important type of time delays and has been widely
recognized and intensively studied, see, for example, [17–22]. The delay term

∑+∞
d=1 μdx(k−d)

in the resulted stochastic system (2.1) called infinitely distributed delay. However, almost
all existing references concerning distributed delays are concerned with the continuous-time
systems, where the distributed delays are described in the form of a finite or infinite integral.
In this paper, the constants μd (d = 1, 2, . . .) are assumed to satisfy the convergence conditions
(2.6), which can guarantee the convergence of the terms of infinite delays as well as the
Lyapunov-Krasovskii functional defined later.
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The measurement output with missing sensor data is described as

y(k) = ξ(k)Cx(k), (2.7)

where C is a constant real matrix of appropriate dimensions and ξ(k) ∈ R is a random white
sequence characterizing the probabilistic sensor-data missing, which obeys the following
time-varying Bernoulli distribution:

Prob{ξ(k) = 1} = E{ξ(k)} = p(k),

Prob{ξ(k) = 0} = 1 − E{ξ(k)} = 1 − p(k), (2.8)

where p(k) is a time-varying positive scalar sequence and belongs to [p1 p2] ⊆ [0 1] with p1
and p2 being the lower and upper bounds of p(k), respectively. In this paper, for simplicity,
we assume that ξ(k), ω(k) and ρ(k) are uncorrelated.

Remark 2.2. In (2.7), a random white sequence satisfying the time-varying Bernoulli
distribution is introduced to reflect the missing-measurement phenomenon that has attracted
considerable attention in the past few years, see, for example, [13–15]. However, the missing
probability in most relevant literatures has always been assumed to be a constant. Such
an assumption, unfortunately, tends to be conservative in handling time-varying missing
measurements. In this paper, the missing probability is allowed to be time-varying with
known lower and upper bounds, which will then be used to schedule controller gains,
thereby reducing the possible conservatism.

In this paper, we are interested in designing the following gain-scheduled controller:

u(k) = K
(
p
)
y(k), (2.9)

where K(p) is the controller gain sequence to be designed and assumed as the following
structure:

K
(
p
)
= K0 + p(k)Ku, (2.10)

for every time step k, p(k) is the time-varying parameter of the controller gain, which takes
value in [p1, p2] andK0, Ku are the constant parameters of the controller gain to be designed.

The closed-loop system of the static output feedback gain-scheduled controller is as
follows:

x(k + 1) = Ax(k) + ξ(k)BK
(
p
)
Cx(k) +D

+∞∑

d=1

μdx(k − d) +Nf(z(k)) + Ex(k)w(k). (2.11)

Before formulating the problem to be investigated, we first introduce the following
stability concepts.
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Definition 2.3. The closed-loop system (2.11) is said to be exponentially mean-square stable
if, with w(k) = 0, there exist constants α > 0 and τ ∈ (0, 1) such that

E

{∥∥η(k)
∥∥2
}
≤ ατk sup

−d≤i≤0
E

{∥∥η(i)
∥∥2
}
, k ∈ I

+. (2.12)

In this paper, our purpose is to design a probability-dependent gain-scheduled
controller of the form (2.9) for the system (2.1) by exploiting a probability-dependent
Lyapunov functional and LMImethod such that, for all admissible infinite-distributed delays,
missing measurements with time-varying probability, and exogenous stochastic noises, the
closed-loop system (2.11) is exponentially mean-square stable.

3. Main Results

The following lemmas will be used in the proofs of our main results in this paper.

Lemma 3.1 ([Schur complement] see[23]). Given constant matrices Σ1,Σ2,Σ3 where Σ1 = ΣT
1

and 0 < Σ2 = ΣT
2 , then Σ1 + ΣT

3Σ
−1
2 Σ3 ≥ 0 if and only if

[
Σ1 ΣT

3
Σ3 −Σ2

]
≥ 0 or

[−Σ2 Σ3

ΣT
3 Σ1

]
≥ 0. (3.1)

Lemma 3.2 (see [24]). Let M ∈ R
n×n be a positive semidefinite matrix, xi ∈ R

n and constant ai >
0 (i = 1, 2, . . .). If the series concerned is convergent, then one has

( ∞∑

i=1

aixi

)T

M

( ∞∑

i=1

aixi

)
≤
( ∞∑

i=1

ai

) ∞∑

i=1

aix
T
i Mxi. (3.2)

Lemma 3.3 (see [25]). Let the matrix B ∈ Rn×m be of full-column rank. There always exist two
orthogonal matricesU ∈ Rn×n and V ∈ Rn×n such that

B = U

[
Σ
0

]
V T ,

Σ = diag{σ1, σ2, . . . , σm}.
(3.3)

If matrix S has the following structure:

S = U

[
S11 S12

0 S22

]
UT, (3.4)

where S11 ∈ Rn×m, S12 ∈ Rn×(n−m), S22 ∈ R(n−m)×(n−m), then there exists a nonsingular matrix
R ∈ Rm×m such that SB = BR.

In the following theorem, a probability-dependent gain-scheduled static output
feedback control problem is dealt with for a class of discrete-time nonlinear stochastic systems
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(2.1) by exploiting Lyapunov theory and LMI method. A sufficient condition is derived to
guarantee the solvability of the desired gain-scheduled control problem and, simultaneously,
the parameters of the gain-scheduled controller can be obtained by solving the LMIs and the
measured time-varying probability.

Theorem 3.4. Consider the discrete-time nonlinear stochastic systems (2.11). If there exist positive-
definite matrices Q(p(k)) and Qτ , slack matrix S and nonsingular matrices Y (p) and R, such that
the following LMIs hold:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μQτ −Q
(
p(k)

) ∗ ∗ ∗ ∗ ∗
0 − 1

μ
Qτ ∗ ∗ ∗ ∗

FG FGd −2I ∗ ∗ ∗
STA + p(k)BY

(
p
)
C STD STN −Λ ∗ ∗

σ2STE 0 0 0 −σ2Λ ∗
Δp(k)BY

(
p
)
C 0 0 0 0 −Δp(k)Λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.5)

where

Λ = −Q(p(k + 1)
)
+ S + ST , μ =

+∞∑

d=1

μd, ΔP (k) = P(k)(1 − P(k)),

A = A +NF1G, D = D +NF1Gd,

STB = BR, RK
(
p
)
= Y
(
p
)
, K

(
p
)
= R−1Y

(
p
)
,

(3.6)

in this case, the constant gains of the desired controller can be obtained as follows:

K0 = R−1Y0, Ku = R−1Yu, (3.7)

and the closed-system (2.11) is then exponentially mean-square stable for all p(k) ∈ [p1 p2].

Proof. Define the Lyapunov functional:

V (k) := xT (k)Q
(
p(k)

)
x(k) +

+∞∑

d=1

μd

k−1∑

s=k−d
xT (s)Qτx(s). (3.8)
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Then, noting E{ξ(k) − p(k)} = 0, E{ω(k)} = 0 and E{[ξ(k) − p(k)]2} = p(k)(1 − p(k)), we can
get that

E{ΔV (k)} = E

{
xT (k + 1)Q

(
p(k + 1)

)
x(k + 1) − xT (k)Q

(
p(k)

)
x(k) + μxT (k)Qτx(k)

−
+∞∑

d=1

μdx
T (k − d)Qτx(k − d)

}

≤ E

⎧
⎨

⎩

[(
A + p(k)BK

(
p
)
C
)
x(k) +D

+∞∑

m=1

μdx(k − d) +Nfs(z(k))

]T
Q
(
p(k + 1)

)

×
[(

A + p(k)BK
(
p
)
C
)
x(k) +D

+∞∑

m=1

μdx(k − d) +Nfs(z(k))

]

+
[
p(k)

(
1 − (p(k))BK(p)C)x(k)]TQ(p(k + 1)

)
BK
(
p
)
Cx(k) + σ2xT (k)ET

×Q
(
p(k + 1)

)
Ex(k) − xT (k)Q

(
p(k)

)
x(k) −

+∞∑

d=1

μdx
T (k − d)Qτx(k − d)

+ μxT (k)Qτx(k) + 2fT
s (z(k))FGx(k) + 2fT

s (z(k))FGd

+∞∑

m=1

μdx(k − d)

−2fT
s (z(k))fs(z(k))

}
.

(3.9)

From Lemma 3.2, it is obvious that

−
+∞∑

d=1

μd

(
xT (k − d)Qτx(k − d)

)
≤ − 1

μ

(
+∞∑

d=1

μdx
T (k − d)

)
Qτ

(
+∞∑

d=1

μdx(k − d)

)
. (3.10)

Denote the following matrix variables

η(k) =

[
xT (k)

+∞∑

d=1

μdx
T (k − d) fT

s (z(k))

]T
. (3.11)
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Combining (3.9), (3.10), and (3.11), we can get

E{ΔV (k)} ≤ E

{
ηT (k)Ωη(k)

}
,

Ω =

⎡

⎣
Ω1 ∗ ∗
Ω2 Ω3 ∗
Ω4 Ω5 Ω6

⎤

⎦,

Ω1 =
(
A + p(k)BK

(
p
)
C
)T

Q
(
p(k + 1)

)(
A + p(k)BK

(
p
)
C
)
+ σ2ETQ

(
p(k + 1)

)
E

+ p(k)
(
1 − p(k))(BK

(
p
)
C
)T
Q
(
p(k + 1)

)
BK
(
p
)
C + μQτ −Q

(
p(k)

)
,

Ω2 = D
T
Q
(
p(k + 1)

)(
A + p(k)BK

(
p
)
C
)
,

Ω3 = D
T
Q
(
p(k + 1)

)
D − 1

μ
Qτ,

Ω4 = NTQ
(
p(k + 1)

)(
A + p(k)BK

(
p
)
C
)
+ FG,

Ω5 = NTQ
(
p(k + 1)

)
D + FGd,

Ω6 = NTQ
(
p(k + 1)

)
N − 2I.

(3.12)

If Ω ≤ 0, we can conclude the following matrix inequalities by Schur complement:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μQτ −Q
(
p(k)

) ∗ ∗ ∗ ∗ ∗
0 − 1

μ
Qτ ∗ ∗ ∗ ∗

FG FGd −2I ∗ ∗ ∗
A + p(k)BK

(
p
)
C D N −Λ ∗ ∗

E 0 0 0 −σ−2Λ ∗
BK
(
p
)
C 0 0 0 0 −Δ−1

p (k)Λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.13)

with Λ = Q−1(p(k + 1)).
At this time, preforming the congruence transformation diag{I, I, I, S, σ2S,Δp(k)S} to

(3.13), we can have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μQτ −Q
(
p(k)

) ∗ ∗ ∗ ∗ ∗
0 − 1

μ
Qτ ∗ ∗ ∗ ∗

FG FGd −2I ∗ ∗ ∗
STA + p(k)STBK

(
p
)
C STD STN −Λ̂ ∗ ∗

σ2STE 0 0 0 −σ2Λ̂ ∗
Δp(k)STBK

(
p
)
C 0 0 0 0 −Δp(k)Λ̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

Λ̂ = STQ−1(p(k + 1)
)
S,

(3.14)
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then from inequality

STQ−1(p(k + 1)
)
S ≥ ST + S −Q

(
p(k + 1)

)
= Λ, (3.15)

we can get

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μQτ −Q
(
p(k)

) ∗ ∗ ∗ ∗ ∗
0 − 1

μ
Qτ ∗ ∗ ∗ ∗

FG FGd −2I ∗ ∗ ∗
STA + p(k)STBK

(
p
)
C STD STN −Λ ∗ ∗

σ2STE 0 0 0 −σ2Λ ∗
Δp(k)STBK

(
p
)
C 0 0 0 0 −Δp(k)Λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.16)

and from lemma 3, we have STB = BR denoting RK(p) = Y (p), and K(P) = R−1Y (p). Then
(3.16) can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μQτ −Q
(
p(k)

) ∗ ∗ ∗ ∗ ∗
0 − 1

μ
Qτ ∗ ∗ ∗ ∗

FG FGd −2I ∗ ∗ ∗
STA + p(k)BY

(
p
)
C STD STN −Λ ∗ ∗

σ2STE 0 0 0 −σ2Λ ∗
Δp(k)BY

(
p
)
C 0 0 0 0 −Δp(k)Λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.17)

Furthermore, by Lemma 3.1, we can know from that Ω < 0 and, subsequently,

E{ΔV (k)} < −λmin(−Ω)E
∣∣η(k)

∣∣2, (3.18)

where λmin(−Ω) is the minimum eigenvalue of (−Ω). Finally, we can confirm from Lemma 1
of [13] that the closed-loop system is exponentially mean-square stable, then the proof of this
theorem is complete.

Remark 3.5. In the above theorem, a static output feedback controller has been designed
based on a set of LMIs. However, the LMIs are actually infinite owing to the time-varying
parameter p(k) ∈ [p1 p2]. In this case, the desired controller cannot be obtained directly
from Theorem 3.4 due to the infinite number of LMIs. To handle such a problem, in the next
theorem, we have to convert this problem to a computationally accessible one by assigning a
specific form to p(k). Let us set Q(p(k)) = Q0 + p(k)Qu.
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Theorem 3.6. Consider the discrete-time nonlinear stochastic system with infinite-distributed delays
and missing measurements (2.11). If there exist positive-difinite matricesQ0,Qu andQτ , slack matrix
S and nonsingular matrices Y (p) and R, such that the following LMIs hold:

Mijlm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μQτ −Qi
(
p(k)

) ∗ ∗ ∗ ∗ ∗
0 − 1

μ
Qτ ∗ ∗ ∗ ∗

FG FGd −2I ∗ ∗ ∗
STA + piBY

mC STD STN −Λl ∗ ∗
σ2STE 0 0 0 −σ2Λ

l ∗
ΔijBYmC 0 0 0 0 −ΔijΛ

l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.19)

where

Λ
l
= −Q0 − plQu + S + ST , Δij = pi

(
1 − pj

)
,

Qi(p(k)
)
= Q0 + piQu, Ym = Y0 + pmYu,

STB = BR, RK
(
p
)
= Y
(
p
)
, K

(
p
)
= R−1Y

(
p
)
,

(3.20)

the constant gains of the desired controller can be obtained as follows:

K0 = R−1Y0, Ku = R−1Yu, (3.21)

and the closed-system (2.11) is then exponentially mean-square stable for all p(k) ∈ [p1 p2].

Proof. Firstly, set

α1(k) =
p2 − p(k)
p2 − p1

, α2(k) =
p(k) − p1
p2 − p1

, (3.22)

then, we have

p(k) = α1(k)p1 + α2(k)p2, (3.23)

with αi(k) ≥ 0 (i = 1, 2) and α1(k) + α2(k) = 1. Similarly, let

β1(k) =
p2 − p(k + 1)

p2 − p1
, β2(k) =

p(k + 1) − p1
p2 − p1

, (3.24)

then we have

p(k + 1) = β1(k)p1 + β2(k)p2, (3.25)
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with βi(k) ≥ 0 (i = 1, 2), β1(k) + β2(k) = 1. From the above transformation, we can easily get

Q
(
p(k)

)
=

2∑

i=1

αi(k)Qi, Λ =
2∑

l=1

βl(k)Λ
l
,

Y
(
p(k)

)
=

2∑

m=1

αm(k)Ym(p
)
.

(3.26)

On the other hand, it is easy to find that

2∑

i,j,l,m=1

αi(k)αj(k)αm(k)βl(k)Mijlm < 0. (3.27)

From (3.22)–(3.27), we can have that (3.5) in Theorem 3.4 is true, then the proof is now
complete.

Remark 3.7. The above conclusions can be extended to multiple sensor case of measurement
output. In this paper, to make the main idea and the proof more clear and concise, we choose
the single sensor.

4. An Illustrative Example

In this section, the gain-scheduled static output feedback controller is designed for the
discrete-time nonlinear stochastic systems with infinite-distributed delays and missing
measurements.

The system parameters are given as follows:

A =
[
0.97 0
0 0.21

]
, N =

[
0.13 0.21
0.28 0.33

]
, B =

[
0.06 0
0 0.16

]
,

C =
[
0.1 0.2
0.15 0.23

]
, D =

[
0.23 0
0.15 0.18

]
, F1 =

[
0.06 0
0 0.07

]
,

F2 =
[
0.61 0
0 0.25

]
, G =

[
0.11 0.12
0.18 0.12

]
, Gd =

[
0.11 0.29
0.18 0.09

]
, E =

[
0.03 0.19
0.21 0.33

]
,

p1 = 0.19, p2 = 0.51, σ2 = 1, μ = 2−3.

(4.1)

Set the time-varying Bernoulli distribution sequences as p(k) = p1 + (p2 − p1)| sin(k)|
and the sector nonlinear function f(u) is taken as

f(u) =
F1 + F2

2
u +

F2 − F1

2
sin(u), (4.2)

which satisfies (2.3). Also, select the initial state as follows: ρ = [2 − 2]T .
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Figure 1: State evolution x(k) of uncontrolled systems.

Table 1: Computing results.

k p(k) Q(p(k)) K(p)

0 0.4593
[ 3.4334 −0.2204
−0.2204 2.1583

] [ 606.0619 −529.7133
10.7547 −16.6786

]

1 0.4810
[ 3.4368 −0.2282
−0.2282 2.1833

] [ 607.6342 −531.0712
10.7201 −16.6872

]

2 0.2352
[ 3.3986 −0.1400
−0.1400 1.9006

] [ 589.8268 −515.6926
11.1130 −16.5901

]

3 0.4322
[ 3.4292 −0.2107
−0.2107 2.1272

] [ 604.0991 −528.0183
10.7981 −16.6679

]

...
...

...
...

According to Theorem 3.6, the constant controller parameters K0, Ku can be obtained
as follows:

K0 =
[
572.7914 −500.9808
11.4889 −16.4972

]
, Ku =

[
72.4419 −62.5612
−1.5985 −0.3949

]
. (4.3)

Then, according to the measured time-varying probability parameters p(k), the gain-
scheduled controller gainK(p) and parameter-dependent Lyapunovmatrix can be calculated
at every time step k as in Table 1.

Figure 1 gives the response curves of state x(k) of uncontrolled systems. Figure 2
depicts the simulation results of state x(k) of the controlled systems. The simulation results
have illustrated our theoretical analysis.
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Figure 2: State evolution x(k) of controlled systems.

5. Conclusions

In this paper, the problem of gain-scheduled control for a class of discrete stochastic systems
with infinite-distributed delays and missing measurements has been studied, the missing-
measurement phenomenon is assumed to occur in a random way, the missing probability
is governed by an individual random variable satisfying a certain probabilistic distribution
in the interval [0 1], and distributed delays are described in a discrete way. By employing
probability-dependent Lyapunov functional, we have designed a gain-scheduled controller
with the gain including both constant parameters and time-varying parameters such that,
for the admissible missing measurements with time-varying probability, infinite-distributed
delays, and noise disturbances, the closed-loop system is exponentially mean-square stable.
Moreover, we can extend the main results to more complex and realistic systems, for instance,
system with norm-bounded or polytopic uncertainties. Meanwhile, we can also consider
dynamic output feedback control problem for discrete stochastic systems with missing
measurements by gain-scheduling approach as well as the relevant applications in networked
control system or robotic manipulator.
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