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The finite-time control problem of a class of networked control systems (NCSs) with time delay
is investigated. The main results provided in the paper are sufficient conditions for finite-time
stability via state feedback. An augmentation approach is proposed to model NCSs with time
delay as linear systems. Based on finite time stability theory, the sufficient conditions for finite-time
boundedness and stabilization of the underlying systems are derived via linear matrix inequalities
(LMIs) formulation. Finally, an illustrative example is given to demonstrate the effectiveness of the
proposed results.

1. Introduction

Networked control systems (NCSs) are feedback control systems with control loops closed
via digital communication channels. Compared with the traditional point-to-point wiring,
the use of the communication channels can reduce the costs of cables and power, simplify the
installation and maintenance of the whole system, and increase the reliability. NCSs have
many industrial applications in automobiles, manufacturing plants, aircrafts, and HVAC
systems [1]. However, the insertion of communication networks in feedback control loops
makes the NCSs analysis and synthesis complex; see [2–8] and the references therein.

One issue inherent to NCSs, however, is the network-induced delay that occurs
while exchanging date among devices connected to the shared medium. This delay, either
constant or time varying, can degrade the performance of control systems designed without
considering it and even destabilize the system. Thus the issues of stability analysis for NCSs
have received considerable attention for decades [9–15]. In [9, 10], NCSs with random delays
are modelled as jump linear systems with two modes; the necessary and sufficient conditions
on the existence of stabilizing controllers are given. By introducing indicator functions, mean-
square asymptotic stability is derived for the closed-loop networked control system in [11].
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Figure 1: Illustration of NCSs over communication network.

Based on a discrete system model with time-varying input delays, stability analysis and
control design are carried out in [12, 13]. In [14], an observer-based stabilizing controller has
been designed for networked systems involving both random measurement and actuation
delays. In [15], a novel state feedback H∞ control with the compensator for the effects
of network delays in both forward and feedback channels is proposed by introducing an
augmented state variable.

On the other hand, finite-time boundedness and stability can be used in all those
applications where large values of the state should not be attained, for instance, in the
presence of saturations. However, most of the results in the literature are focused on
Lyapunov stability. Some early results on finite-time stability (FTS) can be found in [16],
more recently the concept of FTS has been revisited in the light of recent results coming from
linear matrix inequalities (LMIs) theory, which has made it possible to find less conservative
conditions for guaranteeing FTS and finite time stabilization of discrete-time and continuous-
time systems [17–26]. In [27, 28], sufficient conditions for finite-time stability of networked
control systems with packet dropout are provided; however, controller design methods are
not given.

To the best of our knowledge, the finite-time stabilization problems for NCSs with
delay have not been fully investigated to date. Especially for the case where the plant
subjects to external interference, very few results related to NCSs are available in the existing
literature, which motivates the study of this paper. The main contributions of this paper are
definitions of finite-time boundedness and stabilization are extended to NCSs. Furthermore,
sufficient conditions for finite-time boundedness and stabilization linear matrix inequalities
formulation are given.

In this paper, the finite-time stabilization and boundedness problems of a class of
NCSs with time delay are studied. The sufficient conditions for finite-time stabilization
and boundedness of the underlying systems are derived via LMIs formulation. Lastly, an
illustrative example is given to demonstrate the effectiveness of the proposed methods.

This paper is organized as follows. An augmentation approach is proposed to model
NCSs with time delay as linear system in Section 2. The finite-time stabilization and
boundedness conditions for NCSs with time delay are derived via LMIs in Section 3. Section 4
provides a numerical example to illustrate the effectiveness of our results. Finally, Section 5
gives some concluding remarks.

2. Problem Formulation and Preliminaries

Consider NCS depicted in Figure 1 consists of three components: a plant to be controlled, a
network such as the Internet, and a controller.
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In this paper, it is assumed that the plant is described by

ẋ(t) = Ax(t) + Bu(t) +Gw(t) (2.1)

and time-invariant controller

u(kh) = −Kx(Kh), k = 0, 1, 2, . . . , (2.2)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input, and w(t) ∈ R
q is the exogenous

input. A, B, and G are known real constant matrices with appropriate dimensions. The
sampling period h is fixed and known. There are two sources of delays from the network:
the sensor-to-controller delay τsc and the controller-to-actuator delay τca. For the fixed
control law, the sensor-to-controller delay and the controller-to-actuator delay can be lumped
together as τ = τsc + τca for analysis purpose. We make the following assumptions about
NCSs.

Assumption 2.1. The sensors are clock-driven sensors, and controllers and actuators are event-
driven.

Assumption 2.2. The network-induced delay is constant and less than one sampling period.

Assumption 2.3. During the finite time T , there exists a positive constant d, such that the
exogenous input w(t) satisfies

∫T

0
wT (t)w(t)dt ≤ d2. (2.3)

Then the system equation can be written as

ẋ(t) = Ax(t) + Bu(t) +Gw(t), t ∈ [kh + τ, (k + 1)h + τ),

y(t) = Cx(t),

u(t+) = −Kx(t − τ), t ∈ {kh + τ, k = 1, 2, . . .}.
(2.4)

Sampling the system with period h, we obtain

x(k + 1) = Φx(k) + Γ0(τ)u(k) + Γ1(τ)u(k − 1) + Ψw(k),

y(t) = Cx(t),
(2.5)

where

Φ = eAh, Ψ =
∫h

0
eAsGds. (2.6)
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Γ0(τ) and Γ1(τ) are defined as follows:

Γ0(τ) =
∫h−τ

0
eAsB ds, Γ1(τ) =

∫h

h−τ
eAsB ds. (2.7)

Define the augmented state vector x̃(k) as follows:

x̃(k) = [x(k), u(k − 1)]T (2.8)

and the augmented exogenous input vector w̃(k) as

w̃(k) = [w(k), 0]T . (2.9)

Then we have the augmented closed-loop system

x̃(k + 1) =
(
Ã + B̃K̃

)
x̃(k) + G̃w̃(k), (2.10)

where

Ã =
[
Φ Γ1(τ)
0 0

]
, B̃ =

[−Γ0(τ)
−I

]
, G̃ =

[
Ψ 0
0 0

]
(2.11)

and K̃ is defined as follows

K̃ =
[
K 0

]
. (2.12)

Remark 2.4. According to Assumption 2.3, we can derive that there exists a positive constant
d, such that the condition

N∑
k=1

w̃T (k)w̃(k) ≤ d2 (2.13)

is satisfied, for finite positive integer N.

Remark 2.5. When the delay is longer than one sampling period, that is to say, h < τ < lh,
where l > 1, the augmented state vector x̃(k) is defined as

x̃(k) = [x(k), u(k − l), . . . , u(k − 1)]T (2.14)

and the corresponding augmented closed-loop system can be derived.

The main aim of this paper is to find some sufficient conditions which guarantee that the
system given by (2.10) is bounded over a finite-time interval. The general idea of finite-time
stability concerns the boundedness of the state of a system over a finite time interval for given
initial conditions; this concept can be formalized through the following definitions.
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Definition 2.6. System (2.10) with (2.13) is said to be finite-time bounded with respect to
(α, d, β, R,N), where R is a positive-definite matrix, 0 < α < β, if

xT (0)Rx(0) ≤ α2 =⇒ xT (k)Rx(k) ≤ β2, k ∈ {1, . . . ,N}. (2.15)

Definition 2.7. System (2.10) with w(k) = 0 is said to be finite-time stable with respect to
(α, β, R,N), where R is a positive-definite matrix, 0 < α < β, if

xT (0)Rx(0) ≤ α2 =⇒ xT (k)Rx(k) ≤ β2, k ∈ {1, . . . ,N}. (2.16)

To this end, the following lemma will be essential for the proofs in the next section and its
proof can be found in the cited references.

Lemma 2.8 (Schur complement lemma, see [29]). For a given symmetric matrixW =
[
W11 W12

WT
12 W22

]
,

where W11 ∈ R
p×p,W22 ∈ R

q×q, and W12 ∈ R
p×q, the following three conditions are mutually

equivalent:

(1) W < 0,

(2) W11 < 0, W22 −WT
12W

−1
11 W12 < 0,

(3) W22 < 0, W11 −W12W
−1
22 W

T
12 < 0.

3. Main Results

In this section, we will find a state feedback control matrixK, such that system (2.10) is finite-
time bounded with respect to (α, d, β, R,N). In order to solve the problem, the following
theorem will be essential.

Theorem 3.1. For given state feedback control matrix K, system (2.10) is finite-time bounded with
respect to (α, d, β, R,N), if there exist symmetric positive definite matrices P1 and P2 and a scalar
γ ≥ 1, such that the following conditions hold:

⎡
⎢⎣
(
Ã + B̃K̃

)T
P1

(
Ã + B̃K̃

)
− γP1

(
Ã + B̃K̃

)T
P1G̃

G̃TP1

(
Ã + B̃K̃

)
G̃TP1G̃ − γP2

⎤
⎥⎦ < 0, (3.1)

λ2
λ1

γNα2 +
λ3
λ1

γNd2 < β2, (3.2)

where

λ1 = λmin

(
P̃1

)
,

λ2 = λmax

(
P̃1

)
,

λ3 = λmax(P2),

P̃1 = R−1/2P1R
1/2.

(3.3)
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Proof. Choose the Lyapunov function as

V (x̃(k)) = x̃T (k)P1x̃(k). (3.4)

Then we have

V (x̃(k + 1)) = x̃T (k + 1)P1x̃(k + 1)

=
((

Ã + B̃K̃
)
x̃(k) + G̃w(k)

)T
P1

((
Ã + B̃K̃

)
x̃(k) + G̃w(k)

)

=
[
x̃(k)
w(k)

]T⎡⎣
(
Ã + B̃K̃

)T
P1

(
Ã + B̃K̃

) (
Ã + B̃K̃

)T
P1G̃

G̃TP1

(
Ã + B̃K̃

)
G̃TP1G̃

⎤
⎦
[
x̃(k)
w(k)

]
.

(3.5)

It follows from (3.1) that

V (x̃(k + 1)) ≤ γV (x̃(k)) + γwT (k)P2w(k). (3.6)

Applying iteratively (3.6), we obtain

V (x̃(k)) ≤ γkV (x̃(0)) +
k∑
j=1

γjwT(k − j
)
P2w

(
k − j

)

= γk

⎛
⎝V (x̃(0)) +

k∑
j=1

γj−kwT(k − j
)
P2w

(
k − j

)
⎞
⎠

≤ γk

⎛
⎝V (x̃(0)) + λ3

k∑
j=1

γj−kwT(k − j
)
w
(
k − j

)
⎞
⎠.

(3.7)

Using the fact that γ ≥ 1, we have

V (x̃(k)) ≤ γk

⎛
⎝V (x̃(0)) + λ3

k∑
j=1

wT(k − j
)
w
(
k − j

)
⎞
⎠

≤ γN
(
λ2α

2 + λ3d
2
)
.

(3.8)

On the other hand,

V (x̃(k)) = x̃T (k)P1x̃(k) ≥ λ1x̃
T (k)Rx̃(k). (3.9)

From (3.8) and (3.19), it can be seen that

x̃T (k)Rx̃(k) ≤ λ2
λ1

γNα2 +
λ3
λ1

γNd2 < β2 (3.10)
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which means that

x̃T (k)Rx̃(k) ≤ β2, k = 1, . . . ,N. (3.11)

This completes the proof.

Corollary 3.2. For given state feedback control matrixK, system (2.10) with the disturbance w̃(k) =
0 is finite-time stable with respect to (α, β, R,N), if there exist symmetric positive definite matrix P
and a scalar γ ≥ 1, such that the following conditions hold:

(
Ã + B̃K̃

)T
P
(
Ã + B̃K̃

)
− γP < 0,

cond
(
P̃
)
<

1
γN

β2

α2
,

(3.12)

where

P̃ = R−1/2PR1/2, cond
(
P̃
)
=

λmax

(
P̃
)

λmin

(
P̃
) . (3.13)

Now we turn back to our original problem, that is, to find sufficient conditions which
guarantee that the system (2.4) with the controller (2.2) is finite-time bounded with respect
to (α, d, β, R,N). The solution of this problem is given by the following theorem.

Theorem 3.3. System (2.10) is finite-time bounded with respect to (α, d, β, R,N) if there exist
symmetric positive definite matrices Q11, Q12, and Q2, a matrix L, and a scalar γ ≥ 1, such that
the following conditions hold:

⎡
⎢⎢⎣

−γQ1 0
(
ÃQ1 + B̃LS

)T

0 −γQ2 G̃T

ÃQ1 + B̃LS G̃ −Q1

⎤
⎥⎥⎦ < 0, (3.14)

λ5
λ4

γNα2 + λ5λ6γ
Nd2 < β2, (3.15)

where

λ4 = λmin

(
Q̃1

)
,

λ5 = λmax

(
Q̃1

)
,

λ6 = λmax(Q2),

Q̃1 = R−1/2Q1R
1/2

(3.16)
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S and Q1 are defined as follows

S =
[
I 0
0 0

]
, Q1 =

[
Q11 0
0 Q12

]
. (3.17)

Then the controller K is given by the first p columns of K̃ = LSQ−1
1 , which is in the form (2.12).

Proof. Let us consider Theorem 3.1 with Q1 = P−1
1 and Q2 = P2. Condition (3.2) can be

rewritten as in (3.15) recalling that for a positive definite matrix Q

λmax(Q) =
1

λmin
(
Q−1) . (3.18)

Denote Â = Ã + B̃K̃. Then condition (3.1) can be rewritten as

⎡
⎣ÂTQ−1

1 Â − γQ−1
1 ÂTQ−1

1 G̃

G̃TQ−1
1 Â G̃TQ−1

1 G̃ − γQ2

⎤
⎦ < 0. (3.19)

Pre- and postmultiplying (3.19) by the symmetric matrix

[
Q1 0
0 I

]
, (3.20)

the following equivalent condition is obtained

⎡
⎣Q1Â

TQ−1
1 ÂQ1 − γQ1 Q1Â

TQ−1
1 G̃

G̃TQ−1
1 ÂQ1 G̃TQ−1

1 G̃ − γQ2

⎤
⎦ < 0. (3.21)

By using Lemma 2.8, (3.21) is equivalent to the following:

⎡
⎢⎣
Q1Â

TQ−1
1 ÂQ1 − γQ1 Q1Â

TQ−1
1 G̃ 0

G̃TQ−1
1 ÂQ1 −γQ2 G̃T

0 G̃ −Q1

⎤
⎥⎦ < 0. (3.22)

Premultiply (3.22) by

⎡
⎢⎣
I 0 −Q1Â

TQ−1
1

0 I 0
0 0 I

⎤
⎥⎦ (3.23)
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and postmultiply it by the transpose of (3.23). In this way, we obtain the following equivalent
condition:

⎡
⎢⎢⎣
−γQ1 0 Q1Â

T

0 −γQ2 G̃T

ÂQ1 G̃ −Q1

⎤
⎥⎥⎦ < 0. (3.24)

Recalling that Â = Ã + B̃K̃ and letting K̃Q1 = LS, we obtain that condition (3.1) is equivalent
to (3.14). This completes the proof.

Remark 3.4. The chosen structures formatrices S andQ1 guarantee that K̃ is in the form (2.12).
In fact

K̃ = LSQ−1
1 = L

[
I 0
0 0

][
Q11 0
0 Q12

]
= L

[
Q−1

11 0
0 0

]
=
[
K 0

]
. (3.25)

Remark 3.5. Once we have fixed γ , the feasibility of the conditions stated in (3.14) can be
turned into LMI feasibility problems. On the other hand, for θ1 > 0, θ2 > 0, it is easy to check
that condition (3.15) can be guaranteed by

θ1R
−1 < Q1 < R−1,

0 < Q2 < θ2I,

⎡
⎢⎣β

2 − θ2d
2γN α

√
γN

α
√
γN θ1

⎤
⎥⎦ > 0.

(3.26)

Corollary 3.6. System (2.10) with the disturbance w̃(k) = 0 is finite-time stable with respect to
(α, β, R,N), if there exist symmetric positive definite matricesQ1,Q2, a matrix L, and a scalar γ ≥ 1,
such that the following conditions hold:

⎡
⎣ −γQ

(
ÃQ + B̃LS

)T

ÃQ + B̃LS −Q

⎤
⎦ < 0,

R−1 < Q <
1
γN

β2

α2
R−1,

(3.27)

where

S =
[
I 0
0 0

]
, Q =

[
Q1 0
0 Q2

]
. (3.28)

Then the controller K is given by the first p columns of K̃ = LSQ−1.
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4. Numerical Example

Consider the following system:

ẋ(t) =
[
0 1
0 −0.1

]
x(t) +

[
0
0.1

]
u(t) +

[
1 0
0 1

]
w(t),

y(t) =
[
0.1 0.5

]
x(t).

(4.1)

Choose the sampling h = 0.3s. Suppose τ = 0.1s. The corresponding matrices are given by

Φ =
[
1.0000 0.2955

0 0.9704

]
, Ψ =

[
0.3000 0.0446

0 0.2955

]
, (4.2)

Γ0(τ) =
[
0.0020
0.0198

]
, Γ1(τ) =

[
0.0025
0.0098

]
(4.3)

which yields

Ã =

⎡
⎣1.0000 0.2955 0.0025

0 0.9704 0.0098
0 0 0

⎤
⎦, B̃ =

⎡
⎣−0.0020−0.0198

−1

⎤
⎦, G̃ =

⎡
⎣0.3000 0.0446 0

0 0.2955 0
0 0 0

⎤
⎦. (4.4)

It is assumed that α = 1, d = 3, β = 20, R = I, N = 10. Applying Theorem 3.3 with γ = 1.5, it is
found that

Q1 =

⎡
⎣0.9472 0.0318 0
0.0318 0.7947 0

0 0 0.8616

⎤
⎦,

L =
[
0.0030 0.0187 0

]
.

(4.5)

Therefore, the desired controller gain is given by

K̃ = LSQ−1
1 =

[
K 0

]
=
[
0.0024 0.0235 0

]
. (4.6)

5. Conclusions

In this paper, we have considered the finite-time boundedness problems of a class of
networked control systems (NCSs) subject to disturbances. Based on the augmentation
approach, the NCSs with time delay as linear systems. The sufficient conditions for finite-
time boundedness of the underlying systems are derived via linear matrix inequalities (LMIs)
formulation. Lastly, an illustrative example is given to demonstrate the effectiveness of the
proposed results.
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