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In order to achieve continuous navigation capability in areas such as tunnels, urban canyons,
and indoors a new approach using least squares support vector machine (LS-SVM) andH∞ filter
(HF) for integration of INS/WSN is proposed. In the integrated system, HF estimates the errors
of position and velocity while the signals in WSNs are available. Meanwhile, the compensation
model is trained by LS-SVM with corresponding HF states. Once outages of the signals in WSNs,
the model is used to correct INS solution as HF does. Moreover, due to device reasons, there
are slight fluctuations in sampling period in practice. For overcoming this problem of integrated
navigation, the theoretical analysis and implementation of HF for an integrated navigation system
with stochastic uncertainty are also given. Simulation shows the performance of HF is more robust
compared with INS-only solution and Kalman filter (KF) solution, and the prediction of LS-SVM
has the smallest error compared with INS-only and back propagation (BP), the improvement is
particularly obvious.

1. Introduction

The demand for location-based services (LBSs) has been driving the need for the accurate
positioning techniques in the past and is expected to remain the same in the future [1, 2].
Wireless sensor network (WSN) has boomed in the last decades, it shows great potential to
develop positioning system in the environments such as tunnels, urban canyons, and indoors,
where the Global Positioning Systems (GPS) cannot provide a solution with consistent and
long-term stable accuracy due to satellite signal blockage [3–7]. So, the physical location
becomes one of key applications in WSNs recently. Most of the current wireless localization
in WSN employs the measurement of one or several physical parameters of the radio signal
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transmitted between the reference nodes (RNs) and blind nodes (BNs) [8]. For example,
Patwari et al. employed the measurements of time of arrival (TOA) and received signal
strength (RSS) to estimate relative location in WSNs in 2003 [9]. In 2002, Al-Jazzar and
Caffery Jr. estimated node location for nonline of sight (NLOS) environments by TOA
[10], then Al-Jazzar et al. used a joint TOA/AOA (so-called angle of arrival) constrained
minimization method for locating wireless devices in nonline-of-sight environment in 2009
[11]. Alsindi et al. employed TOA for ranging in indoor multipath environments in 2009
[12]. The mainstream method is to use electromagnetic waves for indoor localization, but
due to the high propagation speed, the accuracy is of the order of several meters. On
the other hand, some researchers employ ultrasonic waves to achieve high accuracy with
narrow bandwidth and narrow directional characteristics, for example, a fully distributed
localization system based on ultrasound is proposed by Minami et al., and the accuracy of
localization is about 20 cm with 24 devices [13]. Although WSN is capable of indoor wireless
localization with the characteristics of low power, low cost, and low complexity, it requires
high density of RNs for high accuracy due to its short-distance communication. Therefore,
it has to employ a large number of RNs to keep localization accuracy if localization area is
large.

Differing fromWSN-based wireless localization requiring RNs, INS is a self-contained
system incorporating three orthogonal accelerometers and two orthogonal gyroscopes [1].
It is capable of providing positioning information independently. However, for the INS
accuracy deteriorates with time due to possible inherent sensor errors (white noise, correlated
random noise, bias instability, and angle random walk) that exhibit considerable long-term
growth [14–17], it is just a short-term compensation to GPS outages, and the INS cannot
maintain long-term high accuracy when GPS signals are unavailable. Thus, INS is poor in
long-term self-contained navigation.

Aiming at continuous navigation capability, many intelligent integration navigation
approaches have been employed. For instance, Kim et al. presented an integrated
GPS/INS/Vision system for helicopter navigation [18], Berefelt et al. used GPS/INS
navigation in urban environment [19]. In this mode, training the compensation model
by Artificial Intelligence (AI) techniques is widely used to improve the performance of
integrated navigation, especially the neural network (NN), as in, for example, the use of
the NN for denoising inertial outputs based on microelectromechanical system (MEMS)
in [20], and the NN for the compensation model in [21]. However, to achieve good
performance it has to select sufficient data samples of good quality for the NN [22], and
it is poor in high dimension input spaces. Current algorithms for good quality samples of
the compensation model are mainly based on integration filter, as the core of an integrated
system, the integration filter should be carefully designed. The KF is one of the most
common examples for filtering. With the stochastic state space model of the system and
measurement outputs, it is able to achieve the optimal estimation of states in multi-input,
multioutput (MIMO) systems [23]. However, due to the noises of system and measurement
should be corrupted by white noise and the state estimation is approached with the
minimization of the covariance of the estimation error, the KF is not suitable for nonlinear
systems. Through the first-order linearization of the nonlinear system, extended KF (EKF)
is able to achieve nonlinear estimation. However, for the state distribution is assumed as a
Gaussian random variable (GRV), it may generate large errors in the true posterior mean
and covariance of the transformed GRV, which can lead to suboptimal performance and
sometimes divergence of the filter [24]. Moreover, the system with GRV is often unavailable
in practice.
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In this paper, we present INS/WSN integration using LS-SVM and HF for long-
distance continuous navigation in areas such as tunnels, urban canyons, and indoors. Aiming
at the robust performance of filtering, the HF is employed to estimate errors of position and
velocity while signals in WSNs are available. Meanwhile, compensation model is trained by
LS-SVM, which is used to correct the INS errors during signals in WSN outages. Simulation
is employed to evaluate the performance of the proposed method. The results of filtering are
compared with the INS-only solution and KF solution, moreover, the results of prediction
are compared with the INS-only method and BP method. The remainder of the paper is
organized as follows: HF for integration and LS-SVM model are described in Section 2
and Section 3, respectively. Section 4 gives the hybrid method for INS/WSN integration.
Simulations and the analyses of experiment results based on semiphysical can be obtained
in detail in Section 5. Finally, the conclusions are given.

For convenience, this paper adopts the following notations.
A′: transpose of a matrix or vector A.
A > 0 (A ≥ 0): A is positive definite (positive semidefinite) symmetric matrix.
Sn: the set of all real symmetric matrices.
Rn: n-dimensional Euclidean space.
In×n: n × n identity matrix.

2. H∞ Fusion Filter for Integration

2.1. Stochastic Uncertain System

In order to achieve robust performance, HF is widely analyzed and used in the nonlinear
systems [25–27]. The HF is to design an estimator to estimate the unknown state combination
with measurement output [28]. In contrast with the KF and EKF, one of the main advantages
of HF is that it is not necessary to know exactly the statistical properties of the noise but
only on the assumption of the noise with bounded energy [29], which makes this technique
useful in certain practical applications. For the above-mentioned reasons, HF technique has
been extensively developed in the last decade, and many HF-based methods have been
proposed, especially in the field of stochastic systems. For instance, Xu and Chen proposed
an H∞ filtering for uncertain impulsive stochastic systems under sampled measurements
in [30]. Zhang and Chen studied the exact observability of stochastic systems in [29],
and, then, they solved the problem of filtering for nonlinear stochastic uncertain system
[28].

As WSN-based wireless localization is a relative localization, HF uses relative errors
of position and velocity of BN as the state vector. Ideally, the relative position errors of BN
measured by INS at k state are able to be illustrated in (2.1):

ex,k+1 = ex,k + T · evx,k +ωx,k,

ey,k+1 = ey,k + T · evy,k +ωy,k,
(2.1)

where (ex, ey) is the relative position error of BN at k moment, (evx, evy) is the velocity error
of BN at k moment, and T is ideal sample time. Due to the limitation of timing device, there
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will be a stochastic error for ideal sample time in practice. It leads the system in (2.1) to be a
stochastic uncertain system, which is expressed as follow:

ex,k+1 = ex,k +
(
(T + δt) · βk

) · evx,k +ωx,k,

ey,k+1 = ey,k +
(
(T + δt) · βk

) · evy,k +ωy,k.
(2.2)

Here δt is the stochastic uncertainty of system and βk is a standard random scalar
sequences with zero mean. Thus, the model of the system in (2.2) can be written in matrix
form:
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Here, we denote (2.3) as (2.4).

Xk+1 =
(
A + E · βk

)
Xk + Bωk, (2.4)

where ωk ∈ Rm is stochastic process noise which belongs to l2[0,∞).
The observation vectors of the HF are formed by differencing the INS and WSN

positions (rWSN, rINS) and the velocities (vWSN, vINS). Thus, the observation equation is
illustrated as (2.5):
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where Δrx,k = rx,k(INS) − rx,k(WSN), Δry,k = ry,k(INS) − ry,k(WSN), Δvx,k = vx,k(INS) − vx,k(WSN), and
Δvy,k = vy,k(INS) − vy,k(WSN).

Here, we denote (2.5) as (2.6).

Yk = CXk +Dυk, (2.6)

where υk ∈ Rm is measurement noise which belongs to l2[0,∞). For the convenience, we
assume that

E
∞∑

k=0

ω′
kωk <∞, E

∞∑

k=0

υ′
kυk <∞. (2.7)
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So, the stochastic uncertain system can be simply expressed as:

Xk+1 =
(
A + E · βk

)
Xk + B1ςk,

Yk = CXk +D1ςk,

Zk = LXk.

(2.8)

Here, Zk is the state combination to be estimated, B1 = [B 0], D1 = [0 D], and ςk =
[ω′

k υ′
k]

′.

2.2. H∞ Filter Formulation

In this section, we investigate the design of a linear estimator for Zk of the following form:

X̂k+1 = AfX̂k + BfYk,

Ẑk = LX̂k, k = 0, 1, 2, . . . ,
(2.9)

where X̂k and Ẑk are the estimates ofXk andZk, respectively, and {Af, Bf , L} are the constant
matrices. Here, we define state error vector and measurement error vector, respectively, as
follows:

ek = Xk − X̂k, Z̃k = Zk − Ẑk. (2.10)

Let Ξ = Eβk and Af = A − BfC + Ξ, then we can obtain the following equation with
(2.8), (2.9), and (2.10):

ek+1 =
(
Ã + Eβk

)
ek + B̃ςk,

Z̃k = Lek,
(2.11)

where Ã = A − BfC and B̃ = B1 − BfD1.
For a given scalar γ > 0, the performance index is illustrated as (2.12):

J = E
∞∑

k=0

(
Z̃′
kZ̃k − γ2ς′kςk

)
. (2.12)

In this paper, we look for anH∞ filter satisfies that for all nonzero ωk and υk with the
initial state Xk = 0, J < 0, and the system (2.11) is asymptotically stable.

2.3. Asymptotic Stability

For future convenience, we give the following lemmas which are very useful for the proof of
our main theorem.
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Lemma 2.1 (see [31]).

Xk+1 =
(
A + Eβk

)
Xk + Bςk,

Zk = LXk,
(2.13)

for any γ > 0, the system (2.13) is asymptotically stable and J in (2.12) is negative for all nonzero
ςk ∈ l2[0,∞) if there exists P = P ′ > 0 that satisfies the inequality

−P +A′PA +A′PBΘ−1B′PA + L′L + E′PE < 0, (2.14)

and also satisfies Θ > 0, where Θ = γ2I − B′PB.

Lemma 2.2 (Schur’s complement). For real matricesN,M = M′, R = R′ < 0, the following two
conditions are equivalent:

(1) M −NR−1N ′ < 0,

(2)
[
M N
N ′ R

]
< 0.

Consider the system of (2.11). We arrive at the following result.

Theorem 2.3. The condition for system of (2.11) to be asymptotically stable and γ of (2.12) to be
existed is that there exists P = P ′ > 0 and Q satisfies the inequality (2.15):

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−P 0 A′P − C′Q′ A′P − C′Q′ L′ E′P

0 −γ2I B′
1P −D′

1Q
′ 0 0 0

PA −QC PB1 −QD1 −P 0 0 0

PA −QC 0 0 −P 0 0

L 0 0 0 −I 0

PE 0 0 0 0 −P

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0. (2.15)

Proof. Consider the system of (2.11) and apply Lemma 2.1, given γ > 0, a necessary and
sufficient condition for J in (2.12) to be negative for all nonzero ςk ∈ l2[0,∞) which is that
there exists P = P ′ > 0 to

−P + Ã′PÃ + Ã′PB̃Θ̃−1B̃′PÃ + L′L + E′PE < 0, (2.16)

where Θ̃ = γ2I − B̃′PB̃, P > 0, and Θ̃ > 0.

Defining Δ = −P + Ã′PÃ + L′L + E′PE, so

Δ + Ã′PB̃Θ̃−1B̃′PÃ < 0. (2.17)
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Applying Schur’s complement, inequality (2.17) and the following inequality are equivalent:

⎡

⎣
Δ Ã′PB̃

B̃′PÃ −
(
γ2I − B̃′PB̃

)

⎤

⎦ < 0. (2.18)

And inequality (2.18) can be rewritten as inequality (2.19):

[
Δ 0

0 −γ2I

]

−
⎡

⎣
Ã′

B̃′

⎤

⎦P(−P)−1P
[
Ã B̃

]
< 0. (2.19)

Using Schur’s complement again, inequality (2.19) is able to be written as (2.20):

⎡

⎢⎢
⎣

Δ 0 Ã′P

0 −γ2I B̃′P

PÃ PB̃ −P

⎤

⎥⎥
⎦ < 0. (2.20)

Then, by Lemma 2.1 andΔ = −P + Ã′PÃ+L′L+E′PE, we can obtain inequality (2.21) readily:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−P 0 Ã′P Ã′P L′ E′P

0 −γ2I B̃′P 0 0 0

PÃ PB̃ −P 0 0 0

PÃ 0 0 −P 0 0

L 0 0 0 −I 0

PE 0 0 0 0 −P

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0. (2.21)

Now, we substitute (2.11) into inequality (2.21) and define that Q = PBf , then we can
obtain inequality (2.15) readily.

Moreover, the matrix inequality is able to be written as following if we set γ2 = γ :

ψ
(
P,Q, γ

)
< 0. (2.22)

Thus, the solving of the filter is transformed to the following optimisation problem:

min
p1>0,Q

γ,

subject to LMIs(2.22) .
(2.23)
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So, the filter is asymptotically stable and there exists the minimum performance index√
γ , the parameters of the HF can obtain by (2.23):

Bf = P−1Q, Af = A − P−1QC + Ξ. (2.24)

For the mean value of Ξ is zero, the Af is also able to denote as follows:

Af = A − P−1QC. (2.25)

3. LS-SVM Model and Training Algorithm

LS-SVM is powerful to estimate for nonlinear. It is also able to extract the optimal solution
with small training data. The LS-SVM algorithm is employed here to improve the accuracy
of the INS-only solution during WSN outages.

3.1. LS-SVM Regression Algorithm

Equation (3.1) shows the optimal linear regression function which is built in feature space.
Where b is the bias term and ω is weight vector. Given a training set {xk, yk}nk=1, the LS-SVM
algorithm maps a higher dimensional feature space ψ(x) = {φ(x1), φ(x2), . . . , φ(xn)} with
nonlinear function ϕ(x):

f(x) =
{
ω,φ(x)

}
+ b =

N∑

i=1

ωiϕi(x) + b. (3.1)

The optimisation problem is

min
ω,b,e

J(ω, e) =
1
2
ωTω + η

1
2

N∑

k=1

e2k, (3.2)

due to the equality constraints

yk = ωTϕ(xk) + b + ek, k = 1, . . . ,N. (3.3)

To solve the optimisation problem abovementioned, the Lagrangian function is
introduced:

L(ω, b, e, αi) = J(ω, e) −
N∑

i=1

αiω
Tφ(xi) + b + ei − yi, (3.4)
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where αi are the Lagrange multipliers, according to Karush Kuhn Tucker (KKT) optimization
conditions which are illustrated in (3.5):

∂L

∂ω
= 0,

∂L

∂b
= 0,

∂L

∂ei
= 0,

∂L

∂αi
= 0. (3.5)

So,

ω =
N∑

i=1

αiφ(xi),
N∑

i=1

αi = 0, αi = ηei, ωTφ(xi) + b + ei − yi = 0, i = 1, 2, . . . ,N. (3.6)

The solution of (3.6), αi and b, can be computed from the input of the sample sets when
the LS-SVM is trained. Applying the Mercer condition one obtains [22]:

K(xk, xl) = ϕ(xk)Tϕ(xl), k, l = 1, 2, . . . ,N. (3.7)

Thus, the LS-SVM model for nonlinear estimation is illustrated as (3.8).

y(x) =
N∑

i=1

αiK(x, xi) + b. (3.8)

The RBF kernel is used as the kernel function of the LS-SVM in this paper:

K(x, xi) = exp

(

−‖x − xi‖2
2σ2

)

. (3.9)

As mentioned above, regularisation parameter (η) and kernel width (σ) need to be
selected. In order for an optimal combination determined before the LS-SVM is trained, we
use a simplified cross-validation method developed by Xu et al. [22], which defines a training
set, consisting of the validation subsets and the verification subsets. Validation subset is
used to train LS-SVM with some empirical combinations of tuning parameters. The primary
parameters are those combinations whichmake the output of the LS-SVM approach the given
accuracy. On the other hand, verification set is used to further train LS-SVM. As a result, the
final selection of tuning parameters is made, and the system model is also obtained.

3.2. The Input/Output Design of LS-SVM

Due to the position and velocity changes with time, there is an HF states variation. It has been
found that there is a correlation between states measured by INS and the HF states. Although
modeling this correlation is difficult, it is able to build correlation with designed LS-SVM
after adequate training. When the signals in WSNs are unavailable, with the input of INS’s
own estimation error of position and velocity, the LS-SVM is able to output the correction
value for position and velocity, respectively, which is used to compensate the INS solution
(as the integration HF does when the signals in WSN are available). As mentioned above, the
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Figure 1: Configuration of the LS-SVM/HF hybrid system.

estimation errors of position and velocity measured by INS are selected as the input of the
LS-SVM, which is illustrated as (3.10):

LS-SVMin =
{
δrx, δry, δvx, δvy

}
. (3.10)

And the output of the LS-SVM can be simplified as:

LS-SVMout =
{
Δrx,Δry,Δvx,Δvy

}
. (3.11)

The structure of LS-SVM is consistently implemented for the training and prediction
stages.

4. LS-SVM and HF Hybrid Method for Integration System

In this section, the LS-SVM/HF architecture is designed. The integration navigation consists
of two stages. One is the LS-SVM/HF hybrid system. The other is the LS-SVM-based
prediction during WSN outages.

4.1. The LS-SVM/HF Hybrid System for INS/WSN

The LS-SVM is in the trainingmodewhen the signals inWSNs are available. Figure 1 displays
the configuration of the integration system for training of LS-SVM. INS estimates the errors
of position and velocity in two directions which are continuously input to the LS-SVM for
training. Meanwhile, the output of HF is employed for the target vectors of the training. The
differences of position (rWSN, rINS) and velocity (vWSN, vINS) between INS and WSN are used
for the observation vectors of the HF.

4.2. The Configuration of the LS-SVM-Based Prediction during
WSN Outages.

The integrated system becomes a stand-alone INS without WSN signal. The LS-SVM is in
the prediction mode now, and the output of the LS-SVM is used for error compensation.
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The errors of position and velocity estimated by INS are continuously input to the LS-SVM
as it was done during the training stage. The configuration of the LS-SVM-based prediction
during WSN outage is illustrated in Figure 2.

5. Simulation and Performance

5.1. Assumptions

In order to assess the performance of the proposed method, the simulation is implemented.
A 700m × 450m area is defined as simulation scenario. In simulation, we assume that a BN
moves from start point (650, 0) to end point (130, 400) along the red-dotted line in Figure 3.
Based on the real-time data measured by INS, two areas (denote as green) is set as training
area, where the signals in WSN are available. The scale of one training area is about 150m ×
150m (denote as no.1 training area), and the other one is about 100m × 100m (denote as
no.2 training area). The range between RNs is 5m, and the communication range is 11m. The
sampling period (T) in (2.3) is set to 1s. Here, we assume that the WSNs employ ultrasonic
waves for localization, which is similar to [13], and the accuracy of localization is about 20 cm.
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Table 1: LS-SVM training results with the validation set.

No.
Errors with validation set

σ η

δ(δrx) (m) δ(δry) (m) Mean error
(m) δ(δvx) (m/s) δ(δvy) (m/s) Mean error

(m/s)

1 1 1 0.5991 0.2046 0.3558 0.1338 0.0864 0.1101

2 1 100 0.2354 0.1126 0.1711 0.0913 0.0968 0.0941

3 1 1000 0.2331 0.1067 0.1699 0.0932 0.0959 0.0946

4 30 100 0.2862 0.1067 0.1967 0.0924 0.0914 0.0919

5 30 1000 0.2542 0.1071 0.1807 0.0921 0.0926 0.0924

6 50 100 0.2871 0.1071 0.1972 0.0922 0.0912 0.0917

7 50 1000 0.2610 0.1073 0.1839 0.0918 0.0924 0.0921

8 100 100 0.2933 0.1068 0.2009 0.0923 0.0903 0.0913

9 100 1000 0.2641 0.1085 0.1852 0.0915 0.0923 0.0919

10 1000 1000 0.2903 0.1063 0.1452 0.0922 0.0900 0.0911

5.2. LS-SVM Training

In this paper, we define an independent training set with 100 points, the first 50 points are the
validation subset, and other points are the verification subset. LS-SVM training results with
the validation set are listed in Table 1. From Table 1, the final selection of tuning parameters
is σ = 1000 and η = 1000. Finally, using both the validation and verification sets as well as
the selected tuning parameters, the LS-SVM was trained again to obtain the compensation
model.

5.3. Performance Analysis

According to Theorem 2.3, we readily obtain the following parameters for HF which is used
in training area.

To the HF used in the first training area,

E =

⎡

⎢⎢⎢⎢⎢
⎣

0 0 −0.0012 0

0 0 0 −0.0012
0 0 0 0

0 0 0 0

⎤

⎥⎥⎥⎥⎥
⎦
, γ = 4.0055,

Af = e−11

⎡

⎢⎢⎢⎢⎢
⎣

−0.0044 −0.0694 0.0658 0.0082

0.0066 −0.0146 −0.0296 0.0379

−0.0588 0.1083 −0.0353 −0.0142
0.0553 −0.0232 −0.0009 −0.0316

⎤

⎥⎥⎥⎥⎥
⎦
, Bf =

⎡

⎢⎢⎢⎢⎢
⎣

1 0 0.2 0

0 1 0 0.2

0 0 1 0

0 0 0 1

⎤

⎥⎥⎥⎥⎥
⎦
.

(5.1)
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Table 2: The mean errors of position and velocity for the INS-only, KF, and HF methods in the training
area.

Mode
δ(δrx) (m) δ(δry) (m) δ(δvx) (m/s) δ(δvy) (m/s)

No. 1 area No. 2 area No. 1 area No. 2 area No. 1 area No. 2 area No. 1 area No. 2 area

INS-only 7.8315 40.6179 4.7923 36.0891 0.6584 2.0649 1.5777 2.0649
KF 2.9170 14.9663 1.7916 13.2591 0.2715 0.3155 0.5984 0.8856
HF 0.3881 0.4958 0.5338 0.8464 0.1064 0.1041 0.1008 0.0932

To the HF used in the second training area,

E = e−3

⎡

⎢
⎢
⎢
⎢⎢
⎣

0 0 0.8409 0

0 0 0 0.8409

0 0 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥⎥
⎦
, γ = 4.0055,

Af = e−11

⎡

⎢⎢⎢⎢⎢
⎣

0.0857 −0.0230 −0.0524 −0.0106
−0.0087 −0.0476 0.0416 0.0153

−0.0626 0.1602 −0.0407 −0.0571
−0.0153 −0.0912 0.0568 0.0495

⎤

⎥⎥⎥⎥⎥
⎦
, Bf =

⎡

⎢⎢⎢⎢⎢
⎣

1 0 0.21 0

0 1 0 0.21

0 0 1 0

0 0 0 1

⎤

⎥⎥⎥⎥⎥
⎦
.

(5.2)

Figures 4 and 5 display the position errors in x-direction and y-direction in the first
training area. The HF result is compared with the INS-only solution and the KF solution. In
those figures one can see that both the KF and HF can reduce the position errors in x direction
and y direction, respectively, and that the HF solution has the smallest error. Simulation
result shows that the proposed HF method is very effective as it decreases the mean errors of
position by about 85% in x direction and by about 80% in y direction compared with KF.

To further clearly demonstrate how the proposed HF improves the accuracy of the
solution, the velocity errors in x-direction and y-direction for the INS-only, KF, and HF
methods are shown in Figures 6 and 7. Note that the errors for the HF are smaller than
the ones for the KF and INS-only methods both in x direction and y direction, confirming
that the proposed algorithm can improve system performance. Simulation result shows that
the proposed HF method decreases the velocity errors by about 70% in x direction and in y
direction errors by about 75% compared with KF.

The mean errors of position and velocity in x direction and y direction in the second
training area are illustrated in Table 2. We can see that the improvement is also particularly
obvious.

In order to assess the performance of the hybrid method, two WSN outages are
simulated. The LS-SVM result is compared with the INS-only solution and the BP solution
during these outages. The position errors in x direction and y direction after the first training
area derived from the INS-only (in green), BP (in blue), and the LS-SVM (in red) methods
are shown in Figures 8 and 9, respectively. The BP method has the same input/output as the
LS-SVM. In Figures 8 and 9, one can see that both the BP and LS-SVM are able to reduce the
position errors, and that the HF solution has the smallest error, confirming that the proposed
algorithm can improve system performance. From these outage results it can be seen that
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Figure 4: The position errors in x direction for the INS-only, KF, and HF methods in the first training area.
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Figure 5: The position errors in y direction for the INS-only, KF, and HF methods in the first training area.

the proposed method decreases by about 80% position errors in x direction and 70% position
errors in y direction compared with BP.

Figures 10 and 11 display the velocity errors in x-direction and y-direction in the first
50-second WSN outages area. The LS-SVM results are compared with the INS-only solution
and the BP solution. In those figures one can see that both the LS-SVM and BP can reduce
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Figure 6: The velocity errors in x direction for the INS-only, KF, and HF methods in the first training area.
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Figure 7: The velocity errors in y direction for the INS-only, KF, and HF methods in the first training area.

the position errors, and that the LS-SVM solution has the smallest error. However, there are
some fluctuations in BP’s error. The mean errors of position and velocity in x direction and y
direction in the second WSN outages area are illustrated in Table 3. Simulation result shows
that the proposed LS-SVMmethod is very effective as it decreases the mean errors of velocity
by about 40% in x direction and by about 70% in y direction compared with BP.
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Figure 8: The position errors in x direction for the INS-only, HF + BP, and HF + LS-SVM methods in the
first WSN outages.
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Figure 9: The position errors in y direction for the INS-only, HF + BP, and HF + LS-SVM methods in the
first WSN outages.

Asmentioned above, the improvement is particularly obvious in the prediction period.
The prediction of the LS-SVM is able to maintain a higher accuracy and reduce the influence
of accuracy deterioration caused by the INS.
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Figure 10: The velocity errors in x direction for the INS-only, HF + BP, and HF + LS-SVM methods in the
first WSN outages.
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Figure 11: The velocity errors in y direction for the INS-only, HF + BP, and HF + LS-SVM methods in the
first WSN outages.

6. Conclusions

This work proposes an integrated INS/WSN system using LS-SVM and HF. The input
and output of an LS-SVM are selected on the basis of correlations between the estimation
errors measured by INS and the HF states. When the signals in WSN are available, the HF
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Table 3: The mean errors of position and velocity for the INS-only, KF, and HF methods in the prediction
area.

Mode
δ(δrx) (m) δ(δry) (m) δ(δvx) (m/s) δ(δvy) (m/s)

No. 1 area No. 2 area No. 1 area No. 2 area No. 1 area No. 2 area No. 1 area No. 2 area

INS-only 12.1524 72.4795 8.7879 70.0089 0.8897 3.0793 2.0265 6.0012
BP 5.2628 36.4784 4.9441 36.5174 0.6502 1.1008 0.8096 1.6045
LS-SVM 0.5916 5.2938 0.4676 4.6548 0.0786 0.0092 0.0754 0.0567

is employed to provide optimal estimation of position and velocity errors, which is used
to update the INS solution. Meanwhile, mapping model between the estimation errors of
INS and the HF states is trained by the LS-SVM. Based on the real-time data measured
by INS, WSNs enabled and outages areas are simulated. The results show an improved
overall performance in comparison with the results of the INS-only and KF solutions, and
the prediction of the LS-SVM has a higher accuracy than the prediction of the BP.
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