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A stochastic differential equation, SDE, describes the dynamics of a stochastic process defined
on a space-time continuum. This paper reformulates the fractional stochastic integro-differential
equation as a SDE. Existence and uniqueness of the solution to this equation is discussed. A num-
erical method for solving SDEs based on the Monte-Carlo Galerkin method is presented.

1. Introduction

Recently, many applications in numerous fields, such as viscoelastic materials, signal process-
ing, controlling, quantum mechanics, meteorology, finance, and life science have been remo-
deled in terms of fractional calculus where derivatives and integrals of fractional order is in-
troduced and so differential equation of fractional order are involved in these models, see [1–
5]. Generally, a fractional integro-differential equation with Caputo’s definition of fractional
derivative takes the form

uα(t) = f(t, u) +
∫ t
t0

h(t, s, u)ds, u(t0) = u0, t0 ≤ t ≤ T, 0 ≤ α ≤ 1. (1.1)

Also, in recent years, development of adequate statistical techniques for stochastic systems
has constantly been in the focus of scientific attention because of its outstanding importance
for a number of physical applications such as turbulence, heterogeneous flows and materials,
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random noises, and so forth, see [6–8]. A stochastic integro-differential equation (SIDE) takes
the form

uα(t;w) = f(t, u;w) +
∫ t
t0

h(t, s, u;w)dWs, u(t0) = u0, t0 ≤ t ≤ T, 0 ≤ α ≤ 1, (1.2)

whereW is a Brownian motion.
In this paper we study the FSIDE:

uα(t;w) +A(t)u(t;w) =
∫ t
t0

B(t, s;w)u(s;w)dWs + f(t;w), t > t0 (1.3)

with initial condition u(t0;w) = u0 and 0 ≤ α ≤ 1.
The FSDE is a generalization of the fractional Fokker-Planck equation which describes

the random walk of a particle, see [9]. The aim of this paper is threefold. First we rewrite the
above equation as stochastic differential equation

du(t) = a(t, u;w)dt + b(t, u;w)dWs. (1.4)

Secondly we prove the existence and the uniqueness of the solution of this equation. Thirdly
we present a numerical method using finite element method and the Monte-Carlo method.

2. Preliminaries

In this section we collect a few known results to which we refer frequently in the sequel.
Let Ω = {ω1, ω2, . . .} be the collection of all outcomes, ωi, i = 1, 2, . . . of an experiment,

and letA ⊂ Ω. Define themeasure P : A → [0, 1]with P(Ω) = 1. The triplet (Ω, A, P) is called
a probability space.

Definition 2.1. A collection {X(t, ·) : t ≥ 0} of random variables X : Ω × T → R, T = [0,∞] is
called a stochastic process. For each point ω ∈ Ω, the mapping t → X(t, ω) is a realization,
sample path, or trajectory of the stochastic process.

Definition 2.2. A real-valued stochastic process that depends continuously on t ∈ [0, T]W =
{W(t), t ≥ 0},W : T ×Ω → R is called a Brownian motion (BM) or Wiener process if

(1) W(0) = 0 a.s.,

(2) W(t)−W(s) isN(0, t− s), the Gaussian distribution with mean 0 and variance t− s,
for all t > s > 0,

(3) for all times 0 < t1 < t2 < · · · < tn, the random variables W(t1),W(t2) −W(t1), . . .,
W(tn) −W(tn−1) are independents.

Also, the expected values ofW(t) andW2(t) are given by E(W(t)) = 0 and E(W2(t)) = t for
each time t > 0.

Definition 2.3. (i) Suppose that {At ≥ 0} is an increasing family of σ-algebras ofA such thatWt

is At-measurable E(W(t) | A0) = 0 and E(W(t) −W(s) | As) = 0 with probability one, w.p.1,
for all 0 ≤ s ≤ t ≤ T .
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(ii) Let L be the σ-algebra of Lebesgue subsets of R. Let L2
T be a class of functions

f : [0, T] ×Ω → R satisfying the following:

(a) f is jointly L ×A-measurable;

(b)
∫T
0 E((f(t, ·))2)dt <∞;

(c) E((f(t, ·))2) for each 0 ≤ s ≤ t ≤ T ;
(d) f(t, ·) is At measurable for each 0 ≤ t ≤ T .

Definition 2.4 (Convergence). If u(h) is the exact value of a random variable and ũn(h) is its
approximate value, then we have

(1) strong convergence when

E(|u(h) − ũn(h)|) −→ 0, n −→ ∞, (2.1)

(2) weak convergence when

|E(u(h)) − E(ũn(h))| −→ 0, n −→ ∞, (2.2)

(3) mean square convergence when

E(u(h) − ũn(h))2 −→ 0, n −→ ∞. (2.3)

Definition 2.5. Let y(x) ∈ L1([a, b]), we define the fractional integral of order α, 1 ≥ α > 0, of
the function y(x) over the interval [a, b] as

Jαa+y(x) =
1

Γ(α)

∫x
a

y(t)

(x − t)1−α
dt, x > a,

Jαb−y(x) =
1

Γ(α)

∫b
x

y(t)

(t − x)1−α
dt, x < b.

(2.4)

For completion, we define J0 = I (identity operator); that is, we mean J0y(x) = y(x).
Furthermore, by Jαa+y(x) we mean the limit (if it exists) of Jαc as c → a+. This definition is
according to Riemann-Liouville definition of fractional integral of arbitrary order α. For sim-
plicity, we define the fractional integral by the equation

Jαy(x) =
1

Γ(α)

∫x
a

y(t)

(x − t)1−α
dt, x > a, 0 < α ≤ 1, (2.5)

where we dropped a+. The folllowing equation

Dαy(x) =
d

dx
J1−αy(x) (2.6)
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denotes the fractional derivative of y(x) of order α. For numerical computations, we usually
use another definition of the fractional derivative, due to Caputo [2], given by

(
CDαy

)
(x) =

(
Dα(y(t) − y(a)))(x). (2.7)

3. Formulation of the Problem

In this paper, we present a numerical method to solve the following FSIDE:

CDα
t u(t;w) −A(t)u(t;w) =

∫ t
t0

B(t, s;w)u(s;w)dWs + f(t;w), t > t0 (3.1)

with initial condition u(t0;w) = ut0 .
For simplicity of notations, we drop the variablew, and so this equation takes the form

CDαu(t) +A(t)u(t) =
∫ t
t0

B(t, s)u(s)dWs + f(t), t > t0,

u(t0) = ut0 ,

(3.2)

where CDα is the Caputo-fractional derivative operator of order αwith 0 < α ≤ 1, t ∈ [t0, T].
The integral term of the right hand side is an Itô integral, W is a BM, and dW/dt is a white
noise, the derivative of a BM (the derivative in the sense of distribution). The functions A(t),
B(t, s;w), f(t;w), ut0(w), and u(t;w) satisfy the following conditions:

C1 (measurability): A = A(t), B = B(s, t) and u(t) are L2-measurable in [0, 1] × R;
C2: there exists constants K1, K2, K3 > 0 such that

∣∣∣∣∣
A(t)

(t − s)1−α

∣∣∣∣∣ < K1,

∣∣∣∣∣
f(t)

(t − s)1−α

∣∣∣∣∣ < K2,

∣∣∣∣∣
∫ t
s

B(z, s)dz

(t − z)1−α

∣∣∣∣∣ < K3

(3.3)

for all t0 ≤ s ≤ t ≤ T and 0 < α ≤ 1;

C3 (initial value): ut0 is At0 -measurable with E(ut0) <∞.

Let k = max{k1, k2, k3}/Γ(α).
Equation (3.2)may be written as

u(t) = ut0 +
CD−αf(t) + CD−αA(t)u(t) + CD−α

∫ t
t0

B(t, s)u(s)dW(s). (3.4)
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Using the definition of the operator CD−α, (2.7), we obtain that

u(t) = ut0 +
1

Γ(α)

∫ t
t0

f(z)dz

(t − z)1−α
+

1
Γ(α)

∫ t
t0

A(z)u(z)dz

(t − z)1−α

+
1

Γ(α)

∫ t
t0

∫z
0

B(z, s)u(s)

(t − z)1−α
dWsdz.

(3.5)

This is a Fredholm integral equation that we are going to solve instead of solving (3.2).
Without loss of generality, we will let t0 = 0 and T = 1 throughout; that is, we assume

that the time parameter set of the processes considered is [0, 1].

Lemma 3.1. The FSIDE (3.5) can be written as a stochastic integral equation

u(t) = ut0 +
∫ t
t0

a(t, s, us)ds +
∫ t
t0

b(t, s, us)dWs, (3.6)

where the drift is given by

a(t, s, us) =

⎧⎪⎨
⎪⎩

1
Γ(α)

{
A(s)us + f(s)

(t − s)1−α
}

0 ≤ s < t ≤ 1,

0 else,
(3.7)

and the diffusion is

b(t, s, us) =

⎧⎪⎨
⎪⎩

us
Γ(α)

∫ t
z=s

{
B(z, s)dz

(t − z)1−α
}

0 ≤ s < t ≤ 1,

0 else.
(3.8)

The proof of this lemma and the next lemma are easy to see.

Lemma 3.2. The conditions C1–C3 imply the conditions A1–A4 where

A1 (measurability): the drift and the diffusion are jointly L2-measurable in [0, 1] × R;
A2 (lipschitz condition): there is a constant K > 0 such that

|a(t, s, u) − a(t, s, v)| ≤ |u − v|, |b(t, s, u) − b(t, s, v)| ≤ |u − v|, (3.9)

for 0 ≤ s ≤ t ≤ 1, u, v ∈ R;
A3 (linear growth bound): there is a constant K > 0 such that

|a(t, s, u)|2 ≤ K2
(
1 + |u|2

)
, |b(t, s, u)|2 ≤ K2|u|2; (3.10)

A4 (Initial value): u0 is A0-measurable with E(u0) <∞.
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With the help of these two lemmas, we can establish the existence and the uniqueness theorem to
the (3.5); for proof see Theorem 4.5.3, Kloeden and Platen [10].

Theorem 3.3. Under the assumptions C1–C3 (or A1–A4) the stochastic integral equation (3.6), and
so (3.2), has a pathways unique strong solution ut on [0, 1].

The existence of a unique solution of the SDE (3.2) ensures the existence of the integrals on the
right hand side of (3.5) at each point in the domain of the definition.

4. The Monte Carlo Galerkin Finite Element Method

It is known that, introducing a finite element method (FEM) that approximates a solution of
differential equation (DE), we first need to obtain a weak formulation in the standard sense
of DE and FEMwhich is not possible with the presence of the white noise. In our method, we
do not require to approximate the white noise using FEM, instead we follow the approach in
Allen et al. [11] who have suggested a smoother approximation for the white noise process
when computing the approximate solutions of stochastic differential equations.

They have suggested the following approximation for the one-dimensional white
noise process Ẇ(t), t ∈ [0, 1].

Consider the uniform time discretization of the interval [0, 1]

�ρ =
{
In : In = [tn−1, tn), n = [1 :N], tn − tn−1 = ρ, t0 = 0, tN = 1

}
. (4.1)

Then the following approximation is defined for the white noise process Ẇ(t) on this dis-
cretization,

dWt

dt
≈ dŴt

dt
=

N∑
n=1

ηnχn(t), (4.2)

where the coefficients are random variables defined by

ηn =
1
ρ

∫
�ρ

χn(t)dW(t) ∈N
(
0,

1
ρ

)
,

χn(t) =

⎧⎨
⎩
1, tn−1 ≤ t ≤ tn,
0, else.

(4.3)

As a direct result of this approximation of the white noise, it is easily to see that E(
∫
�ρ
g[dWt−

dŴt]) = 0 = E((
∫
�ρ
g[dWt − dŴt])

2) for any bounded function g.

Now dŴt can be substituted for dWt to obtain the following smoothed version of the
SDE (3.5):

û(t) = u0 +
1

Γ(α)

∫ t
0

f(z)dz

(t − z)1−α
+

1
Γ(α)

∫ t
0

A(z)û(z)dz

(t − z)1−α
+

1
Γ(α)

∫ t
0

∫z
0

B(z, s)û(s)

(t − z)1−α
dŴsdz. (4.4)

The solution of this equation, û(t), is smoother than u(t) and therefore standard numerical
procedures can be applied to compute its approximate solution. Once the approximate
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solution, û, is obtained for M realizations of such approximate solution, the Monte Carlo
method then uses these approximations to compute corresponding sample averages of these
M realizations.

Now we show that û(t) is a good approximation of u(t). To show this the following
lemma is required.

Lemma 4.1. Given a nonrandom functionH(t) such that

|H(t) −H(τ)| ≤ λ|t − τ |δ, 0 ≤ t, τ ≤ 1, 0 ≤ δ ≤ 1, (4.5)

where λ > 0 is a constant, then

E

[∫z
0
H(t)dWt −

∫z
0
H(τ)dWτ

]2
≤ λ2(ρ)2δ (4.6)

with ρ ≥ |t − τ | for 0 ≤ t, τ, z ≤ 1.

Proof. Let

�∗
ρ =

{
I∗n : I∗n =

[
t∗n−1, t

∗
n

)
, n = [1 :N∗], t∗n − t∗n−1 = ρ∗, t0 = 0, t∗N = z

}
, ρ∗ ≤ ρ, (4.7)

be a partition of the interval [0, z]. We have

E

[∫z
0
H(t)dWt −

∫z
0
H(τ)dWτ

]2
= E

[
N∗∑
n=1

∫ t∗n
t∗n−1

(
H(t) − 1

ρ

∫ t∗n
t∗n−1

H(τ)dτ

)
dWt

]2

=
N∗∑
n=1

∫ t∗n
t∗n−1

[
H(t) − 1

ρ

∫ t∗n
t∗n−1

H(τ)dτ

]2
dt

=
N∗∑
n=1

∫ t∗n
t∗n−1

[
1
ρ

∫ t∗n
t∗n−1

{H(t) −H(τ)}dτ
]2
dt

≤ λ2(
ρ
)2

N∗∑
n=1

∫ t∗n
t∗n−1

[
1
ρ

∫ t∗n
t∗n−1

{
|t − τ |δ

}
dτ

]2
dt ≤ λ2ρ∗2δ ≤ λ2ρ2δ.

(4.8)

With the help of this lemma, we can show that u(t) → û(t) as ρ → 0.

Theorem 4.2.

E

[∫1

0
(u(t) − û(t))2dt

]
≤ C ρ2

1 − 3λ2
, (4.9)
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where

λ2 =
1

Γ2(α)

∫1

0

∫ t
0

1

(t − z)2−2α
{
A2(z) +

∫z
0
B2(z, s)ds

}
dzdt. (4.10)

Proof. Let ε(t) = u(t) − û(t), then (3.5) and (4.4) lead to

ε(t) =
1

Γ(α)

∫ t
0

A(z)ε(z)dz

(t − z)1−α
+

1
Γ(α)

∫ t
0

∫z
0

B(z, s)ε(s)

(t − z)1−α
dWsdz

+
1

Γ(α)

∫ t
0

∫z
0

B(z, s)û(s)

(t − z)1−α
[
dW − dŴs

]
dz.

(4.11)

Applying the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) and the Hölder’s inequality to this
equation, we obtain

∫1

0
ε2(t)dt ≤ 3

(
λ2
∫1

0
ε2(t)dt + φ

)
, (4.12)

where λ2 is given by (4.10) and

φ =
1

Γ2(α)

∫1

0

∫ t
0

∫z
0

∣∣∣∣∣
B(z, s)û(s)

(t − z)1−α
[
dW − dŴs

]∣∣∣∣∣
2

dzdt. (4.13)

Taking expectations on both side, letting e = E(
∫1
0 ε

2(t)dt) and using the Burkholder-Gundy-
type inequality (EX)2 ≤ E(X2), we get

e ≤ 3E
(
φ
)

1 − 3λ2
. (4.14)

Applying Lemma 4.1, there is constant C such that

E

[∫1

0
(u(t) − û(t))2dt

]
≤ Cρ2

1 − 3λ2
(4.15)

as we claimed. In the rest of this section, we construct our numerical method which enables
us to solve (4.4) numerically.

Let {ψj(t), j = 0, 1, 2, . . . , J} be a set of deterministic orthogonal functions with weight
function ν(t) and [a, b] its interval of orthogonality. Also, assume that

∫b
a

ν(t)ψk(t)ψj(t)dt =

⎧⎨
⎩
hk, k = j,

0, k /= j.
(4.16)
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Now, for tε[0, 1], we assume that

u(t) ≈ ûJ(t) = u0 + ν(t)
J∑
j=0

cjψj(t), (4.17)

then (4.4) reduces to

ν(t)
J∑
j=0

cjψj(t)

=
∫ t
0

1

Γ(α)(t − z)1−α
{
f(z) +A(z)u0 +

∫z
0
B(z, s)u0dŴs

}

+
1

Γ(α)

J∑
j=0

cj

∫ t
0

1

(t − z)1−α
[
A(z)u0 + ν(z)ψj(z) +

∫z
0
B(z, s)u0 + ν(s)ψj(s)dŴs

]
dz.

(4.18)

Multiply this equation by ψk(t) and integrating the resultant over the interval [a, b], we obtain
that

(
hk − γkk

)
ck −

J∑
j=0, j /= k

cjγkj = βk, k = 0, 1, 2, . . . , J, (4.19)

where

βk =
∫b
a

ψk(t)JαV0(t),

γkj =
∫b
a

ψk(t)JαVj(t)dt,

V0(z) = f(z) +A(z)u0 +
∫z
0
B(z, s)u0dŴs,

Vj(z) = A(z)ν(z)ψj(z) +
∫z
0
B(z, s)ν(s)ψj(s)dŴs

(4.20)

for j, k = 0, 1, 2, . . . , J . In case of white noise, we may evaluate the function Vj(z) if we
regularize the stochastic term by replacing the white noise with a smoother stochastic term.
In other words, the last two equations may be replaced with

V0(z) ≈ f(z) +A(z)u0 +
N1∑
n=1

ηn

∫z
0
B(z, s)u0χn(s)ds,

Vj(z) ≈ A(z)ν(z)ψj(z) +
N2∑
n=1

η∗n

∫z
0
B(z, t)ν(t)ψj(t)χn(s)ds.

(4.21)
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4.1. The Solution of the Stochastic Linear System

The linear system (4.19) may be rewritten as

ck −
J∑
j=0

γ∗kjcj = β
∗
k, k = 0, 1, 2, . . . , J, (4.22)

where

β∗k =
βk(

hk − γkk
) , γ∗kj =

γkj(
hk − γkk

) . (4.23)

Theorem 4.3. This system has a unique solution if

∣∣1 − γ∗ii∣∣ >
J∑
j /= i

∣∣∣γ∗ij
∣∣∣, i = 0, 1, 2, . . . , J. (4.24)

Proof. The above system can be written, in the matrix form as

(I − P)C = Q, (4.25)

where

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ∗00 γ∗01 γ∗02 · · · γ∗0J
γ∗10 γ∗11 γ∗12 · · · γ∗1J
γ∗20 γ∗21 γ∗22 · · · γ∗2J
· · · · · · · · · · · · · · ·
γ∗J0 γ∗J1 γ∗J2 · · · γ∗JJ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Q = u0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β∗0
β∗1
β∗2
· · ·
β∗J

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(4.26)

and the unknowns matrix C = (c0 c1 c2 · · · cJ)
T . Cramer’s rule gives the solution of this

linear system; namely,

cj =
1

det(I − P)
J∑
i=0

det
(
P ∗
ij

)
Qj, j = 0, 1, 2, . . . , J, (4.27)

where det(I − P) is the determinant of I − P , Qj is the jth component of the matrix Q, and
det(P ∗

ij) agrees with det(I − P) except for the ith column where all but the jth term is 0, and
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the jth term is 1, providing that det(I −P)/= 0; see [12]. It is known that the inverse of the ma-
trix I − λP will always exist for all values of λ with the exception of at most J + 1 values.
These are the roots of the characteristic determinantal equation det(I−λP) = 0. Therefore, the
condition det(I − P)/= 0 holds if λ = 1 is not an eigenvalue of the matrix P . According to
Gershgorin theorem, all eigenvalues of the matrix P lie in the circles Si = {z : |z − γ∗ii| ≤∑J

j /= i |γ∗ij |}, i = 0, 1, 2, . . . J . Hence the system (4.22) has a unique solution given by (4.27)
if (4.24) is satisfied. As a conclusion of this theorem, our numerical method depends on the
choice of the orthonormal set {ψj(t), j = 0, 1, 2, . . . , J}. This set should be chosen in such a way
that the requirement of the above theorem, (4.24), should be satisfied.

5. Numerical Examples

In this section, we give two examples. The first example is fractional differential equation in
which there is no stochastic term. The second example is a stochastic differential equation in
which the differentiation is ordinary not of fractional order.

For each of these examples, we use the Jacobi polynomials of degree k, see [13]

Gk

(
p, q, x

)
=

Γ
(
q + k

)
Γ
(
p + 2k

) k∑
m=0

(−1)k
(
k

m

)
Γ
(
p + 2k −m)

Γ
(
q + k −m) x

k−m,

=
k!Γ
(
p + k

)
Γ
(
p + 2k

) P (p−q,q−1)
k (2x − 1), p − q > −1, q > 0

(5.1)

with weight ν(t) = xq−1(1 − x)p−q and satisfy the orthonormality condition

∫1

0
ν(x)Gk

(
p, q, x

)
Gj

(
p, q, x

)
dx =

⎧⎨
⎩
hk, k = j,

0, k /= j,
(5.2)

where

hk =
k!Γ
(
p + k

)
Γ
(
q + k

)
Γ
(
p − q + k + 1

)
(
2k + p

)
Γ2
(
p + 2k

) . (5.3)

Example 5.1. Consider the fractional differential equation

CDαu(t) + u(t) = t +
Γ(2)

Γ(2 − α) t
1−α, u(0) = 0, 0 ≤ t ≤ 1. (5.4)

With exact solution u(t) = t, Table 1 gives the error (error = absolute value of the difference be-
tween the exact solution and the approximate solution) for different values of J and Figure 1
compares the graph of the exact solution with the graphs of the approximate solutions for
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Figure 1: Graph of the error term, Example 5.1, for different values of J .

different values of J = 2, 4, and 8. As an application of this example, the logistic population
growth

DβN(t) =
r

α
N(t)

[
1 −

(
N(t)
K

)α]
, 0 ≤ β ≤ 1. (5.5)

Example 5.2. Lemma 3.1 shows that the FSIDE (3.2) can be rewritten as (3.6). Therefore, we
consider the stochastic differential equation

du(t) = u(t)dW(t), (5.6)

whose exact solution is

u(t) = u0e(−t/2)+W(t). (5.7)

Denoting by ûJ the approximating solution as in (4.17), by u(t) the exact solution, by eJN =
max{|u(t) − ûJ |, 0 ≤ t ≤ 0.5} the errors, and by αJ = log2e

J
N/e

J
2N an estimate of a convergence

order, the results are contained in Table 2.
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Table 1: The error term, Example 5.1, for different values of J .

t J = 2 J = 4 J = 8

0.01 0.02386082630 0.00739276500 0.00111930657
0.08 0.0296385222 0.00036210773 0.00042308907
0.12 0.0239831461 0.0030940054 0.0004573551
0.18 0.0141698745 0.0042170017 0.0005511502
0.23 0.0062804608 0.0034445584 0.0000146972
0.35 0.0088094421 0.0004698618 0.0003813140
0.46 0.0166034267 0.0028883860 0.0003867547
0.52 0.0182718028 0.0030401752 0.0003928341
0.66 0.0151002459 0.0005002161 0.0003980782
0.73 0.0098778957 0.0014150746 0.0002283339
0.87 0.0075982376 0.0026085903 0.0002975851
0.96 0.0236297748 0.0017660564 0.0004662527
1.00 0.031925763 0.005884759 0.001152260

Table 2: The convergence order, Example 5.2.

N e2N α2 e4N α4 e8N α8

128 0.6240 1.228 5.135 × 10−2 1.5603 8.531 × 10−3 2.913
256 0.5103 1.2919 3.291 × 10−2 1.732 2.928 × 10−3 3.321
512 0.395 1.5019 1.910 × 10−2 1.873 7.533 × 10−4 3.451
1024 0.263 1.014 × 10−2 2.183 × 10−4

6. Conclusion

Our presented numerical method is applied for many different FSIDE of the form (3.2). From
our numerical computations, we see the following.

(1) There is no restriction on the choice of the orthogonal polynomials. Moreover, the
values of the parameters, p and q, of the chosen orthogonal polynomials, see (5.1),
do not play any role in the computations yet more information about the expected
value of the exact solution will be helpful in determining appropriate values of
these parameters. In all cases the assumed approximation should agree with the in-
itial condition with and the exact solution.

(2) If the FSIDE (3.2) is free of the stochastic term while the differentiation is of frac-
tional order as in the case of the first example, the method works quite well.

(3) In case of the existence of the stochastic term, as in the case of the second example,
although the method is of higher-order accuracy yet in practice the obtained results
are not quite well as with the previous case.

(4) We note that for every path, even with a series of Monte Carlo simulations, the sto-
chastic linear system, (4.22), yields a unique deterministic solution.
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