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Two solutions to design a thin annular disc of variable thickness subject to thermomechanical
loading are proposed. It is assumed that the thickness of the disc is everywhere sufficiently small
for the stresses to be averaged through the thickness. The state of stress is plane. The initiation of
plastic yielding is controlled by Mises yield criterion. The design criterion for one of the solutions
proposed requires that the distribution of stresses is uniform over the entire disc. In this case there
is a relation between optimal values of the loading parameters at the final stage. The specific shape
of the disc corresponds to each pair of such parameters. The other solution is obtained under the
additional requirement that the distribution of strains is uniform. This solution exists for the disc
of constant thickness at specific values of the loading parameters.

1. Introduction

Thin annular discs subject to various loading conditions are a class of commonly used
structures in mechanical engineering. Therefore, there is a vast amount of literature on this
topic. These studies can be conveniently divided into two groups, namely, analysis and
design. The present paper deals with the design of thin discs. Therefore, previous works
solely related to the analysis of discs are not considered here. Reviews of some results on the
design of thin discs are provided in [1, 2]. An analytical solution to design an annular disc of
variable thickness under internal and external pressures has been proposed in [1]. It has been
assumed that the initiation of plastic yielding is controlled by Tresca yield criterion. The goal
of the design has been to find conditions under which the yield criterion is simultaneously
satisfied at all points of the disc. A disc rotating in a temperature field has been considered
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in [2]. The objective function in the problem is the disc weight. A numerical method has been
used to solve the problem. The present paper concerns with an annular disc inserted into a
rigid container and subject to thermomechanical loading. One of the loading parameters is
uniform temperature and the other is pressure over the inner radius of the disc. Both vary
with the time. Two design criteria are adopted. The requirement of one of the design criteria
is that the distribution of stresses is uniform over the entire disc at the final stage. Using this
criterion, a relation between optimal loading parameters is obtained. The solution is given in
analytical form. The additional requirement of the other design criterion is that the state of
strain is uniform. The same requirement is adopted to design Michell structures (see [3]). It
is shown that in the case of the disc under consideration there is the unique solution for the
second design problem. In particular, the thickness of the disc is constant.

2. Statement of the Problem

Consider a thin annular disc of outer radius b and inner radius a inserted into a rigid container
of radius a. It is convenient to introduce a cylindrical coordinate system (r, θ, z) with its z-
axis coinciding with the axis of symmetry of the disc. The initial thickness of the disc, h, is a
function of r. The disc is subject to thermal loading by a uniform temperature field varying
with the time. The disc has no stress at the initial temperature. Uniform pressure varying with
the time is applied over the inner radius of the disc. The outer radius is fixed to the container.
It is evident that the problem is axisymmetric. In particular, the solution is independent of θ.
Moreover, the normal stresses in the cylindrical coordinates, σr , σθ, and σz are the principal
stresses. It is also assumed that the state of stress is two-dimensional, σz = 0. The pressure
applied, thermal expansion caused by a rise of temperature, and the constraints imposed on
the disc affect the initial zero-stress state. It is assumed that the rise of temperature above the
reference state, T, and the pressure over the inner radius are monotonically nondecreasing
functions of the time, t. The boundary conditions are

σr = −βσ0, (2.1)

at r = a and

u = 0, (2.2)

at r = b. Here u is the radial displacement, β is a function of the time, and σ0 is a constant
introduced for further convenience. The circumferential displacement vanishes everywhere.

It is assumed that the thickness of the disc is everywhere sufficiently small for the
stresses to be averaged through the thickness. In this case the only nontrivial equilibrium
equation becomes

∂

∂r
(hrσr) = hσθ. (2.3)

The total radial, εr , and circumferential, εθ, strains are defined by

εr = εTr + εer + ε
p
r , εθ = εTθ + εeθ + ε

p

θ
, (2.4)
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where the superscript T denotes the thermal portions of the total strains, the superscript e
the elastic portions of the total strains, and the superscript p the plastic portions of the total
strains. It follows from Hooke’s law that

εer =
σr − νσθ

E
, εeθ =

σθ − νσr

E
, (2.5)

where E is Young’s modulus and ν is Poisson’s ratio. The thermal portions of the total strains
are given by

εTr = εTθ = αT, (2.6)

where α is the thermal coefficient of linear expansion. In the plastic range, Mises yield
criterion is adopted. For the problem under consideration this criterion reduces to

σ2
r + σ2

θ − σθσr = σ2
0 , (2.7)

where σ0 is the yield stress in tension, a material constant for perfectly plastic materials. This
quantity is also involved in (2.1). The associated flow rule is written in terms of the strain rate
components. A consequence of this rule is

ε̇
p
r

ε̇
p

θ

=
2σr − σθ

2σθ − σr
, (2.8)

where ε̇
p
r and ε̇

p

θ
are the plastic portions of the total radial and circumferential strain

rates. Another essential equation following from the associated flow rule expresses plastic
incompressibility, ε̇pr + ε̇

p

θ + ε̇
p
z = 0, where ε̇pz is the plastic portion of the total axial strain rate.

This equation serves to determine ε̇
p
z and is not important for the present solution. At small

strains,

ε̇
p
r =

∂ε
p
r

∂t
, ε̇

p

θ =
∂ε

p

θ

∂t
. (2.9)

According to the design criterion proposed by Michell (see [3]), all of the structural
elements must be strained by exactly the same strain magnitude in either simple tension or
pure compression. This criterion can be too restrictive for the structure under consideration.
Therefore, in the present paper two design criteria are adopted. First, it is required that
an equistressed state occurs in the entire disc. Then, the possibility to obtain a uniform
distribution of strains is explored.
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3. Restriction on Thickness Variation

The same magnitude of the elastic portion of strains can be obtained if and only if the
distribution of stress components is uniform. Then, it follows from (2.3) that

∂

h∂r
(hr) = n + 1, (3.1)

where n is constant. Let h0 be the thickness of the disc at r = b. Then, the solution of (3.1)
satisfying this condition is

h = h0

( r
b

)n
. (3.2)

Note that this function is often adopted in studies devoted to analysis of thin discs, for
example [4–6]. The uniform distribution of stresses is only required in the final stage of
loading. Using (3.2) the equation of equilibrium (2.3) for intermediate stages becomes

r
∂σr

∂r
+ (1 + n)σr = σθ. (3.3)

4. Thermoelastic Solution

At the beginning of the process of loading the entire disc is elastic. At this stage,

∂u

∂r
= εTr + εer ,

u

r
= εTθ + εeθ. (4.1)

Eliminating u between these two equations, using (2.5) and (2.6), and taking into account
that T is independent of r yield

r

(
∂σθ

∂r
− ν

∂σr

∂r

)
+ (1 + ν)(σθ − σr) = 0. (4.2)

Eliminating the stress σθ in (4.2) by means of (3.3) gives

r2
∂2σr

∂r2
+ (3 + n)r

∂σr

∂r
+ n(1 + ν)σr = 0. (4.3)

It is convenient to introduce the dimensionless radius ρ by ρ = r/b. Then, the general solution
of (4.3) is

σr

σ0
= Aρs1 + Bρs2 ,

σθ

σ0
= A(1 + n + s1)ρs1 + B(1 + n + s2)ρs2 (4.4)
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where A and B are constants of integration and

s1 = −
(
1 +

n

2

)
− 1
2

√
(2 − n)2 + 4n(1 − ν),

s2 = −
(
1 +

n

2

)
+
1
2

√
(2 − n)2 + 4n(1 − ν).

(4.5)

Substituting (4.4) into (2.5) determines εeθ. Then, using this expression for εeθ and (2.6) the
radial displacement can be found from the equation εe

θ
+ εT

θ
= u/r. As a result,

u

rq
= A(1 + n − ν + s1)ρs1 + B(1 + n − ν + s2)ρs2 + τ, (4.6)

where q = σ0/E and τ = αT/q. Substituting the boundary conditions (2.1) and (2.2) into (4.4)
and (4.6) leads to

A = Ae, Ae =
β(1 + n − ν + s2) − τωs2

(1 + n − ν + s1)ωs2 − (1 + n − ν + s2)ωs1
,

B = Be, Be =
τωs1 − β(1 + n − ν + s1)

(1 + n − ν + s1)ωs2 − (1 + n − ν + s2)ωs1
,

(4.7)

where ω = a/b.

5. Thermoelastic-Plastic Solution for Design

The yield criterion (2.7) is satisfied by the following substitution:

σr

σ0
= −2 sin γ√

3
,

σθ

σ0
= −

(
sin γ +

√
3 cos γ

)
√
3

, (5.1)

where γ is a function of ρ and τ . Substituting (5.1) into (3.3) results in

ρ
∂γ

∂ρ
=

√
3 cos γ − (1 + 2n) sin γ

2 cos γ
. (5.2)

The zone where the yield criterion is satisfied should occupy the entire disc at the final stage.
As it has been mentioned before, the design criterion chosen is satisfied if and only if the
distribution of stress is uniform at this stage. Therefore, it should be uniform over the domain
where (5.2) is valid. It follows from (5.1) that the condition that the distribution of the stresses
in the plastic zone is uniform is equivalent to the condition that γ is independent of ρ. It is
evident that the general solution of (5.2) does not satisfy this requirement. However, this
equation has a special solution in the form γ = γ0, where

tan γ0 =
√
3

1 + 2n
. (5.3)
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It is seen from (2.1), (5.1) and (5.3) that this special solution takes place if and only if

β =
2√
3
sin γ0. (5.4)

Let R be the dimensionless radius of the elastic/plastic boundary. The general solution
(4.4) and (4.6) is valid in the elastic zone. However, A and B are not given by (4.7). The
stresses σr and σθ are continuous across the elastic/plastic boundary. Therefore, it follows
from (4.4) and (5.1) that

− 2√
3
sin γ0 = ARs1 + BRs2 ,

−

(
sin γ0 +

√
3 cos γ0

)
√
3

= A(1 + n + s1)Rs1 + B(1 + n + s2)Rs2 .

(5.5)

The boundary condition (2.2) combined with (4.6) gives

A(1 + n − ν + s1) + B(1 + n − ν + s2) + τ = 0. (5.6)

Solving (5.5) for ARs1 and BRs2 results in

ARs1 = A0 =

√
3 cos γ0 − (2n + 2s2 + 1) sin γ0√

3s
,

BRs2 = B0 =
(2n + 2s1 + 1) sin γ0 −

√
3 cos γ0√

3s
.

(5.7)

Thus, the quantities ARs1 and BRs2 are independent of τ . Eliminating A and B in (5.6) by
means of (5.7) leads to

A0R
−s1(1 + n − ν + s1) + B0R

−s2(1 + n − ν + s2) + τ = 0. (5.8)

It is convenient to introduce the following quantities ξ
p
r = ∂ε

p
r /∂τ and ξ

p

θ
= ∂ε

p

θ
/∂τ .

Then, (2.8) becomes

ξ
p
r = ξ

p

θ

(
2σr − σθ

2σθ − σr

)
. (5.9)

Since the stresses are constant in the plastic zone, the elastic strain rates vanish. Moreover, it
follows from (2.6) that ξTr = ∂εTr /∂τ = q and ξT

θ
= ∂εT

θ
/∂τ = q. Therefore, the total strain rates

in the equation of compatibility can be replaced with their plastic portions. Then, using the
definition for ξpr and ξ

p

θ this equation is reduced to

ρ
∂ξ

p

θ

∂ρ
+ ξ

p

θ − ξ
p
r = 0. (5.10)
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Substituting (5.1) at γ = γ0 into (5.9) and then eliminating ξ
p
r in (5.10) yield

ρ
∂ξ

p

θ

∂ρ
= − 3nξp

θ

1 + 2n
. (5.11)

Here, (5.3) has been used to eliminate tan γ0. Equation (5.11) can be immediately integrated
to give

ξ
p

θ = qξ0(τ)ρm, m = − 3n
1 + 2n

, (5.12)

where ξ0(τ) is a function of integration. Introduce the notation w = du/dτ . Note that w
is proportional to the radial velocity. Using (5.12) the value of w on the plastic side of the
elastic/plastic boundary is determined as

w
p

R = qR + qξ0(τ)Rm+1. (5.13)

Differentiating (4.6)with respect to τ yields

w

rq
=

dA

dτ
(1 + n − ν + s1)ρs1 +

dB

dτ
(1 + n − ν + s2)ρs2 + 1. (5.14)

Thus, the value of w on the elastic side of the elastic/plastic boundary is

we
R =

[
dA

dτ
(1 + n − ν + s1)Rs1 +

dB

dτ
(1 + n − ν + s2)Rs2 + 1

]
Rq. (5.15)

Since wp

R = we
R, it follows from (5.13) and (5.15) that

ξ0(τ) =
[
dA

dτ
(1 + n − ν + s1)Rs1 +

dB

dτ
(1 + n − ν + s2)Rs2

]
R−m. (5.16)

This equation can be rewritten in the following equivalent form:

ξ0(τ) =
[
dA

dR
(1 + n − ν + s1)Rs1 +

dB

dR
(1 + n − ν + s2)Rs2

]
dR

dτ
R−m. (5.17)

Eliminating here the derivatives dA/dR and dB/dR by means of (5.7) gives

ξ0(τ) = −
[
s1(1 + n − ν + s1)

[√
3 − (2n + 2s2 + 1) tan γ0

]

+s2(1 + n − ν + s2)
[
(2n + 2s1 + 1) tan γ0 −

√
3
]]dR

dτ

R−m−1
√
3s

cos γ0.

(5.18)
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Eliminating here tan γ0 by means of (5.3) yields

ξ0(τ) = −2dR
dτ

s1s2R
−m−1

(1 + 2n)
cos γ0. (5.19)

Substituting (5.19) into (5.12) gives

ξ
p

θ = −2qs1s2 cos γ0ρ
m

(1 + 2n)
R−m−1dR

dτ
. (5.20)

Integrating with respect to τ determines the circumferential plastic strain as

ε
p

θ
=

2qs1s2 cos γ0ρm

(1 + 2n)m
R−m + ε0

(
ρ
)
, (5.21)

where ε0(ρ) is an arbitrary function of ρ. This function should be found using the condition
ε
p

θ
= 0 at the elastic/plastic boundary. Then, it follows from (5.21) that

ε
p

θ
=

2qs1s2 cos γ0
(1 + 2n)m

(
ρm

Rm
− 1

)
. (5.22)

Substituting (5.1) at γ = γ0 into (5.9), eliminating tan γ0 by means of (5.3), and integrating
with the respect to τ using the condition that εp

θ
= 0 when ε

p
r = 0 give

ε
p
r = ε

p

θ

(1 − n)
(1 + 2n)

. (5.23)

6. Design of the Disc

The solution found can be used to search for two kinds of optimal conditions. In particular,
it is possible to search for a uniform distribution of stresses at the final stage of loading. This
kind of design requires that the plastic zone occupies the entire disc. The stresses at any point
of the disc are given by (5.1), where γ should be replaced with γ0. Putting R = 1 in (5.8)
determines the value of τ = τp at which the entire disc becomes plastic

τp = −A0(1 + n − ν + s1) − B0(1 + n − ν + s2). (6.1)

Using (4.5), (5.3), (5.4), (5.7), and (6.1) it is possible to find a relation between the two optimal
loading parameters at the final stage, τp and β, at a given value of n. The distribution of the
elastic and thermal portions of the strain tensor is uniform at these values of the parameters.
However, the plastic portion of the strain tensor varies with the radius according to (5.22) and
(5.23). Therefore, not all of the requirements of Michell structures are satisfied. The following
solution enables the total strain distribution to be uniform. It is evident from (5.12) that it
is possible if and only if ξ0(τ) = 0. Then, it follows from (5.19) that s1 = 0 or s2 = 0. These
conditions alongwith (4.5) provide two equations for n. The equation corresponding to s1 = 0
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has no solution. The other equation gives n = 0. In this case s1 = −2. Thus, the distribution
of strains in the disc of constant thickness is uniform if β = 1, as follows from (5.3) and (5.4).
Moreover, it is seen from (5.3) and (5.7) that A0 = 0 at n = 0 and s2 = 0. Therefore, (5.8) does
not provide any relation between R and τ . The physical meaning of this feature of the solution
is that the plastic zone simultaneously occupies the entire disc of any size. Thus, this design
satisfies the criterion adopted in [1]. The corresponding value of τ can be found from the
thermoelastic solution. In particular, since β is given, Ae and Be in (4.7) are solely dependent
of τ . Therefore, replacing A and B in (4.4) with Ae and Be, respectively, and putting ρ = ω
determine the stresses as functions of τ . Finally, substituting these functions into the yield
criterion (2.7) gives the equation for the value of τ at which the entire disc becomes plastic.

7. Conclusions

New solutions for design of a thin annular disc subject to thermomechanical loading have
been proposed. Two design criteria have been adopted. One of the criteria requires that
the state of stress is uniform at the final stage of loading. This criterion leads to a relation
between optimal values of the loading parameters for each specific shape of the disc. A more
restrictive criterion additionally requires, by analogy to Michell structures, that the state of
strain is uniform at the final stage. Application of this criterion has shown that the state of
stress and strain required appears in the disc of constant thickness at certain values of the
loading parameters. This design also satisfies the requirements formulated in [1]. Possible
developments of the approach proposed include plastic anisotropy, pressure-dependency of
the yield criterion, and variation of some material properties along the radius.
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