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A nonlinear digital control scheme is proposed for analyses and designs of stable industry
processes. It is derived from the converging characteristic of a specified numerical time series.
The ratios of neighbourhoods of the series are formulated as a function of the output of the plant
and the reference input command and will be converted to be unities after the output has tracked
the reference input command. Lead compensations are also found by another numerical time
series to speed up the system responses on the online adjusting manner. A servosystem, a time-
delay system, a high-order system, a very-high-order system, and a 2 × 2 multivariable aircraft
gas turbine engine are used to illustrate effectiveness of the proposed nonlinear digital controller.
Comparisons with other conventional methods are also made.

1. Introduction

For unit feedback discrete-time control systems, the control sequences are usually functions
of the difference between the sampled reference input and output of the plant [1–5]. The
discrete-time control sequence can be generated by Finite Impulse Response (FIR) filter or
Infinite Impulse Response (IIR) filter. The input of FIR or IIR filter is the difference between
the sampled reference input and output of the plant. The output of FIR or IIR will be the input
of the plant. In general, they are linear controllers.

In this literature, a nonlinear discrete-time control sequence described by periodic
numerical series G(jTS) is proposed for analyses and designs of industry processes. They
are sampled-data feedback control systems. TS represents the sampling interval. The ratios
of G((k + 1)TS) to G(kTS) of the series are formulated as a function of the reference input
command and the output of the plant. The value of G(kTS) is the control input of the plant at
time intervals between (k−1)TS and kTS. Thus, the considered system is closed as a feedback
control system by use ofG(jTS). It will be seen that the output of the plant tracks the reference
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input command exactly after ratios G((k + 1)TS)/G(kTS) of the series being converted to
unities. It implies thatG(kTS)will be converted to a steady-state value for a constant reference
input applied. The stability of the closed-loop system is guaranteed by selecting the proper
function of ratios G((k + 1)TS)/G(kTS). This function can be called as “Regulation Function.”
It will be proven that the considered system using G(kTS) becomes a negative feedback
control system for a stable plant [4].

Note that it needs not integration to get zero tracking error, and performance of
controlled systems are dependent on selected functions ofG((k+1)TS)/G(kTS). Furthermore,
an adaptive limitation for G(kTS) can be applied also to minimize the control effort and get
better performance. Controlled results will be compared with conventional famous PI and
PID controllers [6–15]. In this work, measurement noises of plant outputs are not considered.
It is worthwhile to include recent developments of fractional-order systems and controls
[16, 17] in the proposed nonlinear automatic regulation time series. They have been applied
to signal processing [18], Cyber-physical networking system [19, 20], PMSM position servo
system [21], and optimal control [22].

In following sections, basic concepts of the proposed nonlinear discrete-time control
sequence are discussed first, and then a servo system, a time-delay system, a high-order
system, a very-high-order system, and a 2 × 2 multivariable aircraft gas turbine examples
are used to illustrate their tracking behaviour and performance. Simulating results will show
that the proposed nonlinear digital controller gives another possible way for analyses and
designs of industry processes. Design results of the fourth example give the proposedmethod
can also be applied to multivariable feedback control systems.

2. The Basic Approach

2.1. Automatic Regulation Time Series

A numerical series with time interval TS [1–5] can be written as in the form of

G
(
jTS

)
, j = 1, 2, 3, . . . , n, n + 1, . . . , (2.1)

where G(jTS) represents a constant value between time interval from (j − 1)TS and jTS. For
simplicity, the representation of G(jTS)will be replaced by G(j) in the following evaluations.
The ratios G(j + 1)/G(j) of the series are defined as in the form of

F
(
j
)
=

G
(
j + 1

)

G
(
j
) , j = 1, 2, 3, . . . , n, n + 1, . . . . (2.2)

Equation (2.2) gives the value of G(n + 1) approaches to be a constant value when the value
of F(n) approaches to be unity. Now, the problem for closing the considered system is to find
the formula of F(j) which is the function of the reference input command R and the output
of the plant Y . G(n + 1) is used as the input of the considered system. Considering a series
given below,

G(n + 1) =

[
m∑

i=0

ai

(
R(n)
YS(n)

)i
]

G(n), (2.3)
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where R(n) represents the reference input command and YS(n) represents the nonzero
sampled output of the plant at the sampling interval nTS. Note that this non-zero constraint
will be removed later by level shifting. Equation (2.3) is a possible way to close the considered
system as a sampled-data feedback control system. Assuming the reference input command
has been tracked by applying control effort G(j), (2.3) becomes

G(n + 1) =
m∑

i=0

aiG(n). (2.4)

For steady-state condition, G(n + 1) approaches to be a constant value, and it gives

m∑

i=0

ai = 1. (2.5)

Rearranging (2.3) and taking the derivative of it with respect to YS(n)/R(n), one has

F(n) =
m∑

i=0

ai

(
YS(n)
R(n)

)−i
, (2.6)

∂F(n)
∂(YS(n)/R(n))

= −
m∑

i=0

iai

(
YS(n)
R(n)

)−1−i
. (2.7)

The sufficient but not necessary condition for (2.7) less than zero is ai > 0 for YS(n)/R(n) ∼= 1
and (2.6) can be rewritten as in the form of

F(n) =
m∑

i=0

ai

∣∣∣∣
YS(n)
R(n)

∣∣∣∣

−i
. (2.8)

ai > 0 will be used in the following evaluations. Negative value of (2.7) represents the closed-
loop system using (2.3) activated as a negative feedback system around the equilibrium
condition; that is, YS(n) = R(n). This statement will be illustrated and discussed by a graph
in the next paragraph. The first-order polynomial described in (2.3) can be written as in the
form of

G(n + 1) =
[
β

∣∣∣∣
R(n)
YS(n)

∣∣∣∣ + 1 − β

]
G(n), (2.9)

where β satisfies constrains stated above and becomes an adjustable parameter. Thus, the
ratios F(n) become

F(n) = β

∣∣∣∣
R(n)
YS(n)

∣∣∣∣ + 1 − β. (2.10)
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F(n) can be called as “Regulation Function” also. Similarly, the third-order representation of
F(n) is in the form of

F(n) = α

∣
∣
∣
∣
YS(n)
R(n)

∣
∣
∣
∣

−3
+ γ

∣
∣
∣
∣
YS(n)
R(n)

∣
∣
∣
∣

−1
+ 1 − α − γ, (2.11)

where 0 < α and 0 < γ .
Taking the derivative of (2.10)with respect to YS(n) = R(n), one has

∂F(n)
∂(YS(n)/R(n))

= −β
(
YS(n)
R(n)

)−2
. (2.12)

For negative value of (2.12), the value of β must be greater than zero. This implies the range
of β is 0 < β < 1. The suitability of the proposed nonlinear adaptive digital controller is based
on this negative regulation characteristic. Figure 1 shows ratios F(n) versus R(n)/YS(n)
represented by (2.9) for β = 0.9, 0.7, 0.5, 0.3 and 0.1, respectively.

Figure 1 shows that the value of F(n) is less than one for that of YS(n) greater than
that of R(n), then the value of G(n + 1) will be decreased; the value of F(n) is greater than
one for that of YS(n) less than that of R(n), and the value of G(n + 1) will be increased. This
implies that the controlled system connected using (2.9) will be regulated to the equilibrium
point (YS(n)/R(n) = 1) and gives a negative feedback control system for deviation from the
equilibrium point. From Figure 1, it can be seen that one can adjust β to get desired regulating
slope; that is, regulating characteristic. Certainly, other tracking functions can be formulated
and proposed also for the considered system, if its derivative with respect to YS(n)/R(n) is
negative. Similar to the derivation of (2.12), (2.11) gives

∂F(n)
∂(YS(n)/R(n))

= −
{

γ

(
YS(n)
R(n)

)−2
+ 3α

(
YS(n)
R(n)

)−4}

, (2.13)

where 0 < α and 0 < γ .
The constraint of non-zero YS(n) can be removed by R(n)/YS(n) of (2.9) replaced by

(R(n) + Yo)/(YS(n) + Yo). Yo is a positive value and represents the negative maximal control
swing. The modified equation of (2.9) becomes

G(n + 1) =
{
β

∣∣∣∣
R(n) + Yo

YS(n) + Yo

∣∣∣∣ + 1 − β

}
G(n). (2.14)

Equation (2.14) implies ratios G(n + 1)/G(n) are in the form of

F(n) =
[
β

∣∣∣∣
R(n) + Yo

YS(n) + Yo

∣∣∣∣ + 1 − β

]
, n = 1, 2, 3, . . . , j, j + 1, . . . . (2.15)

Control inputs of the plant are in the form of

u(n + 1) = G(n + 1) − Yo

P(0)
(2.16)
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Figure 1: G(n + 1)/G(n) Versus R/YS for β = 0.9, 0.7, 0.5, 0.3, and 0.1.

for the negative swing control using positive values of β, G(n), and F(n). Equation (2.14)
gives negative regulation characteristics also for R(n) = YS(n) is corresponding to R(n)+Yo =
YS(n) + Yo. Similar to the evaluation of (2.12), the derivative of (2.15) becomes

∂F(n)
∂((YS(n) + Yo)/(R(n) + Yo))

= −β
(
YS(n) + Yo

R(n) + Yo

)−2
. (2.17)

Figure 2 shows the connected system configuration using (2.14) and (2.16) in which U is the
sampled with hold output of the controller. The values of G(n) and F(n) will be all positive
for the summation of YS(n) and Yo (or R and Yo) is greater than zero with specified values of
Yo. All positive values will give the better continuity and regulating characteristic of the time
series. Naturally, absolute value of (R(n)+Yo)/(YS(n)+Yo) can be used in (2.14) to guarantee
positive of G(n) and F(n) for negative of R(n).

2.2. Control Effort Limitation

An adaptive value of Yo can be selected at |R(n)| for the system is well controlled. Then (2.14)
and (2.16) can be rewritten as

G(n + 1) =
{
β

∣∣∣∣
R(n) + |R(n)|
YS(n) + |R(n)|

∣∣∣∣ + 1 − β

}
G(n), (2.18)

u(n + 1) = G(n + 1) − |R(n)|
P(0)

, (2.19)
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respectively. The maximal value of G(n) can be limited by an adaptive constraint |R(n) +
|R(n)|| to minimize the control effort. The control input U of the plant is now described by
(2.19).

Note that the singularity of (2.18) must be avoided when YS(n) + |R(n)| = 0. It is easy
to replace YS(n) + |R(n)| = 0 by a small value. A small value of G(n) is selected also to avoid
null time series. Figure 3 shows an equivalent block diagram of Figure 2 using constraint of
G(n) and singularity avoidance of YS(n) + |R(n)| = 0. The constrain of G(n) cannot be only
for minimizing the control effort but also for improving system performance.

2.3. Phase Lead Compensation

A conventional digital filterC(z) in Figure 3 can be applied for filteringG(n), if it is necessary.
In general, phase lead is used for speeding up the time response. The first-order phase lead
can be expressed as

C(z) =
Tns + 1

Tns/ρ + 1

∣∣∣∣
s=(2/TS)((z−1)/(z+1))

(2.20)

for ρ > 1. The parameter Tn can be found by another numerical time series. It is

W(n + 1) =

[

η

(
Tc
Tcs

)j

+ 1 − η

]

W(n),

Tn = W(n + 1),

(2.21)

where Tc is the time constant of the closed loop system and Tcs is the wanted time constant.
Considering a illustrating example [6] is shown in Figure 3, in which P(s) is in the

form of

P(s) =
30

s2 + 10s + 30
. (2.22)

DC gain of P(s) is unity. The sampling period TS is selected to be equal to 0.1 second for
illustrating variations of G(n) and F(n). Time responses of the overall system using the
nonlinear digital controller for β = 0.5, Yo = |R(n)| and C(z) = 1 are shown in Figure 4.
Magnitudes of reference inputs between 0 and 5 seconds are equal to 1, between 5 and 10
seconds are equal to −0.7, between 10 and 14 seconds are equal to 0.5, and between 14 and 17
seconds are equal to −0.3, in which gives reference input R(n) (dash line), output Y (solid
line), time series G(n) (dotted line), and ratios F(n) (dash-dotted line) of G(n). Figure 4
shows that all values of G(n) and F(n) are positive while the value of output Y is tracking
the negative value of the reference input R(n). The value of R(n) can be positive or negative.

Figure 4 shows also that ratios F(n) are converted to be unities quickly; that is, the
controlled output tracks the reference input quickly. The proposed method gives a good
performance and zero steady-state error without integration. Note that maximal values of
G(n) are set to be |R(n) + |R(n)|| for better performance and minimal the control effort.
Equation (2.14) gives that F(n)will be converted to 0.5 for zero input (R(n) = 0) and β = 0.5.
Equation (2.14) and Figure 1 give that the less the value of β is, the larger the regulation slope
will be. β = 0.5 is the optimal value for the considered system.
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20, 10, and 5Hz, respectively.

Figure 5 shows time responses for β = 0.50 and sampling frequency equal to 100, 40,
20, 10, and 5Hz, respectively. It shows that 40Hz (i.e., TS = 25ms) is fast enough for the
considered system. Figure 6 shows comparisons with a phase-lead compensator C(z) which
is included in the control loop. The phase-lead compensator C(z) is in the form of

C(z) =
0.15923s + 1
0.03185s + 1

∣∣∣∣
s = (2/TS)((z−1)/(z+1))

. (2.23)

It can speed up the time responses while keeping system performance.
The proposed control scheme using numerical time series will be applied to three

numerical SISO (single-input single-output) examples in next section on online adjusting
manner. Equation (2.21) will be used for finding phase-lead compensators C(z) to meet
design specifications.

3. Numerical Examples

Example 3.1. Consider a stable plant that has the transfer function [7, 8]

P1(s) =
e−s

(s + 1)2
. (3.1)

It has pure time delay of 1 second. The specification for time constant Tcs = 1.85 sec is selected.
Parameters of (2.18) and (2.21) are β = 0.7, TS = 25ms, ρ = 50, η = 0.9, and j = 1. Figure 7
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Figure 6: Time responses of the illustrating example with/without C(z) for β = 0.5, TS = 25ms.

shows online adjusting processes for finding C(z). The initial guess of Tn is equal to 1.00 and
converted to 0.5195 after third adjusting processes. The found lead compensator is

C(z) =
0.5195s + 1

0.5195s/ρ + 1

∣∣∣∣
s=(2/TS)((z−1)/(z+1))

. (3.2)

Time constants of each step are 1.4107, 1.8488, 1.8498, and 1.8500. Figure 7 shows the proposed
method provides an automatic regulation procedure to get wanted design specifications. It
gives good performance and zero steady-state error.

Simulation results of the proposed method and four other methods are presented for
comparisons. They are Ziegler-Nichols method [9–12] for finding PI and PID compensators,
Tan et al. [13, 14] for finding PID compensator, and Majhi [7, 8] for finding PI compensator.
The controller is in the form of

u(t) = Kpe(t) +Ki

∫
e(t)dt +Kd

d

dt
e(t). (3.3)

Parameters of four found compensators are given below:

(1) ZN(PI): Kp = 1.240 and Ki = 0.251;

(2) ZN(PID): Kp = 1.6367, Ki = 0.4187, and Kd = 0.5972;

(3) Tan’s(PID): Kp = 0.620, Ki = 0.5636, and Kd = 0.1705;

(4) Majhi’s(PI): Kp = 0.864 and Ki = 0.3653.

Integral of the Square Error (ISE) and Integral of the Absolute Error (IAE) are given in
Table 1. Time responses are shown in Figure 8. From Table 1 and Figure 8, one can see that the
proposedmethod gives faster and better performance than those of other methods presented.



10 Mathematical Problems in Engineering

Time (s)

R
(n
),
Y

45

2

1.5

1

0.5

0

−0.5

−1
0 15 30 60

Figure 7: Time responses of Example 3.1 for finding C(z).

Proposed Majhi’s
R

1.5

1

0.5

0

Time (s)

R
(n
),
Y

Tan’s

0 5 10 15 20 25

ZN (PI)

ZN (PID)

Figure 8: Time responses of Example 3.1 using different control methods.

Table 1: IAE and ISE errors of Example 3.1 using different control methods.

Methods Proposed ZN(PI) ZN(PID) Tan’s Majhi’s
ISE 1.4610 2.2675 1.7694 2.2471 2.4654
IAE 1.8726 4.0107 2.8757 3.0725 4.0659

Example 3.2. Consider a sixth order plant [7, 8]

P2(s) =
1

(s + 1)6
. (3.4)
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Table 2: IAE and ISE errors of Example 3.2 using different control methods.

Methods Proposed ZN(PI) ZN(PID) Ho’s Majhi’s
ISE 3.3895 5.335 4.023 5.215 3.746
IAE 4.4798 9.279 6.492 7.219 5.425

The specification of time constant Tcs = 4.8 sec is selected. Parameters of (2.18) and (2.21) are
β = 0.5, TS = 25ms, ρ = 50, η = 0.9, and j = 3. The initial guess of Tn is equal to 1.0 and
converted to 0.7759 after second adjusting process. The found lead compensator is

C(z) =
0.7759s + 1

0.7759s/ρ + 1

∣∣∣∣
s=(2/TS)((z−1)/(z+1))

. (3.5)

Figure 9 shows on-line adjusting processes for finding C(z) to meet Tcs = 4.8 sec. Simulation
results of the proposed and four other methods are presented for comparisons. They are
Ziegler-Nichols rule [9–12] for finding PI and PID compensators, Ho et al. [15] for finding
PID compensator, and Majhi [7, 8] for finding PI compensator. Parameters of five found
compensators are given below:

(1) ZN(PI): Kp = 1.079 and Ki = 0.110;

(2) ZN(PID): Kp = 1.4248, Ki = 0.1838, and KD = 1.360;

(3) Majhi’s(PI): Kp = 0.7736, and Ki = 0.1547;

(4) Ho’s(PID): K(s) = 1.3(1 + 0.189/s + 1.3s/(0.13s + 1)).

Integral of the Square Error (ISE) and Integral of the Absolute Error (IAE) are given in Table 2.
Time responses are shown in Figure 10. From Table 2 and Figure 10, one can see that the
proposed method gives faster and better performance than those of other methods.
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Example 3.3. Consider the very-high-order plant [7, 8]:

P3(s) =
1

(s + 1)20
. (3.6)

The design specification for time constant Tcs = 19.0 sec is selected. Parameters of (2.18) and
(2.21) are β = 0.5, TS = 25ms, ρ = 50, η = 0.9, and j = 3. The initial guess of Tn is equal to 1.00
and converted to 0.9586 after the fourth adjusting process. The found lead compensator is

C(z) =
0.9586 s + 1

0.9586 s/ρ + 1

∣∣∣∣
s=(2/TS)((z−1)/(z+1))

. (3.7)

Figure 11 shows time response of the controlled system, which gives reference input R(n)
(dash line), output Y (solid line), time seriesG(n) (dotted line), and ratios F(n) (dash-dotted
line) of G(n). It gives good performance and zero steady-state errors. Figure 11 shows the
considered plant is a large time-lag system. The high order system model is usually used to
describe the industry process for replacing pure time delay (e.g., e−Tds) such that conventional
analysis and design techniques can be applied [7, 8]. Figure 11 shows the proposed method
can be applied to a large time-delayed system.

Final results and four other methods are presented for comparison and show the merit
of the proposed method. They are Ziegler-Nichols method [9–12] for finding PI and PID
compensators, Zhuang and Atherton [23] for finding PI compensator, and Majhi [7, 8] for
finding PI compensator. Parameters of four found compensators are given below:

(1) ZN(PI): Kp = 0.585 and Ki = 0.0305;

(2) ZN(PID): Kp = 0.77256,Ki = 0.05088, and Kd = 4.9135;
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(3) Majhi’s(PI): Kp = 0.5097 and Ki = 0.0443;

(4) Zhuang’s(PI): Kp = 0.473 and Ki = 0.058.

Time responses are shown in Figure 12. Table 3 gives integration of absolute error (IAE) and
integration of square error (ISE) of them. From Table 3 and Figure 12, one can see that the
proposed method gives better performance than those of other methods.
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Table 3: IAE and ISE errors of Example 3.3 using different control methods.

Methods Proposed ZN(PI) ZN(PID) Majji’s Zhuang’s
ISE 15.7313 21.2271 16.2160 20.1908 21.8142
IAE 18.0892 32.7084 22.9707 26.8295 32.9125

Example 3.4. Consider a gas turbine engine with plant transfer function matrix [24–26]:

P4(s) =
1

Δ(s)

[
2533 + 1515.33s + 14.9s2 1805947 + 1132094.7s + 95150s2

12268.8 + 8642.68s + 85.2s2 2525880 + 1492588s + 124000s2

]

, (3.8)

where Δ(s) = 2525 + 3502.7s + 1357.3s2 + 113.22s3 + s4. It is a 2 × 2 multivariable plant. The
steady-state gain of open loop P4(s) is in the form of

P4(0) =

[
1.00316 715.2265

4.85893 1000.3485

]

. (3.9)

A pre-compensating matrix P−1
4 (0) is first applied to decouple the plant in low-frequency

band. Then, two digital filters are used in the diagonal to filter outputs of two time series for
speeding up transient responses. They are in the form of

C1(z) =
0.75s + 1
0.15s + 1

∣∣∣∣
s=(2/TS)((z−1)/(z+1))

,

C2(z) =
0.60s + 1
0.25s + 1

∣∣∣∣
s=(2/TS)((z−1)/(z+1))

,

(3.10)
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where TS = 25ms is the sampling period. Figure 13 shows time responses of this controlled
system for β = 0.5. It shows that the proposed control scheme can be applied to the
multivariable feedback control system also.

4. Conclusions

In this literature, a new nonlinear digital controller has been proposed for analyses and
designs of industry processes. They are sampled-data feedback control systems. It was
applied to four simple and complicated numerical examples to get good performance and
zero steady-state errors. No integrations of tracking errors are needed to get zero steady-state
errors. Lead compensations are also found by another numerical time series to speed up the
system responses on the on-line adjusting manner. From simulation and comparison results
with other famous control methods, it can be seen that the proposedmethod provides another
possible control scheme for sampled-data feedback control systems, and it is worthwhile to
find other regulation F(n) to get better performance.
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